Software fault recovery
for real-time signal
processing on massively
parallel computers™

James Lebak, Jim Daly, Hank Hoffmann,
Jeremy Kepner, Jan Matlis, Patrick Richardson,
Ed Rutledge, Glenn Schrader

MIT Lincoln Laboratory

1 Abstract

As massively parallel computers are increasingly used in real-time embedded signal
processing applications, fault tolerance becomes an important concern. One of the
most stringent requirements is that the system must remain available after a fault
is detected. We have developed software technologies for fault recovery within a
signal processing application. In this paper, we implement an example parallel
signal processing application and compare the complexity and performance of three
different strategies for implementing fault recovery.

2 Introduction

Real-time signal processing is one of the largest and most stressing compute in-
tensive applications. In addition, many of these applications are of considerable
importance to the government [3]. In the past, many signal processing applications
have been addressed by using custom hardware. The increasing speed of commercial
programmable processors now makes it possible to address many of these applica-

*This work is sponsored by the U.S. Navy under Air Force Contract F19628-00-C-0002. Opin-

ions, interpretations, conclusions, and recommendations are those of the authors and are not
necessarily endorsed by the U.S. Air Force or the U.S. Navy.

1

2000/11/.
page 1
o

tions with commodity massively parallel computers. A primary benefit of using
commercial-off-the-shelf (COTS) systems is the ability to implement applications
in software.

One of the key challenges in bringing massively parallel computing to real-
time signal processing is how to implement fault tolerance capabilities in software.
In theory, massively parallel systems present the opportunity for greatly increasing
the fault tolerance of the system by adding only a few additional processing nodes.
Exploiting this capability requires sophisticated software that can easily move pro-
cessing tasks from one node to another. In this paper, we present the software
technology we have developed for addressing this problem.

2.1 Fault tolerance in real-time signal processing

In a typical real-time signal processor, the flow of tasks is known when the system
is constructed, and processing elements are dedicated to particular tasks at system
initialization time. The failure of a particular processing node can therefore destroy
the entire signal processing chain, requiring replacement of the failed node and
reboot of the system. Unfortunately, the probability of a failure increases as the
number of nodes in the system increases. In addition, the availability requirements
of many signal processing systems make it impractical to shut down for the length
of time required for replacement and reboot.

The simplest approach to meet the requirements of recovery time and avail-
ability is to double the size of the signal processor and switch to the redundant
signal processor when a failure is detected. The failed processor can then be re-
paired while the redundant processor is operating. Obviously, this solution is quite
expensive. Furthermore, if a unit in the second processor fails before the first is
repaired, then the system still will not meet availability requirements.

A more cost-effective solution to meet availability and reliability requirements
would be to maintain a small number of spare nodes in the system.! When an
individual node fails, its role in the system can be assumed by one of the spare
nodes. Although such a strategy will not allow recovery of data that was being
processed at the time of the failure, in most signal processing systems the data rate
is high enough that any individual frame of data is usually not critical. The focus
is rather on getting the system back on-line as quickly as possible.

In this paper, we compare fault recovery strategies that allow one node to take
over the role of another in a real-time signal processing application. We assume that
mechanisms for detection of a fault and isolation to a particular node are in place
and that the failure of individual nodes will not prevent the system from operating.
Fault detection and isolation mechanisms are an active research area [1].

2.2 Parallel vector library (PVL)

The experimental apparatus that we use is an object-oriented parallel signal process-
ing library, the parallel vector library or PVL. Written in C++, this library is based

! The replaceable unit will be referred to as a “node”, though it could be an individual processor,
a daughtercard, a board, a module, etc.

ﬁ% 2000/11/:
page 2
—P

on our previous work with the space-time adaptive processing library (STAPL, [2]).
PVL allows us to quickly and efficiently implement parallel signal processing appli-
cations with strict real-time latency requirements. The key concept of PVL is that
it separates the operations to be performed from the description of the nodes that
will be performing them.

Within PVL, there is a task object that represents a set of operations to be
performed on a node or a set of nodes. Tasks can be thought of as coarse-grain
entities in a signal processing pipeline; they define a control scope for a computation.
The nodes that the task is running on are specified by another object referred to as
a map.

Within a task, the user performs operations on data objects such as matrices
and vectors. These are distributed objects that may also be assigned to partic-
ular nodes using the map object. Maps allow the user to describe an arbitrary
block-cyclic distribution for each matrix or vector. Maps may be characterized as
containing two types of information: shape information, describing the layout and
the number of nodes, and location information, describing the exact positions of
nodes.

Data objects are communicated between different tasks using objects called
conduits. An individual data object exists only in the scope of one particular task
at a time; using a conduit, these items can be sent to and received from other tasks
in a non-blocking way.

The use of tasks and conduits provides an effective framework for integrat-
ing modules developed by different software engineers. Application developers can
concentrate on the signal processing and linear algebra requirements of the algo-
rithm and postpone mapping until later. Maps can be made to suit the individual
platform that is being worked on. This allows the application to become portable,
reducing lifecycle costs as systems are upgraded. Portable applications need not un-
dergo debugging on embedded target hardware, but can be debugged on inexpensive
platforms such as networks of workstations.

In terms of this library, the fault recovery problem can be summarized as
finding an efficient way to give an object a new map after a failure has been detected.
In the following section, we consider methods for solving this problem.

3 Fault Recovery Strategies

Consider a system with three nodes, named ng, n1, and ne. Assume that initially ng
and n are performing useful signal processing work, and that they share a vector
v of length L distributed in block fashion between them. Node ny is a spare node.
At some point, assume a failure is detected in node ny, and we wish to replace it
with no. We define three strategies for recovering from the failure, referred to as
remap, redundant objects, and rebind.

One strategy for failure recovery would be to free memory on previously
mapped nodes and re-allocate memory on new nodes. This is the strategy we
refer to as remapping. It is potentially a very slow process, and any pre-computed
items such as coefficient tables for the fast Fourier transform (FFT, [7]) must be

jS 2000/11/:
page 3
—P

re-computed when using this strategy.

A second strategy attempts to reduce the time penalty of the remap method
by allocating more memory. This strategy, which we will refer to as the method
of redundant objects, requires the user to create objects at system initialization
time corresponding to the various failure scenarios that may occur. When a failure
occurs, the system uses a different set of objects based on the component that
failed. Using this approach, no memory allocation has to be done at recovery time.
However, the application has paid a substantial cost in terms of memory use. In
general, the number of redundant objects that has to be maintained for complete
fault coverage in a system with N nodes in which f nodes can fail is the binomial

coefficient
(N) _ N!
f) N =Hr

Therefore, this approach does not scale well enough to be considered for use in a
real system. However, it has the smallest performance impact that can be imagined,
making it useful for comparison purposes.

We refer to our compromise strategy between these two extremes as rebinding.
In this approach, we constrain the new map to have the same number of nodes and
the same distribution as the original map but allow the particular nodes to vary.
Recalling that maps contain shape and location information, another way to look
at the constraint is that the shape information in the map cannot change but the
location information can.

When using rebinding, the programmer must give each distributed object a
scope. At initialization time, the library will allocate on each node in the scope
sufficient memory to play the role of any of the nodes in the object’s map. There is
no memory allocation performed at fault recovery time, and the only cost is extra
memory allocation on the “spare” nodes.

Figure 1 gives pseudo-code examples of how a failure recovery would be ac-
complished using each method. Vector v is originally declared with a map Map1
that includes nodes ng and n;. Memory is allocated for % elements of v on each
of nodes ny and n;. The new map Map2 of v after the failure occurs will include
nodes ng and ns. The parameters to the vector constructor are the vector length
and the map used to describe the distribution. Notice the third (scope) argument
to the constructor for the rebind method, and the additional objects that must be
built using the method of redundant objects.

4 Experiments

For each of these fault recovery methods, we are interested in measuring two kinds
of overhead, performance and complexity. We compared the performance of the
three methods on two different experiments of interest in signal processing; results
of these experiments are detailed in Section 4.1. We then examined the application
code for the second experiment to obtain a sense of the complexity impact of each
recovery method; this comparison is shown in Section 4.2.

ﬁ% 2000/11/:
page 4
—P

| Remap Redundant Objects | Rebind

Setup Phase

Mapl = {ng,n1};
Map2 = {ng,n2};

Map3 = {ni,na2};

Vector v1(L, Mapl);
Vector v2(L, Map2);
Vector v3(L, Map3);

Vector v(L, Mapl); | Vector *v=&vl; Vector v(L, Mapl,{ng,ni,n2});

Recovery Phase

v.remap (Map2) ; | v=&v2; | v.rebind (Map2) ;

Figure 1. Pseudo-code for each of the three fault recovery strategies. A
vector v is created on nodes ng and ny and is moved to nodes ng and ny after node
ny fails.

4.1 Performance Experiments

In this section, we describe the two experiments that we used to compare the per-
formance of the three fault recovery strategies. Experiment 1 was an all-to-all
communication or corner turn operation, a common stressing scenario in signal
processing. Experiment 2 represented a small signal processing application.

Our platform for the performance experiment was an eight-node cluster of
Pentium III PC’s running Linux [8]. The cluster was connected by Gigabit ethernet
and an eight-port switch, isolated from normal day-to-day network traffic. The
underlying communication library was the message-passing interface, MPI [5]. The
Linux kernel used was release 2.2.14 and the GNU C++ compiler was used.

Experiment 1

In this experiment, a vector of length L was moved from a block distribution on
Ps source processors to a cyclic distribution on Pp destination processors. This
operation requires all-to-all communication, an important operation in signal pro-
cessing [4, 6]. The source and destination sets are disjoint. We measured the average
time to perform this operation over 10000 iterations, using the function MPI_WTIME
to measure time. After having measured a baseline time with no simulated failures,
we assumed that during each iteration, a single destination node would fail, requir-
ing a recovery. We simulated this recovery operation by changing the operating
map in the destination after every iteration. We used Pp + 1 processors in the
destination set; on even iterations, processor Pp was left out of the operating map,
and on odd iterations, processor Pp — 1 was left out of the operating map.

The number of source processors Ps was fixed at 2, and the number of des-
tination processors Pp was either 2 or 4. We used single precision floating-point
vectors of length L € {400, 1600, 6400, 25600}.

Times for this first experiment for Ps = 2 and Pp = 4 on the Linux cluster

jS 2000/11/:
page 5
—P

Application 1 Achieved Times (2->2)

0.035

— Baseline
I emap d
0.03 --- Redundant Map it

o——o Rebind L,/

[=)
o o
o)
) 3]

o
o
e
()]

0.01f

Average Time (seconds)

0.005f

0 : .
400 1600 6400 25600
Vector Length (Complex Float Elements)

Figure 2. Achieved times for the corner turn experiment with two source
and two destination processors.

are shown in Figure 2. An example bandwidth curve is shown in Figure 3. Notice
that the baseline, redundant map, and rebind performance curves are all very close
to each other in each of these figures, whereas the remap curve shows a substantial
performance penalty in each case. The penalty appears to be independent of the
vector length, meaning that the bandwidth penalty for using this method is greatest
for small vectors.

Experiment 2

The first experiment was purely stressing on the communication fabric of the ma-
chine. To stress computation as well, a small signal processing application was used.
The block diagram for this application is shown in Figure 4.

The application consists of two tasks, a front-end input task that generates
a data matrix, and a back-end filtering task that processes the matrix. The two
tasks are connected by a single conduit. In the filtering task, two filters are used,
a coarse and a fine filter, with a two-to-one decimation between them. The matrix
is size X x 2X, and we again used disjoint processor sets, with P; processors in the
input task and Py processors in the filtering task. We measured the average time
in seconds and throughput in samples per second over 1000 iterations. To measure
the fault recovery overhead, we used Py + 1 total processors in the filtering task
and alternated between two sets of Py processors on consecutive iterations, similar
to the first experiment.

In these experiments, P; = 2, Py € {2,4}, and X € {10, 20,40,80}. Results
for the two values of Py looked very similar, and so only the case Py = 4 is shown.

jS 2000/11/:
page 6
—P

2000/11/.
page 7
e

Application 1 Achieved Bandwidth (2->4)

=
(o]

=
i

[any
N

=
=)

Average Bandwidth (MB/s)
[e2]

ok e
ar —— Baseline
|--- Remap
ol .-~"|'--- Redundant Map
________ - o—= Rebind
0__— 1 1
400 1600 6400 25600

Vector Length (Complex Float Elements)

Figure 3. Achieved bandwidths for the corner turn experiment with two
source and four destination processors.

Two-Step Signal Processing Algorithm

Low Pass Filter

Digital Input Task TeaElE S DN

matrix
Xx 2X X x 2X
Matrix Conduit Matrix
. generates a *Apply coarse filter
X channel * 2:1 decimation
by 2Xrange _ _
matrix e Apply fine filter

Figure 4. Block diagram of the simple signal processing application used
i experiment 2.

Achieved times and throughputs are shown in Figures 5 and 6.

As in the first experiment, the redundant object and rebind methods have very
similar performance to the baseline case, meaning that these methods introduce very
little additional overhead for fault recovery. The remap recovery method introduces
a constant overhead on the order of 10 ms. Notice that this is larger than the penalty

0.06

o©
o
a

©
o
=

Average Time (seconds)
o o
o o
N w

o
o
e

Application 2 Achieved Times (2->4)

Baseline
Remap
Redundant Map
Rebind

Figure 5. Achieved times for the simple signal processing application with

20 40

Number of Rows

two source and four destination processors.

80

Application 2 Achieved Throughput (2->4)

450

Throughput (kSamples Per Second)

.-|— Baseline
- --- Remap
--- Redundant Map
o——o Rebind

[N}

Figure 6. Achieved throughput in ksamples per second for the simple signal
processing application with two source and four destination processors.

20 40
Number of Rows

80

jS 2000/11/:
page 8
—P

Table 1. Line Count for Iteration and Fault Recovery Code.

Method Lines of Code
Baseline 90
Remap 93
Redundant Object 103
Rebind 96

for remap in the first experiment, because more objects need to be initialized and
coefficients for the FFT are re-calculated.

4.2 Complexity

To compare the complexity of the various approaches, we examined the framework
program that constitutes the “outer loop” in experiment 2. In the baseline case,
the framework declares and initializes the task and conduit objects, performs the
iterations, and records the time. The 90 lines of C++ program in the framework are
designed to be independent of what the tasks themselves are doing. This framework
is where code is added or changed to perform fault recovery by each of our three
techniques. In Table 1, we compare the number of lines of code in the framework
program for each fault recovery technique.

The code overhead is very small in this case because only a small number of
objects are involved, and a small number of possible maps are used. Nonetheless, the
redundant object method involves about a 10% penalty in terms of code overhead
even in this simple case. We stated in Section 3 that the number of objects that has
to be maintained to support this method in the general case grows exponentially.

5 Conclusions

We have investigated three potential methods for fault recovery. The remap method
is slow, but uses no additional system memory in preparing for fault recovery.
The redundant object method is very fast but uses lots of system memory. The
third method, rebinding, represents a compromise between these two extremes, and
obtains performance very similar to the redundant object method without using a
great deal of system memory. This method has the additional advantage that the
complexity of fault recovery is largely moved from the application programmer’s
domain into that of the library programmer.

Obviously, conclusions about the proper method for a particular embedded
system depend on a number of different system parameters, such as the system
timeline and the complexity of the processing. We intend to test these methods
on more complex applications and on different parallel machines, including a Cray
T3E and several embedded multiprocessors. We will evaluate the results in light of
system requirements for a number of different embedded signal processing programs.
We believe that the rebind method is a good first step toward a practical fault
recovery technique for these systems.

jS 2000/11/:
page 9
—P

10

2000/11/:
page 10
e

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

Bibliography

D. R. AVERSKY AND D. R. KAELIL, Fault-tolerant parallel and distributed sys-
tems, Kluwer Academic Publishers, 1998.

C. M. DELuca, C. W. HEISEY, R. A. BonD, AND J. M. DALy, A portable
object-based parallel library and layered framework for real-time radar signal pro-
cessing, in ISCOPE ’97: First Conference on International Scientific Computing
in Object-Oriented Parallel Environments, Dec. 1997.

C. J. HoLLAND, DoD perspective on the future of embedded software develop-
ment, in Proceedings of the Fourth Annual High-Performance Embedded Com-
puting Workshop, Sept. 2000.

J. M. LEBAK AND A. W. BOJANCZYK, Design and performance evaluation of
a portable parallel library for space-time adaptive processing, IEEE Transactions
on Parallel and Distributed Systems, 11 (2000), pp. 287-298.

MPI ForumMm, MPI: A message-passing interface standard, tech. rep., University
of Tennessee, Apr. 1994.

N. Park, V. K. PRASANNA, AND C. RAGHAVENDRA, Efficient algorithms for
block-cyclic array redistribution between processor sets, in Proceedings of SC98:
Tenth High Performance Networking and Computing Conference, 1998.

C. F. Van LoaN, Computational Frameworks for the Fast Fourier Transform,
Society for Industrial and Applied Mathematics, 1992.

M. WELSH, M. K. DALHEIMER, AND L. KAUFMAN, Running Linuz, O’Reilly
and Associates, 3rd ed., 1999.

11

2000/11/.
page 11
o

