
PARTITIONING STRATEGIES: SPATIOTEMPORAL PATTERNS OF
PROGRAM DECOMPOSITION

Henry Hoffmann, Anant Agarwal, and Srinivas Devadas
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
email:{hank,agarwal,devadas}@csail.mit.edu

ABSTRACT
We describe four partitioning strategies, or patterns, used to
decompose a serial application into multiple concurrently
executing parts. These partitioning strategies augment the
commonly used task and data parallel patterns by recogniz-
ing that applications are spatiotemporal in nature. There-
fore, data and instruction decomposition are further distin-
guished by whether the partitioning is done in the spatial
or in temporal dimension. Thus, we arrive at four decom-
position strategies: spatial data partitioning (SDP), tempo-
ral data partitioning (TDP), spatial instruction partitioning
(SIP), and temporal instruction partitioning (TIP), and cat-
alog the benefits and drawbacks of each. In addition, the
practical use of this work is demonstrated by applying these
strategies, and combinations thereof, to implement several
different parallelizations of a multicore H.264 encoder for
high-definition video.

KEY WORDS
Design patterns, parallel software engineering, H.264 en-
coding

1 Introduction

Parallel programming is often viewed as an ad hoc and
artistic practice best left to experts. Because of this be-
lief, a great deal of research has been done to transform the
development of parallel applications into a rigorous engi-
neering discipline. An important component of this work
is the recognition and documentation of patterns, or com-
monly occurring problems and their solutions, in the field
of parallel software development [14, 15, 17, 18, 20, 21].
The documentation of these design patterns for parallel
programming creates a shared repository and language for
discussing parallel software development.

Perhaps the most common dilemma faced by paral-
lel programmers is that of finding the initial parallelism
in an application. Two common patterns have arisen that
describe solutions to this problem:TaskandData Paral-
lelism [14] (also called TaskDecomposition and DataDe-
composition [18]). These two patterns capture the most
basic ways that parallel programming experts think about
their programs. Task parallelism refers to viewing a prob-
lem as a collection of separate activities, or tasks, which
can be executed concurrently. Data parallelism refers to

viewing a problem as the manipulation of a data structure
with independent substructures, which can be operated on
concurrently.

Capturing the way expert parallel programmers think
about parallelism helps create a structured and disciplined
way for novice parallel programmers to approach these
problems, but it can also lead to ambiguity. Such ambi-
guity arises when the use of two different patterns leads
to equivalent parallel programs. As an example, consider
the parallelization of matrix multiplication as described
in [18]. A task parallel matrix multiplication is presented
in which each task consists of the production of a single el-
ement of the result. A data parallel matrix multiplication is
also presented where elements of the result matrix are dis-
tributed among independent units of execution. Depending
on the assignment of tasks to execution units, both the task
and data parallel implementations of matrix multiplication
might be the same. The fact that using different patterns
can result in the same parallel implementation means that
using these patterns provides limited insight into the effects
on the parallel program.

This work presents four spatiotemporal partitioning
strategies designed to complement the existing and well-
established task and data parallel patterns. Where exist-
ing patterns are designed to capture the way the program-
mer thinks about a parallel program, these spatiotemporal
strategies are designed to capture the structural effects on
the parallelized application.

The distinction between spatiotemporal patterns is
based on determining an index set which describes how an
application executes in time and space. Spatial and tem-
poral indices are assigned to a program’s data and instruc-
tions and different strategies are based on the division of
these indices amongst units of execution. Thus, this work
recognizes four partitioning strategies for exploiting con-
currency in an application: spatial data partitioning (SDP),
temporal data partitioning (TDP), spatial instruction parti-
tioning (SIP), and temporal instruction partitioning (TIP).

Recognizing patterns that distinguish between tempo-
ral and spatial partitioning is important for the following
reasons:

• This distinction provides an additional set of options
for finding concurrency in an application.

• Recognizing the difference between spatial and tem-



poral partitionings provides additional descriptive
power for documenting and characterizing a parallel
application.

• Perhaps most significantly, temporal and spatial par-
titioning affect the performance of an application in
separate ways.

To understand the effect on performance, consider
an application that continuously interacts with the outside
world by processing a sequence of inputs and producing
a sequence of outputs. Examples include desktop appli-
cations that interact with a human, embedded applications
that interact with sensors, and system software that pro-
vides quality of service guarantees to other applications.
These interactive programs typically have boththrough-
put andlatencyrequirements. The throughput requirement
specifies the rate at which inputs are processed while the
latency requirement specifies the speed with which an in-
dividual input must be processed. While both spatial and
temporal partitioning patterns improve throughput, only
spatial partitionings can improve latency.

To illustrate the use of these patterns, this paper dis-
cusses the results of applying several different strategies
to parallelize an H.264 video encoder for high-definition
video [11] on a multicore architecture.

The rest of this paper is organized as follows. Sec-
tion 2 defines terminology and presents an example appli-
cation that is used to illustrate concepts. Section 3 presents
the four partitioning strategies describing both spatial and
temporal decomposition of data and instructions. Section 4
presents the results of applying these patterns, and combi-
nations of the patterns, to an H.264 encoder. Section 5 cov-
ers related work and describes how the partitioning strate-
gies in this paper relate to those in [18] and [14]. Section 6
concludes the paper.

2 Basics and Terminology

This section presents the context and terminology used to
describe the partitioning strategies listed in Section 3. It be-
gins by introducing an example application: an intelligent
security camera. The security camera example is used to il-
lustrate many of the concepts in the remainder of the paper.
Next, the terminology used to describe spatial and tempo-
ral indexing of a program is presented. Finally, the section
discusses a simple procedure used to prepare an application
for decomposition using the spatiotemporal design patterns
described in Section 3.

2.1 Example Application: Security Camera

An intelligent security camera processes a sequence of in-
put images, or frames, from a camera (e.g., [16]). The cam-
era compresses the frames for efficient storage and searches
the frames to detect objects of interest. The compressed
video is stored to disk while a human is alerted to the pres-
ence of any objects of interest. Both the data (frames) and

the instructions (compression and search) of the camera
have spatial and temporal dimensions.

The primary data object manipulated by the camera is
the frame. The frame consists of pixels where each pixel is
generated by a spatially distinct sensor. The position of a
pixel in a frame represents a spatial index into the camera’s
data. Frames are produced at regular time intervals and
processed in sequence. Each frame is assigned a unique
identifier corresponding to the order in which it was pro-
duced. The sequence of frames represents a temporal index
into the camera’s data. The spatiotemporal dimensions of
the security camera are illustrated in Figure 1.

…

S
p

ac
e

Time

D
a

ta
 M

e
m

o
ry

 

A
[0

] 
A

[1
] 

…
A

[N
]…

…
…
…

F
ra

m
e 

1

F
ra

m
e 

2

F
ra

m
e 

N

Figure 1. Spatiotemporal indexing of data in the security
camera example. Spatially distributed sensors produce a
sequence of pixels over time. The pixel’s location in the
frame is the spatial index while the frame number in the
sequence is the temporal index.

The computation in the camera application consists
of two primary functions: searching the frame for objects
of interest and compressing the frames for storage. The
compression operation is, in turn, made up of two distinct
functions. First a series of image processing operations
are executed to find and eliminate redundancy in the im-
age stream, and, once the redundancy is eliminated, the
remaining data is entropy encoded. Thus, there are three
high-level functions which constitute the instructions ofthe
camera:search , eliminate , andencode . As these
functions occupy distinct regions of memory, their names
can serve as spatial indices. To determine the temporal in-
dices of these functions, note that the functions must be ex-
ecuted in a particular order to preserve correctness. The
order of function execution represents an index into the
temporal dimension of the camera’s instructions. In this
exampleeliminate must be executed beforeencode ,
but search is entirely independent. The spatiotemporal
indexing of the camera’s instructions is illustrated in Fig-
ure 2.

Note that the camera is typical of many interactive
applications in that it has both latency and throughput re-
quirements. The camera’s throughput must keep up with
the rate at which the sensor can produce frames. In addi-
tion, the camera must report objects of interest to the user
with a low latency so that timely action can be taken.



eliminate

search

encode

S
p

ac
e

Time

In
st

ru
ct

io
n

 M
e

m
o

ry
 

se
a

rc
h

()
 e

lim
in

a
te

()
 e

n
co

d
e

()

Figure 2. Spatiotemporal indexing of instructions in the
security camera. Each frame produced by the camera is
searched and encoded. The encoding process is further
broken down into the eliminate redundancy and entropy en-
coding steps. The function name provides a spatial index.
To define the temporal index, topological sort is performed
on the dependence graph. The order of execution deter-
mined by the sort provides a temporal instruction index.

2.2 Terminology

In this paper, the termprogramor applicationis used to re-
fer to the problem to be decomposed into concurrent parts.
A processis the basic unit of program execution, and a par-
allel program is one that has multiple processes actively
performing computation at one time. A parallel program
is created bypartitioning or decomposinga program into
multiple processes. A partitioning strategy represents a
common pattern for performing this decomposition.

Programs operate by executinginstructionsto manip-
ulatedata. Both the data and instructions of a program have
spatial and temporal components of execution. In order to
partition a program, one must first define the spatial and
temporal dimensions of the program’s execution.

2.3 Preparing to Partition a Program

The following procedure determines the dimensionality of
a program’s instructions and data to prepare it for partition-
ing:

1. Determine what constitutes a single input to define the
temporal dimension of the program’s data. For some
programs an input might be a single reading from a
sensor. In other cases an input might be a file, data
from a keyboard or a value internally generated by the
program.

2. Determine the distinct components of an input to de-
fine the spatial dimension of the program’s data.

3. Determine the distinct functions required to process
an input to define the spatial dimension of the pro-
gram’s instructions.

4. Determine the partial ordering of functions using
topological sort to define the temporal dimension of
the program’s instructions.

To illustrate the process, it is applied to the security
camera example:

1. A single frame is an input, so the sequence of frames
represents the temporal dimension of the camera data.

2. A frame is composed of individual pixels arranged in
a two-dimensional array. The coordinates of pixels in
the array represent the spatial dimension of the camera
data.

3. The three major functions in the camera are:search ,
eliminate , andencode . These functions define
the spatial dimension of the camera’s instructions.

4. For a given frame, there is a dependence between
the eliminate and encode functions while the
search function is independent. These dependences
determine the temporal dimension of the camera’s in-
structions.

3 Spatiotemporal Partitioning Strategies

The procedure described in Section 2.3 defines the spatial
and temporal dimensionality of a program’s instructions
and data. Given this definition it is possible to apply one of
the following four partitioning strategies: spatial data parti-
tioning, temporal data partitioning, spatial instructionparti-
tioning, and temporal instruction partitioning. This section
presents the following for each of the four strategies:

• A brief description of the strategy.

• The applicability of the strategy.

• The forces, or trade offs, that influence the application
of the strategy.

• An example showing how to apply the strategy to the
security camera.

• Other example uses of the strategy.

• Related strategy patterns from Our Pattern Language
(OPL) [14] and Patterns of Parallel Programming
(PPP) [18].

3.1 Spatial Data Partitioning (SDP)

Description. Using the spatial data partitioning (SDP)
strategy, data is divided among processes according to spa-
tial index. Following this pattern, processes perform com-
putation on spatially distinct data with the same temporal
index. Typically, each process will perform all instruc-
tions on its assigned data. Additional instructions are usu-
ally added to SDP programs to enable communication and
synchronization. This partitioning strategy is illustrated in
Figure 3(a).

Applicability. SDP generally increases throughput
and decreases latency, so it is useful when a single pro-
cessor cannot meet either of these requirements for a given



…S
p

ac
e

Time

Data

… …
(a) SDP

…S
p

ac
e

Time

Data

… …

(b) TDP

eliminate

search

encode

S
p

ac
e

Time

Instructions

(c) SIP

eliminate

search

encode

S
p

ac
e

Time

Instructions

(d) TIP

Figure 3. Spatiotemporal partitioning strategies.

application. The performance of an SDP application will
be best if the spatial data dimension is large and has few
dependences.

Forces. The driving force behind the use of the SDP
strategy is the improvement of both throughput and latency
for the partitioned application. However, when applying
this strategy one must consider the opposing forces of com-
munication and load-balancing.

Communication can oppose the performance gains of
the SDP strategy if the time spent transferring data is large
enough to negate the performance benefit of parallelization.
Unfortunately, communication in an SDP implementation
is always application specific and, thus, there are no general
guidelines for analyzing communication using this strat-
egy. However, if a particular application is found to require
a performance-limiting amount of communication, spatial
instruction partitioning may be considered, as SIP can also
improve throughput and latency.

Load-balancing is another force limiting the potential
performance gains of SDP. Since each process is respon-
sible for executing all instructions on its assigned data the
load-balance of an SDP application is determined by the re-
lationship between the instructions and data. If the same in-
structions are executed regardless of the value of data, then
an SDP implementation will be easy to load-balance. If the
instructions executed are conditional on the value of data
then an SDP implementation may be very difficult to load-
balance as some data may cause one process to do more
work than others. This difficulty can offset some of the
performance gains of an SDP implementation. Implemen-
tation strategy patterns like the task-queue and the master-
worker pattern can help address load-imbalance [14].

Example in security camera. To implement the
SDP strategy in the security camera example, separate pro-
cesses work simultaneously on pixels from the same frame.
Each process is responsible for executing thesearch ,
eliminate , andencode functions on its assigned pix-
els. Processes communicate with other processes responsi-
ble for neighboring spatial indices.

Other examples of SDP. This pattern is common in
many parallel linear algebra implementations like ScaLA-
PACK [1] and PLAPACK [24]. The High Performance For-

tran language is designed to express and manipulate SDP at
a high-level [8]. Single-instruction, multiple-data (SIMD)
processor architectures are designed to exploit SDP [5].

Related Strategy Patterns. DataDecomposition
from PPP and Data Parallelism from OPL are both used
to take a data-centric approach to partitioning an applica-
tion into concurrent units. In order to perform this decom-
position an index set is defined over the program’s data.
The spatial data partitioning strategy is a sub-strategy of
DataDecomposition and Data Parallelism in which the in-
dex set is restricted to spatial indices.

The TaskDecomposition (PPP) and Task Parallelism
(OPL) patterns both take a task-centric approach to applica-
tion decomposition. These patterns allow individual tasks
to be composed of the same set of instructions. The case
where each task is the same function applied to different
spatial indices is equivalent to the SDP strategy.

3.2 Temporal Data Partitioning (TDP)

Description. Using the temporal data partitioning (TDP)
strategy, data are divided among processes according to
temporal index. Following this pattern, each process per-
forms computation on all spatial indices associated with its
assigned temporal index as illustrated in Figure 3(b). In a
typical TDP implementation each process executes all in-
structions on the data from its assigned temporal index. Of-
ten, communication and synchronization instructions need
to be added to allow processes to handle temporal data de-
pendences.

Applicability. TDP can increase throughput but will
not decrease latency. Thus, this strategy is useful when
a single processor can meet the application’s latency re-
quirement, but not the throughput requirement. The perfor-
mance of a TDP application will be best when the temporal
dimension is large and has few dependences.

Forces. The driving force behind the use of the TDP
pattern is the improvement in throughput. Opposing this
force is the possible overhead of communication and load-
balancing.

Communication overhead can counter the throughput
gains of applying the TDP strategy. In addition, it is pos-



sible that the added communication can increase the appli-
cation’s latency compared to a single processor implemen-
tation. Communication in this pattern occurs when data
produced at one temporal index is needed to process data
at another temporal index. If the amount of communica-
tion required is found to limit performance, any of the other
three spatiotemporal partitioning strategies can be triedas
they all improve throughput.

Load-balancing in a TDP application tends to be easy.
If the same work is done for each temporal data index then
achieving good load-balance is trivial. If the computational
load varies per temporal data index it can be more diffi-
cult to achieve an efficient load-balance; however, the TDP
strategy naturally lends itself to implementation through
patterns such as the work-queue and master-worker that can
be used to address a load-imbalance [14, 18].

Example in security camera. To implement TDP
in the security camera example, each frame is assigned
to a separate process and multiple frames are encoded si-
multaneously. A process is responsible for executing the
eliminate , encode , andsearch functions on its as-
signed frame. Processes receive data from processes work-
ing on earlier temporal indices and send data to processes
working on later temporal indices.

Other examples of TDP. Packet processing appli-
cations like SNORT are commonly parallelized using the
TDP pattern [10]. This application processes a sequence
of packets from a network, possibly searching them for
viruses. As packets arrive they are assigned to a process
which performs the required computation on that packet.
The back-end of the StreamIt compiler for MIT’s Raw pro-
cessor generates code parallelized according to the TDP
strategy [6].

Related Strategy Patterns. The DataDecomposition
(PPP) and Data Parallelism (OPL) patterns are both used
to take a data-centric approach to partitioning an applica-
tion into concurrent units. In order to perform this decom-
position an index set is defined over the program’s data.
The temporal data partitioning strategy is a sub-strategy of
DataDecomposition and Data Parallelism in which the in-
dex set is restricted to temporal indices.

Using the Pipeline strategy pattern from OPL, an ap-
plication is partitioned into stages and data flows from one
stage to the next. If each stage consists of the same instruc-
tions processing data from different temporal indices then
this instance of the Pipeline strategy is equivalent to TDP.

The TaskDecomposition (PPP) and Task Parallelism
(OPL) patterns both take a task-centric approach to par-
titioning an application. These patterns do not necessar-
ily require that the tasks represent distinct functions or in-
structions. The specific case where each task represents the
same set of functions applied to distinct temporal data in-
dices is equivalent to TDP.

3.3 Spatial Instruction Partitioning (SIP)

Description. Using the spatial instruction partitioning
(SIP) strategy, instructions are divided amongst processes
according to spatial index. Following this pattern, each
process performs a distinct computation using the same
data. Often no communication is needed between pro-
cesses. This strategy is illustrated in Figure 3(c).

Applicability. The SIP strategy can increase applica-
tion throughput and decrease latency, so it is useful when a
single processor cannot meet the application’s throughput
or latency requirements. In addition, the SIP strategy di-
vides an application into several separate functional mod-
ules. Splitting a large, complicated application into multi-
ple simpler pieces aids modular design and allows multiple
engineers to work on an application independently. Fur-
thermore, splitting the instructions of the application may
simplify data dependences as the single set of dependences
for the entire application is divided into several smaller sets
of dependences for each module.

Forces. The performance gain and increase in modu-
larity offered by the SIP strategy is opposed by the forces
of communication overhead and load-balance.

Communication in SIP implementations is generally
rare, given the definition of the temporal and spatial dimen-
sions of instructions. Communication in SIP applications
typically involves making the same data available to all pro-
cesses. In some instances processes might need to commu-
nicate while executing their assigned instructions. In both
cases it is important to ensure that the cost of communica-
tion does not negate any performance gains from applying
SIP. If communication is found to limit performance, then
spatial data partitioning should be investigated as it can also
increase throughput while decreasing latency.

Load-balance is often an issue in SIP applications. In-
structions are assigned to processes because they represent
logically coherent units. Unfortunately it is rare that these
units represent the same amount of computation and, thus,
it is often the case that one process is assigned more work
than another. The work-queue and master-worker patterns
can be used to implement the SIP strategy and help address
load-balance, but their applicability can be limited by the
(generally low) amount of parallelism that exists in the spa-
tial instruction dimension.

Example in the security camera. To implement
SIP in the security camera, theeliminate andencode
functions are coalesced into onecompress function. This
function is assigned to one process while thesearch
function is assigned to a separate process. These two pro-
cesses work on the same input frame at the same time.
In this example, the two processes need not communicate.
However, one can envision a camera that alters the quality
of the compressed video based on the presence of an object
of interest. In this scenario, thesearch function sends
messages to thecompress function to indicate when the
quality should change.

Other examples of SIP. This pattern is sometimes



used in image processing applications when two filters are
applied to the same input image to extract different sets
of features. In such an application each of the two filters
represents a separate function and therefore a separate spa-
tial instruction index. This application can be parallelized
according the SIP strategy by assigning each filter to a sep-
arate process. Compilers that exploit instruction level par-
allelism often make use of this pattern as Butts and Sohi
found that35 % of dynamically created values are used
multiple times [3]. Some speculative execution systems,
use SIP partitioning to execute multiple paths through a
series of conditional instructions [23]. Additionally, this
is strategy is the basis of multiple-instruction single-data
(MISD) architectures [5].

Related Strategy Patterns. The TaskDecomposition
(PPP) and Task Parallelism (OPL) patterns both take a task-
centric view of an application. The SIP strategy corre-
sponds to instances of these patterns where the tasks rep-
resent distinct functions and all tasks can execute concur-
rently while processing data from the same temporal index.

3.4 Temporal Instruction Partitioning (TIP)

Description. Using the temporal instruction partitioning
(TIP) strategy, instructions are divided among processes ac-
cording to temporal index as illustrated in Figure 3(d). In
a TIP application each process executes a distinct function
and data flows from one process to another as defined by
the dependence graph. This flow of data means that TIP
applications always require communication instructions so
that the output of one process can be used as input to an-
other process. To achieve performance, this pattern relies
on a long sequence of input data and each process executes
a function on data that is associated with a different input
or temporal data index.

Applicability. The TIP strategy can increase through-
put but does not improve latency. Therefore, this strategy is
most useful when a single processor cannot meet the appli-
cation’s throughput requirement, but can meet the latency
requirement. Like the SIP strategy, TIP can also be use-
ful for splitting a large application into smaller functional
modules, which can simplify application development and
separate a complicated set of data dependences into smaller
units that are each individually easier to implement.

Forces. Countering the driving forces of throughput
increase and increased modularity are the opposing forces
of increased communication and inefficient load-balance.

The TIP strategy is guaranteed to require communi-
cation because the temporal instruction indices are defined
according to dependences. Therefore, every process in a
TIP application can be expected to communicate with at
least one other process. In addition to (possibly) limiting
the throughput gain, this communication will also increase
latency unless it is completely overlapped with computa-
tion. If the communication in a TIP application proves too
deleterious to performance, any of the other three strategies
can be explored as they all increase throughput. The SIP

strategy is a useful alternative for modular development.
Load-balancing in TIP applications is often difficult.

As with SIP applications, it is rare that the functions rep-
resented by different temporal instruction indices require
the same amount of computation. Thus, some processes
may be assigned more work than others. Again, both the
work-queue and master-worker patterns may be used to im-
plement TIP and address the load-balancing issue [14, 18];
however, in practice these patterns are sometimes concep-
tually difficult to reconcile with the TIP strategy.

Example in the security camera. To implement TIP
in the security camera, theeliminate function is as-
signed to one process while theencode function is as-
signed to another. Thesearch function can be assigned
to a third process or it can be coalesced with one of the
other functions to help with load balancing. In this imple-
mentation, one process executes theeliminate function
for frameN while a second process executes theencode
function for frameN − 1.

Other examples of TIP. This pattern is often used to
implement digital signal processing applications as they are
easily expressed as a chain of dependent functions. In ad-
dition, this pattern forms the basis of streaming languages
like StreamIt [7] and Brook [2]. The Pipeline construct
in Intel’s Threading Building Blocks also exploits the TIP
strategy [9].

Related Parallel Patterns. The TaskDecomposition
(PPP) and Task Parallelism (OPL) patterns both take a
task-centric view of an application. The TIP strategy cor-
responds to instances of these patterns where the tasks
are distinct functions connected through a chain of de-
pendences. Similarly, the TIP pattern is equivalent to the
Pipeline strategy pattern (OPL) if all stages of the pipeline
represent distinct functions which process data from differ-
ent temporal indices simultaneously.

3.5 Combining Strategies

It can often be helpful to combine partitioning strategies
within an application to provide the benefit of multiple
strategies, or to provide an increased degree of parallelism.
The application of multiple strategies is viewed as a se-
quence of choices. The first choice creates multiple pro-
cesses and these processes can then be further partitioned
as if they were serial applications themselves.

Combining multiple choices in sequence allows the
development of arbitrarily complex parallel programs and
the security camera example demonstrates the benefits of
combining multiple strategies. As illustrated above it is
possible to use SIP partitioning to split the camera appli-
cation into two processes. One process is responsible for
thesearch function while another is responsible for the
eliminate andencode functions. This SIP partition-
ing is useful because the searching computation and the
compression computation have very different dependences
and splitting them creates two simpler modules. Each of
these simple modules is easier to understand and paral-



lelize. While this partitioning improves throughput and la-
tency, it suffers from a load-imbalance, because the search-
ing and compressing functions do not have the same com-
putational demand.

To address the load-imbalance and latency issues, one
may apply a further partitioning strategy. For example, ap-
plying the SDP strategy to the process executing the com-
pression will split that computationally intensive function
into smaller parts. This additional partitioning helps to im-
prove load-balance and application latency. (For a more
detailed discussion of using SIP and SDP together in the
camera, see [16].)

The next section includes other examples using mul-
tiple strategies to partition an application.

4 Results

This section presents the results of applying various parti-
tioning strategies to an H.264 encoder for high-definition
video. These results demonstrate how the choice of strat-
egy can affect both the latency and the throughput of the
encoder.

This study uses the x264 implementation of the H.264
standard [25]. x264 is implemented in C with assembly to
take advantage of SIMD instructions and hardware specific
features. x264 is currently parallelized using the pthreads
library1 to implement the TDP strategy, while earlier ver-
sions of the encoder implemented a limited form of the
SDP strategy (which is no longer supported)2. x264 is
highly configurable via the command line. For these re-
sults, x264 is configured with a computationally aggres-
sive parameter set to enable H.264 Main profile encoding
of 1080p high-definition video3. All partitionings of the
x264 code base are tested on an Intel x86 system. This
system consists of four 2.4 GHz quad-core x86 processors
communicating through shared memory. For this study, the
hardware platform is treated as a sixteen-core multicore.

To prepare x264 for partitioning the procedure de-
scribed in Section 2.3 is applied:

1. An input is a frame and the sequence of frames repre-
sents the temporal data index.

2. Each frame can be divided into one or moreslices.
A slice consists ofmacroblockswhich are16 × 16

regions of pixels. Slices are defined by H.264 to be
independent. Both the slice and the macroblock rep-
resent spatial data indices.

1Although the case study uses the pthreads library, the term process
will continue to be used to describe units of program execution.

2The TDP implementation of the case study uses x264 as is. The SDP
implementation recreated the earlier version of x264 in thecurrent code
base. The other three partitionings in presented here represent original
work.

3Specifically, x264 is invoked with the following command line
parameters: -qp 25 --partitions all --bframes 3
--ref 5 --direct auto --no-b-adapt --frames 120
--weightb --bime --mixed-refs --no-fast-pskip
--me umh --subme 5 --scenecut -1 . The input video is a
1080p sequence of a tractor plowing a field.

3. The instructions that eliminate redun-
dancy (implemented in x264 in the func-
tions x264 macroblock analyse and
x264 macroblock encode ) and the entropy
encoding instructions (implemented in x264 as the
x264 cavlc write and the x264cabac family of
functions) represent the spatial instruction indices.

4. The encoding functions are dependent on the com-
pletion of the elimination function, so the elimination
function must be executed first. This ordering repre-
sents the temporal data index.

At this point, various partitioning strategies are employed
using the indices described above. For each paralleliza-
tion the latency and throughput of the encoder is mea-
sured, and both the actual values and the speedups over
the serial throughput and latency are reported. Addition-
ally, some features of H.264 allow programmers to relax
data dependencies at the cost of lost quality and decreased
compression, so image quality (in decibels of peak signal to
noise ratio [PSNR]) and achieved compression (measured
in kilobits/s) are also recorded. All values are compared to
those of a serial implementation of the encoder.

First, the TDP strategy is used to assign frames to
processes and each process executes all instructions on its
assigned frame. Processes need data from previously com-
pressed frames and this requires communication. As shown
in Table 1 this strategy increases throughput, but the added
communication is detrimental to latency.

To reduce latency each frame is divided into slices (or
spatial indices); using the SDP strategy slices are assigned
to processes and all processes execute the elimination and
encoding functions on their assigned slice. As shown in Ta-
ble 2, the SDP strategy increases throughput and reduces
latency, but does so at the expense of image quality and
compression. One would like to find a parallelization that
does not rely on slices, but that is difficult because the elim-
ination and entropy encoding functions have different data
dependences and handling both in the same process is ex-
tremely complicated. Slices make this easy by eliminating
dependences.

An alternative to using slices is to separate the instruc-
tions that eliminate redundancy from those that encode the
resulting data. To accomplish this the TIP strategy is em-
ployed, and all elimination functions are assigned to one
process while all encoding functions are assigned to an-
other. The elimination process works on frameN while
the encoding process concurrently works on frameN − 1.
Clearly the processes must communicate to produce cor-
rect results. As shown in Table 3 the throughput of the
encoder decreases, while the latency becomes worse due to
the added communication. In addition, the load-balancing
of this parallelization is extremely poor as there is much
more work in the elimination functions than in the encod-
ing functions. However, the use of TIP has accomplished
the goal of separating a complicated application into two
separate modules and has done so while maintaining image



Serial x264 TDP x264
Processes 1 2 4 8 12 16
Throughput (frames/s) 1.62 2.75 4.06 7.96 11.64 14.66
Throughput Speedup 1 1.62 2.39 4.68 6.85 8.62
Average frame latency (ms) 580 719 962 968 977 1004
Latency Speedup 1 0.81 0.60 0.60 0.59 0.58
Image Quality (Average PSNR) 39.371 39.372 39.373 39.372 39.374 39.372
Encoded Bitrate (Kb/s) 10647.57 10651.38 10656.11 10657.83 10670.81 10694.58

Table 1. Performance of parallel x264 decomposed with the TDP strategy.

Serial x264 SDP x264
Processes 1 2 4 8 12 16
Throughput (frames/s) 1.70 3.08 5.71 10.14 12.55 11.36
Throughput Speedup 1 1.81 3.36 5.96 7.38 6.68
Average frame latency (ms) 580 313 163 90 67 82
Latency Speedup 1 1.85 3.56 6.44 8.66 7.07
Image Quality (Average PSNR) 39.371 39.179 39.169 39.151 39.127 39.112
Encoded Bitrate (Kb/s) 10647.57 11078.18 11175.96 11367.62 11574.76 11787.89

Table 2. Performance of parallel x264 decomposed with the SDP strategy.

quality and compression.
Having used TIP to separate the application into elim-

ination and encoding modules, SDP is applied to the pro-
cess responsible for the elimination functions to help load
balancing and improve performance. Now that elimina-
tion and encoding are separate, one need not resort to us-
ing slices for independence. In this implementation, rows
of macroblocks are assigned to processes to parallelize the
elimination of redundancy. Thus, the TIP strategy is used
to split the elimination and encoding functions, then the
SDP strategy is used to further parallelize the elimination
step. Table 4 shows that this parallelization represents a
compromise, improving both latency and throughput, but
not achieving the best result for either metric. In addition,
this performance is achieved without a significant loss of
quality or compression.

Finally, TDP, TIP, and SDP can be combined to create
a single code-base that can be tuned to meet differing per-
formance and quality tradeoffs. In this approach, the TDP
strategy is used to allow the encoding of multiple frames
in parallel. Each frame is encoded by one or more pro-
cesses. If one process is assigned to a frame, this approach
functions as the pure TIP approach. If two processes are as-
signed to a frame, they are parallelized using the TIP strat-
egy. If three or more processes are assigned to a frame the
combination of TIP and SDP is used. Table 5 shows the
performance of this approach. In this table all results are
presented using sixteen processes, but the number of pro-
cesses assigned to a single frame is varied. Combining the
TDP, TIP, and SDP strategies creates a code base that is
flexible and can be adapted to meet the needs of a particu-
lar user.

The results presented in this section demonstrate the
benefits of these strategies. Different strategies have dif-
ferent effects on throughput and latency and understanding

these effects a priori can save valuable engineering time.
For example, an engineer knows that her video encoder
will be used as part of a video conferencing system with
strict latency requirements. In this case, it makes sense to
use the SDP strategy, because it achieves the best latency.
Knowing the effects ahead of time saves the effort of trying
multiple approaches until the desired result is found.

5 Related Work

5.1 Related Patterns

The use of design patterns for parallel software develop-
ment can add rigor and discipline to what is otherwise an ad
hoc and artistic process. A number of parallel design pat-
terns have been identified [17, 18, 20, 15, 21, 14]. These
patterns range from very high-level descriptions, such as
the commonly used task and data parallel patterns which
may be appropriate for any application, to low-level pat-
terns, such as a parallel hash table, which may be con-
sidered only for specific applications. Parallel pattern lan-
guages [18, 14] guide users through the application of both
high- and low-level patterns.

Throughout Section 3 the four partitioning strate-
gies described in this paper are compared to pat-
terns from Our Pattern Language (OPL) [14] and
Patterns of Parallel Programming(PPP) [18]. It is clear
from this comparison that there is not a one-to-one map-
ping of these existing patterns onto the strategies presented
here. For example, using the TaskDecomposition pattern of
PPP can result in a program that is partitioned according to
any one of the four strategies presented here. This property
creates some ambiguity when reasoning about the effects
that a decomposition will have on a parallelized program.



Serial x264 TIP x264
Processes 1 2
Throughput (frames/s) 1.70 1.54
Throughput Speedup 1 0.90
Average frame latency (ms) 580 1435
Latency Speedup 1 0.86
Image Quality (Average PSNR) 39.371 39.387
Encoded Bitrate (Kb/s) 10647.57 10913.49

Table 3. Performance of parallel x264 decomposed with the TIP strategy.

Serial x264 TIP+SDP x264
Processes 1 2 4 8 12 16
Throughput (frames/s) 1.70 1.54 4.11 8.1 10.25 8.41
Throughput Speedup 1 0.91 2.42 4.76 6.03 4.95
Average frame latency (ms) 580 672 264 145 118 140
Latency Speedup 1 0.86 2.20 4.00 4.92 4.14
Image Quality (Average PSNR) 39.371 39.387 39.387 39.387 39.387 39.387
Encoded Bitrate (Kb/s) 10694.58 10913.49 10913.49 10913.49 10913.49 10913.49

Table 4. Performance of parallel x264 decomposed with a combination of the TIP and SDP strategies.

This ambiguity arises from the fact that the strat-
egy patterns of OPL and PPP are designed to capture the
way programmers think about the program while the parti-
tioning strategies presented in this document are designed
to capture the effects parallelism has on the application.
These two approaches are complementary. The patterns
of PPP and OPL give software engineers a language for
describing common approaches to parallelism while the
partitioning strategies presented here provide a framework
for about the performance (in terms of throughput and la-
tency) application. Understanding both allows a more com-
plete description of a parallel system, better communica-
tion about the design of the system, and clearer reasoning
about how high-level choices affect the performance of the
parallelized application.

5.2 Related Video Encoders

Liu et al. explore a parallel implementation of a security
camera which combines multiple partitioning strategies in
the same application [16]. These authors first use the SIP
strategy to split the search and compression functions of
the camera into separate processes, each of which is fur-
ther partitioned using the SDP strategy. Rodriguez et al.
describe a TDP partitioning of an H.264 encoder as well
as an implementation that uses both TDP and SDP through
the employment of slices [19]. Several authors describe
slice-based SDP partitioning strategies [12, 4]. Jung et
al. adaptively choose the slice sizes in order to address
the load-balancing issue discussed above [13]. Sun et al.
describe a pure SDP implementation that does not rely on
slicing, but still respects the data dependences described
above [22]. Park et al. apply TIP partitioning to create
their parallel H.264 encoder, but rather than splitting the
image and entropy functions, they split the elimination of

redundancy into two functions: the first consists of finding
temporal redundancy and the second consists of all other
elimination functions. The first function is assigned to one
process and all other redundancy elimination and encoding
functions are placed in a second process. This implemen-
tation suffers from the same load imbalance described for
the TIP implementation above. To help address this issue,
SDP partitioning is applied to the process responsible for
finding redundancy.

We note that these alternative parallelizations of video
encoders are generally presented without a discussion of
the possibility of other parallel implementations or a dis-
cussion of the tradeoffs inherent to the chosen paralleliza-
tion. Incorporating the partitioning strategies shown here
into the presentation of novel parallelizations would pro-
vide the foundation for exploring these issues and quickly
putting new work into context.

6 Conclusion

This paper has presented an extension to the commonly
used task and data parallel design patterns. This extension
is based on the spatiotemporal nature of program execution
and the different effects of parallelizing in space and time.
The four strategies discussed are spatial data partitioning
(SDP), temporal data partitioning (TDP), spatial instruc-
tion partitioning (SIP), and temporal instruction partition-
ing (TIP). Results implementing a substantial application
demonstrate how these strategies can be applied to affect
both latency and throughput. In addition these results illus-
trate how multiple partitioning strategies can be combined
to yield the benefits of each.



Serial x264 TDP+TIP+SDP x264
Parallel frames 1 1 2 4 8 16
Processes per frame 1 16 8 4 2 1
Throughput (frames/s) 1.70 8.41 12.11 10.67 7.73 14.66
Throughput Speedup 1 4.95 7.12 6.28 4.55 8.62
Average frame latency (ms) 580 140 188 391 1032 1004
Latency Speedup 1 4.14 3.09 1.48 0.56 0.58
Image Quality (Average PSNR) 39.371 39.387 39.378 39.382 39.377 39.372
Encoded Bitrate (Kb/s) 10647.57 10913.49 10847.80 10634.21 10294.74 10694.58

Table 5. Performance of parallel x264 decomposed with a combination of the TDP, TIP, and SDP strategies.

References

[1] L. S. Blackford, J. Choi, A. Cleary, A. Petitet, R. C. Whaley,
J. Demmel, I. Dhillon, K. Stanley, J. Dongarra, S. Hammar-
ling, G. Henry, and D. Walker. ScaLAPACK: a portable lin-
ear algebra library for distributed memory computers - de-
sign issues and performance. InSupercomputing ’96: Pro-
ceedings of the 1996 ACM/IEEE conference on Supercom-
puting, 1996.

[2] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,
M. Houston, and P. Hanrahan. Brook for GPUs: Stream
computing on graphics hardware.ACM TRANSACTIONS
ON GRAPHICS, 23:777–786, 2004.

[3] J. A. Butts and G. S. Sohi. Characterizing and predicting
value degree of use. InMICRO, pages 15–26, 2002.

[4] Y.-K. Chen, X. Tian, S. Ge, and M. Girkar. Towards effi-
cient multi-level threading of H.264 encoder on Intel hyper-
threading architectures.Parallel and Distributed Processing
Symposium, 2004. Proceedings. 18th International, April
2004.

[5] M. J. Flynn. Very high-speed computing systems.Proceed-
ings of the IEEE, 54(12), Dec. 1966.

[6] M. Gordon, W. Thies, and S. Amarasinghe. Exploiting
coarse-grained task, data, and pipeline parallelism in stream
programs. InInternational Conference on Architectural
Support for Programming Languages and Operating Sys-
tems, 2006.

[7] M. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli,
C. Leger, A. A. Lamb, J. Wong, H. Hoffmann, D. Z. Maze,
and S. Amarasinghe. A stream compiler for communication-
exposed architectures. InInternational Conference on Ar-
chitectural Support for Programming Languages and Oper-
ating Systems, 2002.

[8] High Performance Fortran Forum. High Performance For-
tran language specification, version 1.0. Technical Report
CRPC-TR92225.

[9] Intel Threading Building Blocks 2.1 for Open Source.
http://threadingbuildingblocks.org/.

[10] Supra-linear packet processing performance with Intel
multi-core processors. Technical report, Intel, 2006.

[11] ITU-T. H.264: Advanced video coding for generic audiovi-
sual services.

[12] T. Jacobs, V. Chouliaras, and D. Mulvaney. Thread-
parallel MPEG-4 and H.264 coders for system-on-chip
multi-processor architectures.International Conference on
Consumer Electronics, Jan. 2006.

[13] B. Jung, H. Lee, K.-H. Won, and B. Jeon. Adaptive slice-
level parallelism for real-time H.264/AVC encoder with fast
inter mode selection. InMultimedia Systems and Applica-
tions X., 2007.

[14] K. Keutzer and T. Mattson. Our Pattern Language (OPL): A
design pattern language for engineering (parallel) software.
In ParaPLoP: Workshop on Parallel Programming Patterns,
2009.

[15] D. Lea. Concurrent Programming in Java: Design Princi-
ples and Patterns. 1996.

[16] L.-K. Liu, S. Kesavarapu, J. Connell, A. Jagmohan, L. hoon
Leem, B. Paulovicks, V. Sheinin, L. Tang, and H. Yeo.
Video analysis and compression on the STI Cell Broadband
Engine processor. InICME.

[17] B. L. Massingill, T. G. Mattson, and B. A. Sanders. A
pattern language for parallel application programs (research
note). InEuro-Par ’00: Proceedings from the 6th Interna-
tional Euro-Par Conference on Parallel Processing, pages
678–681, London, UK, 2000. Springer-Verlag.

[18] T. Mattson, B. Sanders, and B. Massingill.Patterns for Par-
allel Programming. 2004.

[19] A. Rodriguez, A. Gonzalez, and M. P. Malumbres. Hierar-
chical parallelization of an H.264/AVC video encoder. In
PARELEC ’06: Proceedings of the international symposium
on Parallel Computing in Electrical Engineering, 2006.

[20] S. Siu, M. D. Simone, D. Goswami, and A. Singh. Design
patterns for parallel programming. InProceedings of the
1996 International Conference on Parallel and Distributed
Processing Techniques and Applications.

[21] M. Snir. Parallel programming patterns.
http://www.cs.uiuc.edu/homes/snir/PPP/.

[22] S. Sun, D. Wang, and S. Chen. A highly efficient paral-
lel algorithm for H.264 encoder based on macro-block re-
gion partition. InHPCC ’07: Proceedings of the 3rd inter-
national conference on High Performance Computing and
Communications, 2007.

[23] K. Theobald, G. R. Gao, and L. J. Hendren. Speculative
execution and branch prediction on parallel machines. InIn
Conference Proceedings, 1993 International Conference on
Supercomputing, 1993.

[24] R. van de Geijn.Using PLAPACK – Parallel Linear Algebra
Package. MIT Press, Cambridge, MA, 1997.

[25] x264. http://www.videolan.org/x264.html.


