
Remote Store Programming

A Memory Model for Embedded Multicore

Henry Hoffmann, David Wentzlaff, and Anant Agarwal

Tilera Corporation
hank@alum.mit.edu, wentzlaf@tilera.com, agarwal@tilera.com

Abstract. This paper presents remote store programming (RSP), a pro-
gramming paradigm which combines usability and efficiency through the
exploitation of a simple hardware mechanism, the remote store, which
can easily be added to existing multicores. The RSP model and its hard-
ware implementation trade a relatively high store latency for a low load
latency because loads are more common than stores, and it is easier to
tolerate store latency than load latency. This paper demonstrates the
performance advantages of remote store programming by comparing it
to cache-coherent shared memory (CCSM) for several important embed-
ded benchmarks using the TILEPro64 processor. RSP is shown to be
faster than CCSM for all eight benchmarks using 64 cores. For five of
the eight benchmarks, RSP is shown to be more than 1.5× faster than
CCSM. For a 2D FFT implemented on 64 cores, RSP is over 3× faster
than CCSM. RSP’s features, performance, and hardware simplicity make
it well suited to the embedded processing domain.

1 Introduction

Due to the scaling limitations of uniprocessors, multicore architectures, which
aggregate multiple processing cores onto a single chip, have become ubiquitous
in many disciplines of computing. One of the key design features of a multicore
architecture is its programming model, which must handle inter-core communi-
cation. Cache-coherent shared memory is a popular programming model that is
supported by several commercial multicores including those from Intel, Cavium,
RMI, and Tilera.

In the cache-coherent shared memory (CCSM) model processes communicate
by reading and writing a globally accessible address space. This model is popular
as it is generally considered easy-to-use, and the ease of use derives from the fact
that communication in the CCSM model is accomplished using familiar load and
store instructions. In addition, CCSM communication is one-sided and fine-grain,
which is easy to schedule and overlap with computation. However, reliance on
the abstraction of global, uniformly accessible shared memory makes it difficult
for programmers to determine when their code will result in communication, and
how much that communication will cost.

The CCSM model also makes it difficult to exploit locality for performance in
regularly structured applications, like those typically found in video, image and



signal processing. Locality can be especially important for performance on CCSM
architectures which distribute the shared cache using directory protocols [1].
Locality will become more important as more cores are integrated onto a single
chip because both the probability and penalty of non-local access increases with
increasing numbers of cores.

This paper presents the remote store programming (RSP) model, which com-
bines some of the features that make CCSM easy to use while still allowing
programmers to control locality in software for performance. In addition, RSP
requires only a small set of hardware features and is incrementally supportable
in multicore architectures that support standard load and store instructions. Sig-
nificantly, RSP requires less hardware support than the CCSM model but can
achieve higher performance executing regular computations on multicores with
a large number of cores. The RSP model can complement cache-coherent archi-
tectures by providing an alternative for performance-critical code where locality
is an issue. Alternatively, RSP can be implemented as the only programming
model on an architecture which may be attractive for multicore architectures
targeting regular application domains.

In the RSP model processes have private address spaces by default, but they
can give other processes write access to their local memory. Once a producer
has write access to a consumer’s memory, it communicates directly with the
consumer using the standard store instruction to target remote memory, hence
the name “remote store programming.” Communication in the RSP model is one-
sided and fine-grain making it easy to schedule. In addition, consumer processes
are guaranteed to read physically close, or local, memory.

The performance of the RSP model is evaluated by emulating it using the
TILEPro64 processor. This study demonstrates that the RSP paradigm can
achieve efficient parallel implementations on important multicore applications
like video, image, and digital signal processing. An RSP implementation of an
H.264 encoder for HD video achieves a speedup of 30.5x using 40 processes,
while a 2D FFT achieves a speedup of 60x using 64 processes. Additionally, the
TILEPro64 allows comparison of RSP to CCSM. While CCSM is generally faster
or equivalent to RSP using a small number of cores, RSP achieves anywhere from
1.25× to over 3× the performance of CCSM using 64 cores. The speedup relative
to shared memory is due to RSP’s emphasis on locality-of-reference, as RSP
programs always access physically close memory and minimize load latencies.
Furthermore, RSP achieves this performance with less hardware support.

The RSP model is similar to some existing programming models like the
partitioned global address space (PGAS) model [2], Digital Equipment Corpo-
ration’s memory channels (MC) model [3], and virtual memory mapped com-
munication (VMMC) as implemented on the SHRIMP processor [4]. All these
models combine features of CCSM while allowing users to manage locality in
software. The RSP model differs in that it is designed specifically for multicore
by including only mechanisms that can be incrementally supported in existing
multicore architectures.

This paper makes the following contributions:



Core 0 Core 1
Process 0
x = 1

st x

Process 1
ld x

Memory 1
private

remotely 
writable

int x
st x

ld x

Network

Memory 0
private

Fig. 1. Illustration of the remote store programming model. There are two cores, each
of which executes a process. Process 1 allocates a remotely-writable region of memory
to hold the integer x. Process 0 writes a new value into x, and this new data travels
from Process 0’s registers to Process 1’s cache.

– It identifies the RSP model which is supportable with a small set of hard-
ware features that can be incrementally added to a multicore architecture
supporting loads and stores. This model includes features based on existing
distributed shared memory models and is particularly suited to embedded
processing.

– It describes the high-level features required to support RSP and argues that
this model needs less support than CCSM.

– It presents a detailed performance comparison of the RSP and CCSM models
using eight embedded benchmarks and finds that RSP out-performs CCSM
using large numbers of cores.

The remainder of this paper is organized as follows. Section 2 describes the
RSP model. Section 3 discusses the hardware and system software support re-
quired to implement the model. Section 4 discusses the methodology used to
evaluate RSP and compare it to CCSM using the TILEPro64 multicore proces-
sor. Section 5 presents the comparison of RSP and CCSM performance. Related
work is discussed in Section 6. Finally, the paper concludes in Section 7.

2 The Remote Store Programming Model

This section discusses programming using the RSP model. The term process

refers to the basic unit of program execution. This work assumes that there
is a one-to-one mapping between processes and processor cores, but that re-
striction is easily relaxed. A parallel programming paradigm is distinguished by
three features: process model, communication mechanism, and synchronization

mechanism.

The process model. RSP presents a system abstraction where each process
has its own local, private memory. However, a process can explicitly give a subset
of other processes write access to regions of its private memory. These regions
of memory are referred to as remotely writable. The system abstraction for RSP
is illustrated in Figure 1. The key idea of the remote store paradigm is that
programmers ensure that a process always reads local memory.



The communication mechanism. In an RSP application, processes com-
municate by writing directly into other processes’ memory using the store in-
struction as the communication primitive. A process that wants to consume data
uses a special memory allocation function to allocate remotely writable memory.
The consumer process then makes the address of this memory available to the
data producer. The producer uses the standard store instruction to write to the
remote memory. Once the data is stored remotely, the consumer uses standard
load instructions to read the data generated by the producer; however, load
instructions are not allowed to target remote memory.

The synchronization mechanism. Processes in an RSP program synchro-
nize using atomic synchronization operations, like test-and-set or fetch-and-add.
These synchronization operations are allowed to access remote memory and are
the one class of operations that are allowed to read remote memory. One can
easily build more advanced synchronization primitives from these operations, so
high level synchronization features like mutexes, condition variables, and barriers
are available as part of the RSP model.

Given this description, RSP has the following features:

– Familiarity of shared memory programming. Like CCSM, RSP uses standard
load and store instructions to communicate.

– Emphasis on locality of reference. RSP encourages programmers to write
code in such a way that loads always target local, physically close memory.

– One-sided communication. In RSP programs, data is pushed from the pro-
ducer to the consumer. Unlike two-sided communication schemes that require
a send to be accompanied by a receive, remote stores do not require acknowl-
edgement in this model. One-sided communication leads to code that is both
easier to write and higher performing than a two-sided model.

– No explicit support for bulk transfers. The RSP model does not support
a special put operation like SHMEM [5] and UPC [6]1. This omission is
designed to encourage programmers to store data remotely as it is produced
so that data is transferred from the registers of the producer to the cache of
the consumer with no extra buffering or copying.

– No support for remote reads. The RSP model does not support remote loads
or get operations. This omission is designed to encourage users to structure
code such that all reads target local memory, ensuring that loads have mini-
mum latency. RSP focuses on minimizing load latency for two reasons. First,
loads are more common than stores. Second, it is easier to tolerate store la-
tency than load latency. One can overlap communication and computation
with simple hardware support using remote stores, but such overlap would
be hard to achieve for remote loads without more hardware support, like a
direct memory access (DMA) engine or hardware prefetching.

1 The C function memcpy can provide the semantics of a bulk transfer function in the
RSP model, but the RSP model does not assume any additional bulk data movement
mechanisms.



3 Implementation of the RSP Model

The RSP model is designed specifically to be incrementally achievable in mul-
ticore architectures that support loads and stores using a small set of hardware
features that have a large impact on program performance. In the RSP model
data is transfered from the registers of a producer into the cache of a consumer
as illustrated in Figure 2(a). The data is not buffered on the producer to be
transferred in bulk, but ideally each datum is sent as it is produced. This model
results in many small messages and does not attempt to amortize the cost of
communication by bundling many messages into a small number of large mes-
sages. In trade, RSP programs exhibit good locality of reference, have lower load
latencies, and outperform CCSM on highly parallel multicores.

RSP needs hardware and operating system support for the following mecha-
nisms: allocating remotely-writable data, executing store instructions targeting
remotely-writable data, maintaining memory consistency, and executing syn-
chronization operations targeting remotely-writable data. These features are dis-
cussed in turn.

Allocation of remotely writable data. Processes must be capable of
allocating data that can be written by other processes. Such data should be
both readable and writable by the allocating process.

Store instructions targeting remote data. Processes may execute store
instructions where the destination register specifies an address in remotely writable
memory. The processor executing such a store should not allocate the cache-line,
but forward the operation to the consumer processor that allocated the data.
This forwarding should be handled in hardware and requires that a message be
sent to the consumer containing both the datum and the address at which it is
to be stored. The consumer receives this message and handles it as it would any
other write. In RSP, data that is allocated as remotely writable can only be
cached in the allocating processor. This protocol preserves locality of reference
by guaranteeing that reads are always local, ensuring minimal load latency.

Support for managing memory consistency. After a producer process
writes data to remote memory, it needs to signal the availability of that memory
to the consumer. To ensure correctness, the hardware must provide sequential
consistency, or a memory fence operation so that the software can ensure correct
execution.

Synchronization instructions may read and write remote data. RSP
allows atomic synchronization operations, such as test-and-set or fetch-and-add,
to both read and write remote data. This allows one to allocate locks, condition
variables, and other synchronization structures in remotely writable memory.

With support for these features a multicore architecture can efficiently imple-
ment remote store programs. This set of features represents a small, incremental
change over the set of features that would be required on any multicore archi-
tecture. On an architecture supporting loads and stores, a core must be able to
send a message to a memory controller to handle cache misses. To support RSP,
this capability is augmented so that write misses to remotely allocated data are
forwarded not to the memory controller, but to the core that allocated the data.



Local
Cache

RF

store

Local
Cache

RF

data

load

Core 0 Core 1

(a) RSP

Local
Cache

RF

data

store

Local
Cache

RF

data

load

Core 0 Core 1

Globally Shared Cache

data

(b) CCSM

Fig. 2. Communication mechanisms in multicore. The figure illustrates two different
mechanisms for sending data from Core 0 to Core 1. RSP transfers data directly from
the sender’s registers (the box labeled “RF”) to the receiver’s local memory (cache or
scratch-pad). CCSM transfers data through the global address space.

The RSP implementation can use the same network that communicates with the
memory controller. The additional hardware support required is logic to deter-
mine whether to send a write miss to the memory controller or to another core.
Unlike RSP, CCSM hardware transfers data from registers to a local cache and
then to a globally shared cache or memory as illustrated in Figure 2(b). To sup-
port CCSM one could implement either a snoopy or a directory-based coherence
protocol. A snoopy protocol would require a centralized structure which would
be difficult to scale to large numbers of cores. Directory-based schemes provide
better scalability, but require additional O(P ) bits (where P is the number of
processors) to store directory information [7] and possibly another network that
is dedicated to coherence messages. In addition to the extra hardware structures,
a cache coherence protocol requires additional design and verification complex-
ity.

4 Evaluation Methodology

This section presents the approach used to evaluate the remote store paradigm
on the TILEPro64 processor. To begin, the TILEPro64 and its implementation
of the RSP model are described. Next the eight benchmarks and the parameters
used in this evaluation are discussed.

4.1 The TILEPro64

The TILEPro64 processor is a 64 core multicore processor with hardware support
for cache-coherent shared memory. Each of the 64 cores is an identical three-
wide VLIW capable of running SMP Linux. Each core has a unified 64KB
L2 cache, and the L2 caches can be shared among cores to provide an effective
4MB of shared, coherent, and distributed L3 cache. Cores are connected through
six low-latency, two-dimensional mesh interconnects [8]. Two of these networks
carry user data, while the other four handle memory, I/O and cache-coherence



Application Input

Bitonic Sort Integer list of length 128k
Convolution 1920 × 1080 Image
Error Diffusion 4096 × 2048 Image
2D FFT 256 × 256 matrix of complex 16-bit fixed-point values
Histogram 4096 × 2048 Image
Matrix Multiply Two 512× 512 matrices of 16-bit fixed-point values
Transpose 1024× 1024 matrix of integers
H.264 Raw 1280 × 720 video

Table 1. Benchmark applications used to compare RSP to CCSM.

traffic. The TILEPro64 can run off-the-shelf POSIX threads programs under
SMP Linux.

The TILEPro64 uses a directory-based cache-coherence scheme with full-map
directories. Loads and stores to shared memory which miss in the local L2 cache
generate coherence messages that are handled by a directory on a remote core.
The latency of these coherence messages is proportional to twice the distance
between the accessing core and the core that contains the directory for that
memory location. Clearly, if the directory is physically close, the latency is less
than if the directory is physically far away. Ideally, one wants to access directories
that are physically close to minimize latency.

In addition to standard cache-coherent shared memory, the TILEPro64 al-
lows users to allocate shared memory that is homed on the allocating core. On
this home core, reads and writes function as usual. However, when cores write
remotely homed memory, no cache line is allocated on the remote core. Instead,
these writes stream out of the writing core to the home cache without generating
any other coherence traffic. This homed memory is used to implement remotely
writable memory for remote store programs.

4.2 Benchmark Applications

Table 1 presents the application benchmarks used to compare RSP to CCSM.
These benchmarks include representatives from image, video, and digital signal
processing. For each benchmark optimized implementations are developed for a
single core and then for both the CCSM and RSP paradigms.

For both paradigms, several common optimizations are used. Cache-blocking
is used to reduce the number of data cache misses. Flags are used instead of locks
whenever applicable (one exception is the histogram benchmark described below)
to reduce contention. All stacks and read-only data are allocated as private for
both paradigms, meaning that stack accesses and accesses to global constant
data will not result in coherence traffic.

In the bitonic sort benchmark, a list of integers is sorted by dividing it among
processes. Each process sorts its assigned integers independently using quicksort
and locally sorted lists are combined through a series of merge steps. Each merge



requires a process to exchange data with a partner. In the CCSM implementation
the array is stored in global shared memory and all updates are done in place.
In the RSP implementation, each process allocates remotely writable memory
and data is copied into the partner’s address space using remote stores. Barriers
synchronize both implementations.

The convolution benchmark convolves an input image with a 3×3 mask. Each
process is responsible for producing separate rows of the output image. In the
CCSM implementation both the input and output arrays are stored in global
shared memory. In the RSP implementation, each process allocates remotely
writable memory to store its assigned rows of both the input and output images.
The RSP implementation requires allocation of additional memory to hold input
values on the border of processes’ assigned regions. Barrier synchronization is
used in both implementations.

The error diffusion benchmark performs Floyd-Steinberg Error Diffusion on
an input image. Each process is responsible for performing computation on sep-
arate columns of pixels, and the computation is done in place. Pixels on the
border between processes are shared and these values are both read and writ-
ten by neighboring processes. In the CCSM implementation, the image is stored
in global memory and flags (also stored in global shared memory) are used to
synchronize access to the image. In the RSP implementation, each process al-
locates private memory to store its assigned regions of the image. In addition,
each process allocates remotely writable regions of memory to store the shared
pixels and flags. When a process produces a value that is to be shared, it stores
one copy locally, then stores another copy, and sets a flag in remotely writable
memory.

The FFT benchmark performs a two-dimensional Fast Fourier Transform
(2DFFT) on an input matrix. The benchmark first performs an FFT on each
row and then performs an FFT on each column. Both implementations use out-
of-place computation for both the row and column FFTs. Before executing the
column FFTs, data is transposed in memory so that the consecutive elements
in a column are unit distance apart. Each process is assigned a set of row FFTs
and a set of column FFTs. In the CCSM implementation, the input, temporary,
and output matrices are all stored in global shared memory. In the RSP im-
plementation, each process allocates remotely writable memory to store results
of the row FFTs, and other data is stored in private, local memory. As the row
FFTs are computed, their results are written directly into this remotely writable
memory.

The histogram benchmark computes a histogram representing the tonal dis-
tribution of an input image. Each process is assigned a separate region of the
image. In the CCSM implementation, the image and the histogram are both
allocated in global shared memory. As a process works on its part of the input
image, it updates the histogram. Each bin of the histogram is guarded by a
separate lock. In the RSP implementation, the histogram is distributed across
processes. Each process allocates remotely writable memory to store temporary
results from other processes. Then, the processes all compute the histogram of



their assigned region of the image. Once these local histograms are completed,
each process writes the appropriate local values to a remote process which per-
forms a reduction on the local data. In the RSP implementation, a barrier is
used to synchronize.

The matrix multiplication benchmark multiplies two input matrices to com-
pute an output matrix. Each process is responsible for computing a separate
region of the output matrix. In the CCSM implementation all matrices are al-
located in global shared memory. In the RSP implementation, each process al-
locates remotely writable memory to store the rows and columns of the input
matrix that are needed to compute the assigned region of the output. In both
implementations barriers are used to synchronize.

The transpose benchmark performs the transpose of an input matrix. Each
process is responsible for producing a separate region of the output matrix. In
the SM implementation, both the input and output matrices are allocated in
globally addressable shared memory. In the RSP implementation each process
allocates remotely writable memory to hold a region of the output matrix. Each
process performs its part of the transpose by reading local values and writing
them to the appropriate location in remotely writable memory.

The H.264 benchmark performs Baseline profile H.264 encoding on raw high-
definition video. Both implementations attempt to minimize latency by parti-
tioning the encoding of a frame among multiple processes. Each process is respon-
sible for encoding its assigned region of the frame. To perform this encoding each
process needs data from those processes that are assigned neighboring regions
of the frame. In the CCSM implementation frames and associated meta-data
are stored in global shared memory. In the RSP implementation, each process
allocates remotely writable memory to store its assigned part of the frame and
the overlapping regions assigned to neighboring processes. These overlapping re-
gions of data are stored locally in the process that created them and then copied
to neighboring processes using remote stores. Both implementations synchronize
using a combination of flags and barriers. Additionally, both implementations
are limited to a maximum of 40 processes.

5 Performance Evaluation

This section evaluates the performance of remote store programming. First, the
speedup of RSP implementations of each benchmark is shown and compared to
the speedup achieved with CCSM implementations. Next, the load-latency of
each of the benchmarks is evaluated.

5.1 Speedup Evaluation

Figure 5.1 illustrates the performance of both the CCSM and RSP implemen-
tations of each of the eight benchmarks as the number of cores is varied from 2
to 64. These results all use one process per core. All speedups are computed rel-
ative to an optimized single core implementation. Higher bars represent greater
speedup and greater performance.



0

8

16

24

32

40

48

56

64

2 4 8 16 32 64

RSP
SM

80.6

(a) Bitonic Sort

0

8

16

24

32

40

48

56

64

2 4 8 16 32 64

RSP
SM

(b) Convolution

0

8

16

24

32

40

48

56

64

2 4 8 16 32 64

RSP
SM

(c) Err. Diff.

0

8

16

24

32

40

48

56

64

2 4 8 16 32 64

RSP
SM

(d) 2D FFT

0

8

16

24

32

40

48

56

64

2 4 8 16 32 64

RSP
SM

(e) Histogram

0

8

16

24

32

40

48

56

64

2 4 8 16 32 64

RSP
SM

(f) Mat. Mul.

0

8

16

24

32

40

48

56

64

2 4 8 16 32 64

RSP
SM

(g) Transpose

0

8

16

24

32

40

48

56

64

2 4 8 16 32 40

RSP
SM

(h) H.264

Fig. 3. Speedup of RSP and CCSM implementations of eight benchmarks. Speedup is
shown on the y-axis while number of cores is on the x-axis. (The RSP implementation
of bitonic sort achieves a speedup of 80.6 on 64 cores.)

For these benchmarks, RSP achieves greater performance than CCSM us-
ing large numbers of cores. Using 16 cores or fewer, RSP is generally higher
performing, but there are some exceptions and overall the approaches achieve
similar performance. However, using 32 or more cores, RSP begins to clearly out
perform CCSM as shown in Figure 4.

Figure 4 shows the ratio of RSP to CCSM performance for each of the eight
benchmarks using 2 to 64 cores. Ratios of less than one indicate that RSP is
slower while ratios greater than one indicate that RSP is faster (higher bars are
better). Figure 4 shows that the performance benefits of RSP are greater for
large numbers of cores. When using more than 32 cores, RSP achieves speedup
over CCSM for each of the eight benchmarks. When using 64 cores, RSP achieves
greater than 1.25x the performance of CCSM for 7 of the 8 benchmarks and
greater than 1.5x the performance of CCSM for 5 of 8. For H.264 on 40 cores,
RSP achieves greater than 1.8x the performance of CCSM. For the FFT on 64
cores, RSP achieves greater than 3x the performance of CCSM.

The transpose benchmark defies the general trend in that the RSP and SM
implementations achieve comparable performance for all numbers of cores. The
reason for the similar speedup numbers is that the transpose benchmark consists
of loads of input values followed by stores which put the transposed matrix in
place. The benchmark time includes the time required for all stores to complete,
so the transpose represents one benchmark where store latency is critical. In this



0

0.5

1

1.5

2

2.5

3

3.5

2 4 8 16 32 64

Cores

S
p

ee
d

u
p

 o
f 

R
S

P
 Im

p
le

m
en

ta
ti

o
n

s

Bitonic Sort
Convolution
Error Diffusion
FFT
Histogram
Matrix Multiply
Transpose
H.264

Fig. 4. Performance comparison of RSP and CCSM benchmarks. The speedup of RSP
compared to CCSM is shown as a function of the number of cores. Speedups of less
than 1 indicate RSP is slower. Speedups of more than 1 indicate RSP is faster. (The
H.264 speedup listed for 64 represents the value measured using 40 cores.)

case the low load latency of the RSP implementation is cancelled out by its high
store latency.

The relative performance gain of RSP increases with an increasing number
of cores. Locality becomes a larger factor in performance with large core count
and RSP allows software to control locality while CCSM does not. When using
a large number of cores, a cache miss in a CCSM application can result in
accessing a cache-coherence directory that is physically far away. In this case
many of the distant accesses are loads, and the resulting high load latency has a
dramatic effect on performance. However, in the RSP implementation loads do
not generate coherence traffic to remote cores and load latency is lower.

5.2 Locality Evaluation

As discussed in Section 2 and Section 3 the RSP model and its implementation
emphasize the use of physically close memory with the goal of minimizing load
latency. The Tilera simulator allows one to measure the latency of load instruc-
tions that access the L2 cache. This statistic keeps track of the time it takes to
service an L1 data cache miss.

The average L2 load latency is recorded for each of the eight benchmarks.
Figure 5 shows this data expressed as the ratio of RSP load latency to CCSM
load latency for each of the eight benchmarks on 2 to 64 cores. A ratio of 1
indicates that both implementations achieve the same load latency. A ratio of
less than 1 indicates that the RSP load latency is lower than that of CCSM
(lower bars are better).

The L2 load latency generally follows the same trend as the speedup results.
Latencies are similar for both implementations when using a small number of



0

0.5

1

1.5

2

2.5

3

3.5

4

2 4 8 16 32 64

Cores

L
o

ad
 L

at
en

cy
: 

R
at

io
 o

f 
R

S
P

 t
o

 S
M

Bitonic Sort
Convolution
Error Diffusion
FFT
Histogram
Matrix Multiply
Transpose
H.264

Fig. 5. Ratio of L2 load latency for RSP and CCSM benchmarks. The ratio of the load
latencies for RSP and CCSM implementations is shown as a function of the number
of cores. Ratios less than 1 indicate RSP is lower latency than CCSM, while ratios
greater than 1 indicate RSP load latency is higher.(The H.264 load-latency listed for
64 represents the value measured using 40 cores.)

cores, but the RSP latency tends to be much lower using large numbers of cores.
Using 64 cores, RSP load latency is lower for 6 of the 8 applications.

The two applications for which RSP load latency is higher with 64 cores
are the convolution and matrix multiplication. Figure 4 shows that the RSP
implementations of these benchmarks out perform CCSM despite the higher
load latency.

The difference in performance for the convolution is the result of an increased
number of data TLB misses on the part of the CCSM implementation. In fact,
the CCSM implementation of the convolution produces almost 9 times more
data TLB misses than the RSP implementation. The profiling tool does not
count time spent in the TLB miss towards load latency (it is accounted for
as a separate statistic). This TLB behavior is not an inherent aspect of the
CCSM programming model, but rather a random effect due to the combination
of the input image size and the way in which processes in this application access
globally addressable shared memory. However, page misses are not an issue in
the RSP implementation of this application because each process allocates data
locally and the amount of local data easily fits in the TLB.

For matrix multiplication the difference in performance is explained by the
worst case load latency. To compute average load latency, the latency of all loads
on all cores is averaged; however, for the CCSM matrix multiplication one core
has a consistently higher load latency than the others. In the CCSM implemen-
tation, Core 0 has an average load latency of 13 cycles, while the average for all
cores is 10.1. This difference is due to the fact that core 0 accesses directories that
are, on average, farther away than those accessed by other cores. In contrast, the
RSP implementation has a maximum per-core load latency of 11.5 cycles with



an average of 11.1. Although the CCSM matrix multiply has a lower average
load latency, the maximum is higher and the performance of the application is
determined by the slowest core.

On the whole, RSP fulfills its promise of exploiting locality to minimize load
latency. The predictability of load latency and TLB behavior under RSP is an
advantage in embedded systems that tend to require repeatable performance to
meet real-time requirements.

6 Related Work

Both the partitioned global address space (PGAS) model and RSP combine
the familiarity of CCSM with explicit control over locality for performance[2].
The PGAS model is designed to be implemented in high-level languages such
as Unified Parallel C [6], Titanium [9], and Co-Array Fortran (CAF) [10]. The
RSP model is designed to be implemented in hardware and can serve as the
lowest-level communication primitive for an architecture. In this sense, the two
approaches are complementary. A PGAS implementation can benefit from tar-
geting RSP to achieve higher performance than would be available through stan-
dard CCSM mechanisms. A high-level PGAS language targeting RSP would
make the efficiency of RSP available to a greater number of programmers.

Despite the similarities, there are some differences in the way programs are
written using the PGAS and RSP models. While the PGAS model can target
multicore, it was designed for multichip parallel computers with physically dis-
tributed, non-uniform memory access (NUMA) memory architectures like clus-
ters and supercomputers. On these architectures programs typically perform best
when total communication is reduced, the remaining communication is bundled
into a small number of large messages, and communication and computation is
overlapped. These optimization techniques affect the interface as most PGAS
implementations include put and get (or similar) operations that are used to
transfer large buffers between local and remote DRAMs and efficient programs
are structured to make such infrequent, large transfers.

In contrast, the RSP model targets multicore architectures which support
shared address spaces built using relatively powerful on-chip networks to connect
physically distributed caches on the same chip. The network makes it possible
for processors to transfer data from cache to cache (e.g. IBM Cell [11]), reg-
isters to cache (e.g. TILEPro64 as described above [8]), or even from registers
to registers (e.g. Raw [12]). The RSP model is designed to support fine-grained
communication on these types of multicore architectures. Specifically, RSP is
designed to encourage programmers to structure code so that data is transferred
from registers to cache as data is produced without buffering or bulk transfer.

The reflective memory model also combines the familiarity of CCSM with
mechanisms that allow users to control locality [13]. This multichip model sup-
ports a paradigm in which writes in one process’ address space appear (or are
“reflected”) in another address space. Unlike the PGAS model, reflective memory
systems are designed to efficiently support individual writes as a communication



primitive. The two reflective memory implementations that share the most in
common with RSP are virtual memory mapped communication (VMMC) [14]
as implemented on the SHRIMP processor [4] and DEC’s Memory Channels [3].

Like RSP, VMMC [14] uses writes to transfer data between processors’ vir-
tual address spaces. Using the “automatic update” option of VMMC, both the
producer and the consumer allocate a data buffer to communicate. The producer
writes its local copy of the memory, the data is stored locally, and the writes
are put on a system bus. The consumer snoops this bus and intercepts writes
that also map to its address space. Unlike VMMC, the RSP implementation
uses messages and can be implemented on a mesh network without requiring a
snoopy protocol or a centralized bus. Furthermore, RSP does not require the
producer to keep a separate copy of the data in its own local memory.

The most significant difference between Memory Channels (MC) and RSP is
that MC allows pages of the shared address space to be mapped to a processor
for read or write access, but not read/write. RSP allows read/write mappings for
home nodes. All 8 benchmarks discussed in this paper make use of read/write
mappings, and disallowing this, as in MC, would add code complexity, copy op-
erations, or both to RSP applications. Unlike RSP, MC requires the OS to ”pin”
shared pages to communicating processors. This restriction limits the number of
sharers to the size of the page table limiting scalability and may effectively waste
a page table entry for processes that communicate infrequently. Furthermore,
RSP can be implemented on heterogeneous cores while MC is restricted to ho-
mogeneous clusters. Finally, MC has hardware support for broadcast/multicast.
While RSP lacks this support, it does not require the additional hardware and
only 2 of the 8 applications could make use of multicast.

Leverich et al. performed a similar study comparing CCSM to streaming
memory for multicore [15]. This study found similar performance for the two
models even though stream programming allows a user to explicitly control lo-
cality. In contrast, the results presented here show that allowing a user to control
locality can have significant benefits for large numbers of cores. There are two
major differences in the approaches that may account for the different findings.
First, the Leverich study uses a snooping, bus-based coherence protocol, while
the study presented here uses a directory scheme built on a mesh network. The
bus-based scheme may provide better performance for small numbers of cores,
but has limited scalability to large multicores. Second, and perhaps most im-
portantly, the Leverich study limits the comparison to a maximum of sixteen
core chips, where the study presented here includes performance using 32 and
64 core processors. In fact, for RSP the most significant performance gains are
found when using 32 or more cores.

7 Conclusion

The RSP model is designed to provide high performance and ease-of-use while re-
quiring only incremental hardware support in multicore architectures. As demon-
strated, RSP implementations of eight benchmarks exhibit better performance



than shared memory for large numbers of cores. RSP can augment directory-
based cache-coherence schemes for multicores with many processors. Standard
shared memory techniques can be used for code that is highly dynamic in its
memory access patterns, while RSP could be used for performance critical sec-
tions of regularly structured code. Alternatively, RSP can be used as the only
paradigm to provide a convenient and efficient programming model on multicore
DSPs.

References

1. Shan, H., Singh, J.P.: A comparison of MPI, SHMEM and cache-coherent shared
address space programming models on a tightly-coupled multiprocessors. Int. J.
Parallel Program. 29(3) (2001) 283–318

2. Carlson, W., El-Ghazawi, T., Numric, R., Yelick, K.: Programming with the PGAS
model. In: IEEE/ACM SC2003. (2003)

3. Gillett, R.B.: Memory channel network for PCI. IEEE Micro 16(1) (1996) 12–18
4. Blumrich, M.A., Dubnicki, C., Felten, E.W., Li, K.: Protected, user-level dma for

the shrimp network interface. In: In Proceedings of the Second IEEE Symposium
on High-Performance Computer Architecture. (1996) 154–165

5. Quadrics: SHMEM Programming Manual. Quadrics Supercomputers World Ltd,
Bristol, UK (2001)

6. Chauvin, S., Saha, P., Cantonnet, F., Annareddy, S., El-Ghazawi, T.: UPC Manual.
(May 2005) http://upc.gwu.edu/downloads/Manual-1.2.pdf.

7. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann, San Mateo, CA

8. Wentzlaff, D., Griffin, P., Hoffmann, H., Bao, L., Edwards, B., Ramey, C., Mattina,
M., Miao, C.C., Brown III, J.F., Agarwal, A.: On-chip interconnection architecture
of the Tile Processor. IEEE Micro 27(5) (2007) 15–31

9. Yelick, K., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B., Krishnamurthy, A.,
Hilfinger, P., Graham, S., Gay, D., Colella, P., Aiken, A.: Titanium: A high-
performance Java dialect. In: In ACM. (1998) 10–11

10. Numrich, R.W., Reid, J.: Co-array Fortran for parallel programming. SIGPLAN
Fortran Forum 17(2) (1998) 1–31

11. Kistler, M., Perrone, M., Petrini, F.: Cell multiprocessor communication network:
Built for speed. Micro, IEEE 26(3) (May-June 2006) 10–23

12. Taylor, M.B., Lee, W., Miller, J., Wentzlaff, D., Bratt, I., Greenwald, B., Hoff-
mann, H., Johnson, P., Kim, J., Psota, J., Saraf, A., Shnidman, N., Strumpen,
V., Amarasinghe, S., Agarwal, A.: Evaluation of the Raw Microprocessor: An
Exposed-Wire-Delay Architecture for ILP and Streams. In: International Sympo-
sium on Computer Architecture. (June 2004)

13. Jovanovic, M., Milutinovic, V.: An overview of reflective memory systems. IEEE
Concurrency 7(2) (1999) 56–64

14. Dubnicki, C., Iftode, L., Felten, E., Li, K.: Software support for virtual memory-
mapped communication. (Apr 1996) 372–381

15. Leverich, J., Arakida, H., Solomatnikov, A., Firoozshahian, A., Horowitz, M.,
Kozyrakis, C.: Comparing memory systems for chip multiprocessors. SIGARCH
Comput. Archit. News 35(2) (2007) 358–368


