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Abstract—In order to sensibly label objects or regions in an 

image, computers often require foreknowledge of the classes or 
categories into which the objects must be divided.  However, we 
consider unsupervised learning algorithms, in which the human 
user supplies only the number of classes – not the identity or the 
statistics of the classes themselves.  Given a set of training images 
and feature extractors, the classification system we describe 
generates a set of classes that are maximally distinct in the feature 
domain we prescribe.  We formulate the acquisition of statistical 
knowledge from the training data as a Gaussian parameter 
estimation problem with vector quantization, and we implement 
classification of test images in a forward recursion algorithm.  Our 
analysis juxtaposes the relative importance of various design 
parameters, such as the direction in which we scan the image, the 
block size, the type of extracted features, and the number of 
classes we instruct the algorithm to find. 
 

Index Terms—image classification, image labeling, object 
recognition, statistical learning, unsupervised learning, Bayes-
Gauss likelihood, vector quantization, parameter estimation, 
hidden Markov model, forward recursion 

I. INTRODUCTION  
LASSES qualitatively separate objects, features, or other 
recognizable structure in an image.  A myriad of fields in 
artificial intelligence – robotic motion, autonomous vehicles, 

sensor networks, video surveillance, intelligent human-computer 
interaction, and artificial vision – can profit from intelligent 
object recognition, or, better yet, automatic categorization of 
pixels or blocks in an image. 
 Even without human specification of classes, structure can 
emerge from a classification algorithm.  For example, a snapshot 
of nature often invites a number of logical classification schemes, 
each with its own underlying order.  Land-and-water, ground-
and-sky, and natural-and-manmade represent common binary 
classification schemes, but more specific categorization heuristics 
also exist.  Perhaps an image contains numerous forms of foliage, 
such as grass, crops, weeds, bushes, and trees; or the image might 
feature a number of animals grazing in nature, each of a different 
species or appearance.  However, even the most intuitive 
classification schemes that come most readily to mind often fail 
to capitalize on all the nuanced information available in an image.  
Perhaps the cars that we are trying to separate from the street 
differ by make and model, just as the animals we might group 
into one class might differ by species. 

In these situations, unsupervised learning – automatic 
generation of class labels – can prove useful.  As scientists, we 
might be curious if we can unearth and exploit any further 
structure in an image for classification, or if underlying structure 
exists beyond our initially perceived categories.  In brief, we 
might want the order in an image to emerge on its own, without 
any prompting or prodding from a human observer.  

II. THE HIDDEN MARKOV MODEL FRAMEWORK 

A. Order of the Model 
We model the class structure in an image with a hidden 

Markov model (HMM), which assumes dependence on the finite 
past.  In a first-order Markov model, the class of each block in an 
image depends only on the class of the previous block.  
Therefore, as we accumulate statistics, we need determine only 
the transition probability from the previous block to the current 
block.  Logically, this assumption holds because we make our 
blocks sufficiently small that those of the same class tend to 
cluster, making first-order dependence quite feasible. 

B. Viable Forms of Adjacency 
We must vectorize our inherently two-dimensional structure as 

a string of blocks (or features) so that we can exploit first-order 
dependence.  As we determine how to traverse an image from 
block to block, several types of adjacency come to mind.  We 
could concatenate rows of blocks, columns of blocks, or 
diagonals of the image: 

 
 

 
Fig. 1.  Horizontal scan mode.  The first (leftmost) element of each row 
depends only on the last (rightmost) element of the previous row.   

 

 
Fig. 2.  Vertical scan mode.  The first (uppermost) element of each column 
depends only on the last (lowermost) element of the previous column.   
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Fig. 3.  Diagonal scan mode.  Change direction at the end of a diagonal. 

 
 We can also envision horizontal and vertical scan modes that 
change direction at the end of a row or column instead of 
wrapping around.  However, experimentation shows that, for 
images on the order of hundreds or thousands of pixels per row 
or column, the idiosyncrasies of wrapping around yield no 
consequential effect on the accuracy of classification. 

C. The State Variable ܺ௧ as the Class 
Our ultimate goal is blockwise classification of an image, so the 

variable of primary importance is the class label, which we make 
our Markov state ܺ௧. For simplicity, we number the classes from 
1 to ݇, where ݇ represents the number of classes we instruct our 
algorithm to distinguish.  True to the inherent mystery in the 
hidden Markov model assumption, the class of a block in a test 
image is never definitively known; it is a quantity that we must 
estimate.  Even the human eye, trained to discern qualitative 
order, cannot penetrate the truth since the image is generally not 
physical reality but rather a noisy representation of reality.  When 
given an image, we can work with only the observations.  

D. The Observation Vector  ሬܻറ௧ as the Features 
Although the class of a particular block is not immediately 

obvious, the features that we choose to extract from the block are 
observables we can trust.  Thus, we select a vector of numerical 
quantities that we deem our features vector or observation vector 
ሬܻറ௧.  Altogether, the HMM model comprises hidden classes that 
manifest themselves through independent, noisy observation 
vectors ሬܻറ௧, as pictured below: 

 
 

 
 
 
 
 
 
 
 
 
 
Fig. 4.  First three states of the horizontal scan hidden Markov model. 
 
Under the hidden Markov model with a finite number of possible 
states (classes), our system behaves in a predictable way.  We can 
determine all transition and state probabilities given the 
observations using nonlinear techniques like forward recursion. 

III. CLASSIFICATION SYSTEM OVERVIEW AND OUTLINE 
 

In this section, we delineate the classification system, treating 
each stage as a black box whose inputs we know and whose 
outputs we seek.  The subsequent sections will open the boxes 
pictured below, stepping through our preferred algorithms. 

Fig. 5.  Block diagram of classifying a test image based on parameters and probability distributions estimated from qualitatively similar training images. 
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A. Training Images and Design Parameters 
Before we extract any features, we must determine the images 

from which we will extract them.  We select a set of images that 
contain similar content to the test images that we wish to label; 
ideally, the similarity between training data and test data allows us 
to use the class-specific statistics that we generate from the 
training images in labeling the test image.  In other words, the 
frequency of features in the training images will determine which 
classes we expect to see and separate in the test data, so it is vital 
to select training images that comprise a representative sample of 
objects we are likely to see in the test data.  The number of 
training images that accurate classification demands will vary with 
the number of classes we choose to employ, since the 
incorporation of more classes will require more data to 
completely cover the larger number of possible transitions. 

Our choice of design settings will also indirectly influence the 
result.  Even though we might not know which classes will 
emerge from classification, we can limit the amount of variability 
in the model by setting the number of classes.  Likewise, we 
select features that we think will best distinguish the different 
classes of data; for example, average color intensities might serve 
us well when labeling nature, but color descriptors fail for 
separating quarters from nickels and dimes, since all these coins 
share the same silver hue. 

 

 
Fig. 6.  Natural images display a range of vivid colors and respond well to 
RGB classification, whereas we need other features to separate silver coins. 
 

The order in which our algorithm visits the blocks also 
perturbs the classification, but the differences are negligible. 

Finally, based on the types of features we hope to extract, we 
select an adequate block size to achieve the necessary precision.  
For example, color features work even on pixel-size blocks, 
whereas edge detection, block transforms like the discrete cosine 
transform (DCT), and structuring elements require larger blocks 
for object structure to emerge. 

B. Feature Extraction 
Once we settle on a set of design parameters and training 

images, we extract the desired features from the set of training 
images.  Block by block, our algorithm steps through each 
training image in the specified scan direction, applying the 
function pointer that we send into the feature extractor.  The 
features from one training image are concatenated onto the 
features of the following training image, so only the transition 
from the last block of one image to the first block of the next 
image suffers from discontinuity. 

Once the feature extractor has processed all blocks from all 
training images, the training images are no longer necessary, and 
our algorithm proceeds with a block-by-block features matrix.  
Each of the  m  rows in this matrix represents the feature or 
observations vector ሬܻറ௧ for a single block t.  In other words, the 

݅୲୦ row of our features matrix is ሬܻറ௜். 
Each of the n columns in this features matrix represents a 

particular feature.  If we select the average color intensities in the 
red, green, and blue (RGB) channels as our feature descriptors, 
then our features matrix will contain three columns, as we will 
extract the three colors from each block. 
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C. Parameter Estimation 
The features extracted from our training images will determine 

the classes toward which our classification algorithm converges.  
The goal of parameter estimation is to establish the probability 
density functions of these classes as a function of the feature 
vectors that we will extract from our test images. 

In order to perform classification using forward recursion, we 
need two probability distributions: 

 

௧ሻݔ|ሺ࢚࢟݌ ൌ prob. of observing features ࢚࢟ in a block of class ݔ௧ 
௧ሻݔ|௧ାଵݔሺ݌ ൌ prob. of block in class ݔ௧ାଵ after block in class ݔ௧ 
 

Assuming a Gaussian mixture model, we treat the distribution of 
observable feature vectors in a block of class ݔ௧ as a continuous 
Gaussian density function, continuous in multivariate feature 
space ࢚࢟.  This mixture of Gaussians – one for each class – 
allows us to employ analogous classification functions, each 
expressing the likelihood of an observable set of features falling 
into its respective class.  Tapping iterative vector quantization, 
we repeatedly classify all features until the classification statistics 
defining the Gaussian likelihoods converge.  These statistics then 
allow us to express the desired probability density: 
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D. Forward Recursion 
Armed with both the transition probabilities and the 

observation distributions, we are prepared to enter forward 
recursion with the test image(s) we hope to classify.  Forward 
recursion relies on a step-by-step iteration involving known 
quantities to compute the distribution of ݌ሺݔ௧|࢚࢟ሻ for each block 
t.  This conditional distribution expresses the probability of the 
block’s belonging to each class ݔ௧ given the observations or 
features ࢚࢟ that we extract from the adjacent blocks.  The 
forward recursion algorithm proceeds as follows: 
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The coveted probability distribution is ߙ௧ሺݔ௧ሻ ؜  .௧|࢚࢟ሻݔሺ݌

E. Classification: Quantizing the Distribution Vector 
The distribution derived in forward recursion is a sequence of 

probabilities for each block t.  Since our algorithm must 
definitively classify every block by a single class label, the final 
step involves assigning a single class label to each block.  To 
resolve the sequence of probabilities in ݌ሺݔ௧|࢚࢟ሻ, we assume the 
block to belong to the class with the largest probability; we assign 
the class for which the value of ݌ሺݔ௧|࢚࢟ሻ is largest for the block. 

IV. PARAMETER ESTIMATION USING VECTOR QUANTIZATION 
First, we assume a Gaussian mixture model, in that every 

feature belongs to a class whose distribution of feature vectors is 
Gaussian.  This assumption holds not only mathematically – as 
information theory and/or the Central Limit Theorem can 
divulge [5][6] – but also intuitively, if we consider the behavior 
of image capture. Inevitably, noise from image capture corrupts 
and slightly perturbs the true nature of the imaged phenomena, 
but the inherent features of a certain class – stripes on a zebra, 
blue in the sky, and copper on a penny – persist and firmly 
establish the mean behavior that one expects to see.  A 
combination of uneven illumination, motion blur, camera 
imperfections, and image compression degrade the pristine 
feature vector so that the distribution we witness from our 
training images assumes an approximately Gaussian shape, 
allowing us to model the distribution of observations or features 
as a Gaussian with class-dependent statistics: 

 

௧ݔ|ሺ࢚࢟݌ ൌ ௜ሻݏݏ݈ܽܿ ൌ
1
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where n is the number of features in ࢚࢟. Under this model, all 
we need to ascertain ݌ሺ࢚࢟|ݔ௧ ൌ  ௜ሻ are the mean andݏݏ݈ܽܿ
covariance statistics pertaining to each class-specific Gaussian.  
An iterative parameter estimation algorithm like expectation 
maximization suffices, but we choose vector quantization with 
Gaussian decision functions to parallel our assumption of a 
Gaussian mixture model for ݌ሺ࢚࢟|ݔ௧ ൌ  .௜ሻݏݏ݈ܽܿ
 Suppose we limit classification to ݇ labels.  For each of our m 
blocks, we evaluate each of ݇ Gaussian likelihood functions, 
whose statistics ሼ࢏ࣆ, Σ௜,  ௜ሽ we initialize based on various݌
heuristics beyond the scope of this discussion: 
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The classifier that yields the highest likelihood becomes the most 
likely model responsible for the current block’s features, leading 
us to tentatively label the block as this most likely class. 

 Other classifiers that work especially well are Euclidean 
distance (in the k-means algorithm, for example) and the 
Mahalanobis distance, both written below: 
 

Euclidean: ݀௜ሺ࢚࢟ሻ ൌ ሺ࢚࢟ െ  ሻଶ࢏ࣆ

Mahalanobis: ݀௜ሺ࢚࢟ሻ ൌ ሺ࢚࢟ െ ࢑ሻ்Σ௞ିଵሺ࢚࢟ࣆ െ  ࢑ሻࣆ
 

 We prefer the Gaussian classifier because it mirrors the 
Gaussian mixture model employed in our target distribution, 
 .௧ሻݔ|ሺ࢚࢟݌
  After we have classified all m blocks (or all m sets of features) in 
this manner, we recompute the statistics ሼ࢏ࣆ, Σ௜,  ௜ሽ to improve݌
the decision models for each class, where 
 
࢏ࣆ ൌ mean likelihood of the class ݅ Gaussian model, 
઱࢏ ൌ covariance matrix of the class ݅ Gaussian model, and 
௜݌ ൌ proportion of blocks that fall into class ݅. 
 
Repeating this process until the statistics for all ݇ Gaussian 
models cease to change noticeably, we converge to a set of 
statistics from which we can compute the probability 
distributions necessary for forward recursion. 

 
Fig. 7.  Classification using Gaussian likelihoods.  Statistics from the resulting 
clusters update the Gaussian decision function on the next iteration. 
 
 The statistics, under a Gaussian assumption, establish the 
probability that any feature vector ࢚࢟ will arise from each class.  
Although continuous distributions like the Gaussian generally 
require integration to convert to meaningful probability, we will 
simply evaluate the Gaussian.  Given that the current block t of 
pixels belongs to class ݅, the probability of observing feature 
vector ࢚࢟ in this block is approximately 
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Once we have classified all of our training image features 
according to the Bayes-Gauss decision metric outlined above, we 
can empirically compute the number of transitions from each 
state to each other state, thereby generating an approximation to 
the transition probabilities: 
 
௧ሻݔ|௧ାଵݔሺ݌ ൌ ௧ାଵݔ൫݌ ൌ ௧ݔ௝หݏݏ݈ܽܿ ൌ  ௜൯ݏݏ݈ܽܿ

௧ሻݔ|௧ାଵݔሺ݌ ൌ
ݏ݇ܿ݋݈ܤ݊ ׷   ൛൫ݔ௧ାଵ ൌ ௝൯ݏݏ݈ܽܿ ת     ሺݔ௧ ൌ ௜ሻൟݏݏ݈ܽܿ

ݏ݇ܿ݋݈ܤ݊ ׷   ሺݔ௧ ൌ ௜ሻݏݏ݈ܽܿ
 

 
We then feed ݌ሺ࢚࢟|ݔ௧ሻ and ݌ሺݔ௧ାଵ|ݔ௧ሻ into the forward 

recursion algorithm, which we detail next. 
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V.   THE FORWARD RECURSION ALGORITHM 
Our goal is to find the class label ݔ௧ for all image blocks t. If 

we characterize an image by its sequence of feature vectors, the 
class label that should be assigned to a particular image block t is 
the class label that maximizes the a posteriori probability of 
obtaining a class label given the sequence of feature vectors 
observed thus far. In other words, for an image block t, the best 
estimate for its class label is: 

 

ො௧ݔ ൌ argmax
௫೟

 ௧|࢚࢟ሻݔሺ݌

Since the entire feature vector ݕ௧ is continuous-valued, 
computing ݌ሺݔ௧|࢚࢟ሻ directly is practically infeasible. Instead, the 
posteriori probability is derived iteratively using forward 
recursion, an efficient technique to compute the distribution of 
ܺ௧ given ሬܻറ௧. 

Forward recursion emerges from a reformulation of the 
desired probability mass function: 
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We define the desired probability distribution of classes 

given features as  
௧ሻݔ௧ሺߙ ؝  ௧|࢚࢟ሻݔሺ݌ 

 
௧ሻݔ௧ሺߚ ؝  ௧|࢚࢟ି૚ሻݔሺ݌ 

 
Forward recursion alternatingly calculates the probability 

mass functions ߙ௧ሺݔ௧ሻ and ߚ௧ାଵሺݔ௧ାଵሻ for block t in an image, 
where we initialize, based on probabilities accumulated during 
parameter estimation, 

 
ଵሻݔଵሺߚ ൌ  ,ଵሻݔሺ݌

 
allowing us to iterate as follows: 
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Parameter estimation unearths the two conditional 
distributions 
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All the terms necessary for these iterative calculations are either 
recursive defined (in previously computed ߙ௧ or ߚ௧ values) or 
readily available from parameter estimation [1]. 

VI. USING FORWARD RECURSION FOR IMAGE BLOCK LABELING 

Fig. 8.  Classification into one definitive label from a prob. distribution. 
 

Forward recursion leaves us with a distribution ݌ሺݔ௧|࢚࢟ሻ for 
each block, but we want a single label to describe the state of the 
block.  Thus, the final step in classification involves vector 
quantization yet again; only now, unlike our work with the Bayes-
Gauss likelihood functions, our classifiers have already been 
numerically evaluated, as shown in the chart.  All that remains is 
automatic selection of each block’s class, which our algorithm 
achieves by selecting the class with the highest probability in the 
distribution ݌ሺݔ௧|࢚࢟ሻ.  In short, the class ݔ௧ that yields the 
highest probability ݌ሺݔ௧|࢚࢟ሻ in block t is the label assigned to it. 

For example, given the distributions charted in Fig. 8, this 
classification step would assign the first label (silver) to blocks 1, 
4, and 5, the second label (copper) to block 3, and the third label 
(shiny) to block 2.  Following this final step, all features have 
been successfully and optimally classified, as shown below. 

 

 
Fig. 9.  Successful classification in feature space following labeling. 
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VII. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Parameter Selection 
This block-based classification algorithm requires a number of 

tuning parameters, which we select empirically:  
 

1) The number of classification classes k, which corresponds 
to the number of hidden states in the HMM model, needs to 
be decided a priori. Experiments show that a classifier with 
three to eight states is sufficient for most of our test cases.  
 

2) The size of the image block is a tradeoff parameter in 
determining the classification resolution and computational 
complexity. Our block sizes ranged from 2 ൈ 2 to 10 ൈ 10. 
 

3) The choice of image features is an important consideration 
in classification. In our experiments, we considered feature 
descriptors such as mean color intensity values, 2D Haar 
wavelet coefficients, DCT coefficients, block texture or 
smoothness ቀ1 െ ଵ

ଵାఙమ
ቁ [9], and response to a structuring 

element such as the radius-2 circle or the radius-1 diamond: 
 

ۏ
ێ
ێ
ێ
ۍ
0 1 1 1 0
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
0 1 1 1 0

 

ے
ۑ
ۑ
ۑ
ې
 or  ൥

0 1 0
1 1 1
0 1 0

 ൩ 

 

4) The selection of training images is crucial to the 
performance of the classification of the test image. The training 
images should be similar to the test image so that similar 
features shared between the training and test images cluster 
into the same classes.  
 

5) Image features can be accumulated by traversing the image 
in horizontal, vertical, or zigzag diagonal fashion. However, 
experiments show that the scan direction exerts minimal 
impact on the classification results.  

B. Car & Landscape Image Classification 
1) Parameter Selection:  
We apply the parameter estimation algorithm to a photo taken 
by a camera-mounted car driving down a road [2]. Initially, we 
presume five classes in the image. The feature vector comprises 
average intensity of the red, green, and blue color channels. 

 

Fig. 10. Left: car training image.  Classes: sky, road, car (edges), and forest. 

 
2) Results: 

As the classification result in Fig. 10 reveals, major regions in 
the image such as road, sky, and tree are correctly categorized 
as separate distinct classes. We can discriminate the rather 
homogeneous road and sky regions using single class labels; 
however, the tree and vehicle region exact multiple class labels.  
 

 
Fig. 11. Left: car test image.  Classes: sky, road, car (edges), and forest. 

 
Fig. 11 depicts the test image and its classification result. The 
test image is taken from the same image sequence as the 
training image. As expected, the classification of the test image 
parallels that of the training image; the road, sky, and tree 
regions in the test image are identified with the same class 
labels as the road, sky, and tree regions in the training image.  
 

3) Extension to Two-Car Classification: 
Even in the presence of two cars, test image classification 
continues to assign classes logically: 
 

  
Fig. 12. Left: car test image.  Classes: sky, road, car (edges), and forest. 
 
 

C. Coin Image Classification 
1) Parameter Selection: 
Next, we tested the classifier on a set of coins images. The 
image classifier is trained using three photos featuring piles of 
coins under various lighting conditions, exhibited in Fig. 13. 
We prescribe a triad of classes in the training image, which we 
partitioned into multiple 2 ൈ 2 image blocks. 
 

2) Results: 
The three classes that emerge correspond to dark-copper-
colored pennies, silver-colored nickels and quarters, and high-
luminosity shiny coins. In some cases, the engravings on the 
coins also emerge through labeling. 



EE 378: Statistical Signal Processing – C. Tsai, J. Zhang (June 2008). 7

  

      

Fig. 13. Training images from different sources, test image boxed. 
  

The resulting classification, based on the assignment of blocks 
to categories resembling copper (pennies), silver (dimes, nickels, 
quarters), and extremely shiny coins presents itself quite 
intuitively due to fine blocking structure: 

 
Fig. 14.  Successful classification of coins into copper, silver, and super-shiny. 

D. Aerial Image Classification using Color Intensities (RGB) 
1) Parameter Selection: 

Lastly, we applied our image classification algorithm to a series 
of aerial images [3]. The classifier is trained on one 600 × 600 
color image, pictured in Fig. 15(a). We set six different classes, 
distinguished by their RGB image features. The 4 × 4 image 
blocks are traversed diagonally.  
 

2) Results: 
When the test image is very similar to the training image, 
classification is very consistent. Landmass is labeled as dark 
blue and dark red, while the water comprises four different 
class labels. When the test image depicts a geographical area 
different from the training image, classification consistency 
diminishes. As shown in Fig. Fig. 15(c), the red class, which 
depicts coastal regions in the training image, is the class label 
for water and lightly forested (pale green) regions in this test 
image. The other four class labels fall into desuetude. In 
general, this degenerate behavior insinuates a poor choice of 
initial conditions for parameter estimation, or an 
overabundance of class labels with comparatively low feature 
vector cardinality. 
 

 
(a) TRAINING IMAGE 

 

 
(b) TEST IMAGE 

 

 
(c) TEST IMAGE 

 

Fig. 15. Aerial images classified by block-mean RGB intensities. 

E. Aerial Image Classification using DCT Coefficients  
1) Parameter Selection: 

As proposed by J. Li, et al, DCT coefficients serve as 
noteworthy features for images rich in detail and manmade 
structure [4]. Reducing the number of class labels from six to 
four and increasing the block size from 4 ൈ 4 to 10 ൈ 10 
prevented overclassification from noisy local terrain or texture 
variations. Let the DCT coefficients be written ܦ௜,௝ for all 
ሺ݅, ݆ሻ א ሼ1, 2, … , 9ሽ. The feature vector ࢚࢟ comprisesหܦ଴,଴ห, 
หܦ଴,ଵห, หܦଵ,଴ห, and ห଼ܦ,଼ห, four distinct DCT coefficients. 
 

2) Results: 
The classification results remain more consistent than the 
previous RGB classifier. Using DCT coefficients, the classifier 
better resists slight color variations in the water region, as the 
images on the following page corroborate: 
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(a) TRAINING IMAGE 

 

  
(b) TEST IMAGE 

 

 
(c) TEST IMAGE 

 

 
(d) TEST IMAGE 

 

Fig. 16. Aerial images classified using  DCT coefficient quartet. 

VIII.   CONCLUSION 
The image classification algorithm described in this paper 

models the probability distribution of observed feature vectors 
given the class as a Gaussian density function, with mean and 
covariance matrix estimable through iterated Lloyd-Max vector 
quantization. Gaussian decision functions mirror our Gaussian 
observation density.  Classification itself relies on maximizing the 
likelihood of the state distribution generated from forward 
recursion using statistics acquired in iterative Bayesian parameter 
estimation. 

Feature selection is integral to classification, as one type of 

feature might suit one set of images but fail to fit another.  While 
classification is not particularly time intensive, it would be 
interesting to juxtapose the classification performance and 
computational efficiency of forward recursion and the Viterbi 
algorithm. 

The applications illustrated through our limited sample of 
experimental results only touch the surface of all the uses that 
classification boasts in science and engineering.  Car-mounted 
cameras can supply an autonomous driver with invaluable 
information about all sorts of obstacles, thereby preventing 
collision with anything suggestive of solidity, such as lightposts, 
medians, rocks, and other cars.  Classifying large piles and 
collections of superficially similar objects such as coins and 
jewelry might lead to counterfeit exposal or higher order.  Aerial 
photographs beg for military reconnaissance or even use in the 
study of extraterrestrial surfaces with radar imaging.   

Applying these techniques to photographs of nature can 
further empower the scientific observer with a novel but 
nevertheless systematic taxonomy, classifying species of fauna as 
well as a wide variety of flora, all possible through camera 
software.  Indeed, unsupervised classification’s greatest promise 
to the scientific community is its ability to detect underlying 
structure and bring it to the surface with minimal human 
influence.  Whereas variables remain – the number of classes we 
must prescribe, the features we anticipate separating our 
categories, and the precision of our observation blocks – the 
algorithm remains largely automated and order-driven. 

In an age of oft-careless experimental design, misplaced human 
anticipation, and hasty conclusion, the ability to detect order with 
minimal human input is appealing not only for the insight it can 
provide to otherwise indecipherable scenes but also its 
independence from and immunity to our preconceived notions.  
Our exploration represents only the beginning, as humankind has 
just begun to tap the power that is natural classification.  The 
world is literally a hidden Markov model, and forward recursion 
can help us uncover its dissembled mysteries. 
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