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Abstract

Tag recommendation has become one of the most important
ways of organizing and indexing online resources like
articles, movies, and music. Since tagging information
is usually very sparse, effective learning of the content
representation for these resources is crucial to accurate
tag recommendation. Recently, models proposed for tag
recommendation, such as collaborative topic regression
and its variants, have demonstrated promising accuracy.
However, a limitation of these models is that, by using
topic models like latent Dirichlet allocation as the key
component, the learned representation may not be compact
and effective enough. Moreover, since relational data exist as
an auxiliary data source in many applications, it is desirable
to incorporate such data into tag recommendation models.
In this paper, we start with a deep learning model called
stacked denoising autoencoder (SDAE) in an attempt to
learn more effective content representation. We propose a
probabilistic formulation for SDAE and then extend it to a
relational SDAE (RSDAE) model. RSDAE jointly performs
deep representation learning and relational learning in a
principled way under a probabilistic framework. Experiments
conducted on three real datasets show that both learning more
effective representation and learning from relational data are
beneficial steps to take to advance the state of the art.

Introduction
Due to the abundance of online resources like articles,
movies, and music, tagging systems (Yu et al. 2014) have
become increasingly important for organizing and indexing
them. For example, CiteULike1 uses tags to help categorize
millions of articles online and Flickr2 allows users to use
tags to organize their photos. However, it is often not easy
to compose a set of words appropriate for the resources.
Besides, the large variety in phrasing styles of the users
can potentially make the tagging information inconsistent
and idiosyncratic. With such technical challenges, research
in tag recommendation (TR) (Gupta et al. 2010; Wang
et al. 2012) has gained in popularity over the past few
years. An accurate tag recommendation system not only
can save the pain of users searching for candidate tags on
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the tip of their tongues, but can also make the tags used
more consistent. Consequently, both the user experience and
recommendation accuracy can be improved dramatically.

Tag recommendation methods can roughly be categorized
into three classes (Wang et al. 2012): content-based
methods, co-occurrence based methods, and hybrid
methods. Content-based methods (Chen et al. 2008;
2010; Shen and Fan 2010) utilize only the content
information (e.g., abstracts of articles, image
pixels, and music content) for tag recommendation.
Co-occurrence based methods (Garg and Weber 2008;
Weinberger, Slaney, and van Zwol 2008;
Rendle and Schmidt-Thieme 2010) are similar to
collaborative filtering (CF) methods (Li and Yeung
2011). The co-occurrence of tags among items,
usually represented as an tag-item matrix, is used for
tagging. The third class of methods (Wu et al. 2009;
Wang and Blei 2011; Yang, Zhang, and Wang 2013;
Zhao et al. 2013; Bao, Fang, and Zhang 2014;
Chen et al. 2014), also the most popular and effective
ones, consists of hybrid methods. They make use of both
tagging (co-occurrence) information (the tag-item matrix)
and item content information for recommendation.

In hybrid methods, learning of item representations (also
called item latent factors in some models) is crucial
for the recommendation accuracy especially when the
tag-item matrix is extremely sparse. Recently, models
like collaborative topic regression (CTR) (Wang and Blei
2011) and its variants (Purushotham, Liu, and Kuo 2012;
Wang, Chen, and Li 2013) have been proposed and adapted
for tag recommendation to achieve promising performance.
These models use latent Dirichlet allocation (LDA) (Blei,
Ng, and Jordan 2003) as the key component for
learning item representations and use probabilistic
matrix factorization (PMF) (Salakhutdinov and Mnih
2007) to process the co-occurrence matrix (tag-item
matrix). However, when using LDA, the resulting item
representations tend to be quite sparse. Consequently,
more dimensions may be needed for the representations
to be effective. Unfortunately PMF with the low-rank
assumption usually works with quite a small number of
latent dimensions, which is not in line with the nature of
LDA (or CTR). On the other hand, deep learning models
like stacked denoising autoencoder (SDAE) (Vincent et



al. 2010) and convolutional neural networks (Krizhevsky,
Sutskever, and Hinton 2012) recently show great potential
for learning effective and compact representations
and deliver state-of-the-art performance in computer
vision (Wang and Yeung 2013) and natural language
processing (Salakhutdinov and Hinton 2009;
Kalchbrenner, Grefenstette, and Blunsom 2014)
applications. Intuitively, the effectiveness and compactness
of deep learning models like SDAE seem to fit PMF
perfectly and can potentially lead to significant boost
of recommendation performance. Besides, since
relational data exist as an auxiliary data source in
many applications (e.g., natural language processing,
computational biology), it is desirable to incorporate
such data into tag recommendation models. For example,
when recommending tags for articles in CiteULike,
the citation relations between articles (Vu et al. 2011;
Wang and Li 2013) may provide very useful information.
However, incorporating relational information into deep
neural network (DNN) models like SDAE is non-trivial
since with the relational data, the samples are no longer
i.i.d., which is the assumption underlying DNN models.

In this paper, we propose novel methods to address the
above challenges. The main contributions of this paper are
summarized as follows:

• We adapt SDAE and use it in conjunction with PMF (or
a simplified version of CTR) to significantly boost the
recommendation performance.

• To satisfy the need for relational deep learning, we
develop a probabilistic formulation for SDAE and,
by extending this probabilistic SDAE, we propose
a probabilistic relational model called relational
SDAE (RSDAE) to integrate deep representation
learning and relational learning in a principled way.
Besides, RSDAE can be naturally extended to handle
multi-relational data (with more details provided in the
supplementary material).

• Extensive experiments on datasets from different domains
show that our models outperform the state of the art.

Problem Statement and Notation
Assume we have a set of items (articles or movies) Xc to be
tagged, with XT

c,j∗ ∈ RB denoting the content (attributes) of
item j. In the case of tagging articles (papers) in CiteULike,
the items are papers, and the content information can be
the bag-of-words representation of paper abstracts. Assume
we have a set of I tags {t1, t2, · · · , tI} as candidates to
be recommended to tag each item. Then a tag-item matrix
R can be used to represent the tagging information for
all the items. Each matrix entry Rij is a binary variable,
where Rij = 1 means that tag ti is associated with item j
and Rij = 0 otherwise. Tag recommendation is to predict
the missing values in R∗j = [R1j ,R2j , · · · ,RIj ]

T (i.e.,
recommend tags to items). Besides, we use IK to denote a
K-dimensional identity matrix and S = [s1, s2, · · · , sJ ] to
denote the relational latent matrix with sj representing the
relational properties of item j. Note that although we focus

on tag recommendation for articles and movies in this paper,
our proposed models are flexible enough to be used for other
applications such as image and video tagging.

From the perspective of SDAE, the J-by-B matrix
Xc represents the clean input to the SDAE and the
noise-corrupted matrix of the same size is denoted by X0.
Besides, we denote the output of layer l of the SDAE, a
J-by-Kl matrix, by Xl. Row j of Xl is denoted by Xl,j∗,
Wl and bl are the weight matrix and bias vector of layer
l, Wl,∗n denotes column n of Wl, and L is the number
of layers. As a shorthand, we refer to the collection of all
layers of weight matrices and biases as W+. Note that in
our models an L/2-layer SDAE corresponds to an L-layer
network.

Probabilistic Stacked Denoising Autoencoders
In this section we will first have a brief review on SDAE and
then give a probabilistic formulation of generalized SDAE,
which will be a building block of our relational stacked
denoising autoencoder (RSDAE) model.

Stacked Denoising Autoencoders
SDAE (Vincent et al. 2010) is essentially a feedforward
neural network for learning representations of the input data
by learning to predict the clean input itself in the output.
Normally the hidden layer in the middle is constrained
to be a narrow bottleneck and the input layer X0 is a
noise-corrupted version of the clean input data. Learning
of an SDAE involves solving the following regularized
optimization problem:

min
{Wl},{bl}

‖Xc −XL‖2F + λ
∑
l

(‖Wl‖2F + ‖bl‖22),

where λ is a regularization hyperparameter and ‖·‖F denotes
the Frobenius norm.

Probabilistic Stacked Denoising Autoencoders
If we treat both the clean input (bag-of-words) Xc and the
corrupted input X0 as observed variables, the generative
process for the generalized probabilistic SDAE is as follows:

1. For each layer l of the SDAE network,

(a) For each column n of the weight matrix Wl, draw
Wl,∗n ∼ N (0, λ−1w IKl

).
(b) Draw the bias vector bl ∼ N (0, λ−1w IKl

).
(c) For each row j of Xl, draw

Xl,j∗ ∼ N (σ(Xl−1,j∗Wl + bl), λ
−1
s IKl

).

2. For each item j, draw a clean input3

Xc,j∗ ∼ N (XL,j∗, λ
−1
n IB).

3Note that while generation of the clean input Xc from XL is
part of the generative process of the probabilistic SDAE, generation
of the noise-corrupted input X0 from Xc is an artificial noise
injection process to help the SDAE learn a more robust feature
representation.
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Figure 1: Graphical model of RSDAE for L = 4. λs is not
shown here to prevent clutter.

Here, λw, λs, and λn are hyperparameters and σ(·) is the
sigmoid function.

Following the generative process above, maximizing the
posterior probability is equivalent to maximizing the joint
log-likelihood of {Xl}, Xc, {Wl}, and {bl} given λs, λw,
and λn:

L =− λw
2

∑
l

(‖Wl‖2F + ‖bl‖22)

− λn
2

∑
j

‖XL,j∗ −Xc,j∗‖22

− λs
2

∑
l

∑
j

‖σ(Xl−1,j∗Wl + bl)−Xl,j∗‖22.

Note that as the hyperparameter λs approaches infinity,
the last term will disappear and the model will degenerate
to the original SDAE where Xl,j∗ = σ(Xl−1,j∗Wl + bl).
That is why we call it generalized SDAE.

Relational Stacked Denoising Autoencoders
We will now use the probabilistic SDAE described above as
a building block to formulate the RSDAE model.

Model Formulation
We formulate RSDAE as a novel probabilistic model which
can seamlessly integrate layered representation learning and
the relational information available. This way our model
can learn simultaneously the feature representation from the
content information and the relation between items. The
graphical model of RSDAE is shown in Figure 1 and the
generative process is listed as follows:

1. Draw the relational latent matrix S from a matrix variate
normal distribution (Gupta and Nagar 2000):

S ∼ NK,J(0, IK ⊗ (λlLa)
−1). (1)

2. For layer l of the SDAE where l = 1, 2, . . . , L2 − 1,

(a) For each column n of the weight matrix Wl, draw
Wl,∗n ∼ N (0, λ−1w IKl

).
(b) Draw the bias vector bl ∼ N (0, λ−1w IKl

).
(c) For each row j of Xl, draw

Xl,j∗ ∼ N (σ(Xl−1,j∗Wl + bl), λ
−1
s IKl

).

3. For layer L
2 of the SDAE network, draw the

representation vector for item j from the product of
two Gaussians (PoG) (Gales and Airey 2006):

XL
2 ,j∗
∼ PoG(σ(XL

2 −1,j∗
Wl + bl), s

T
j , λ

−1
s IK , λ

−1
r IK).

4. For layer l of the SDAE network where l = L
2 + 1, L2 +

2, . . . , L,
(a) For each column n of the weight matrix Wl, draw

Wl,∗n ∼ N (0, λ−1w IKl
).

(b) Draw the bias vector bl ∼ N (0, λ−1w IKl
).

(c) For each row j of Xl, draw

Xl,j∗ ∼ N (σ(Xl−1,j∗Wl + bl), λ
−1
s IKl

).

5. For each item j, draw a clean input

Xc,j∗ ∼ N (XL,j∗, λ
−1
n IB).

Here K = KL
2

is the dimensionality of the learned
representation vector for each item, S denotes the K × J
relational latent matrix in which column j is the relational
latent vector sj for item j. Note that NK,J(0, IK ⊗
(λlLa)

−1) in (1) is a matrix variate normal distribution
defined as (Gupta and Nagar 2000):

p(S) = NK,J(0, IK ⊗ (λlLa)
−1)

=
exp{tr[−λl

2 SLaS
T ]}

(2π)JK/2|IK |J/2|λlLa|−K/2
, (2)

where the operator ⊗ denotes the Kronecker product of two
matrices (Gupta and Nagar 2000), tr(·) denotes the trace
of a matrix, and La is the Laplacian matrix incorporating
the relational information. La = D − A, where D is a
diagonal matrix whose diagonal elements Dii =

∑
jAij

and A is the adjacency matrix representing the relational
information with binary entries indicating the links (or
relations) between items. Ajj′ = 1 indicates that there is
a link between item j and item j′ and Ajj′ = 0 otherwise.
PoG(σ(XL

2 −1,j∗
Wl+bl), s

T
j , λ

−1
s IK , λ

−1
r IK) denotes the

product of the Gaussian N (σ(XL
2 −1,j∗

Wl + bl), λ
−1
s IK)

and the Gaussian N (sTj , λ
−1
r IK), which is also a Gaussian

(Gales and Airey 2006).
According to the generative process above, maximizing

the posterior probability is equivalent to maximizing the
joint log-likelihood of {Xl}, Xc, S, {Wl}, and {bl} given
λs, λw, λl, λr, and λn:

L =− λl
2
tr(SLaS

T )− λr
2

∑
j

‖(sTj −XL
2 ,j∗

)‖22

− λw
2

∑
l

(‖Wl‖2F + ‖bl‖22)

− λn
2

∑
j

‖XL,j∗ −Xc,j∗‖22

− λs
2

∑
l

∑
j

‖σ(Xl−1,j∗Wl + bl)−Xl,j∗‖22, (3)



where Xl,j∗ = σ(Xl−1,j∗Wl + bl). Similar to the
generalized SDAE, taking λs to infinity, the last term of
the joint log-likelihood will vanish. Note that the first
term −λl

2 tr(SLaS
T ) corresponds to log p(S) in the matrix

variate distribution in Equation (2). Besides, by simple
manipulation (details can be found in the supplementary

material), we have tr(SLaS
T ) =

K∑
k=1

STk∗LaSk∗ where

Sk∗ denotes the kth row of S. As we can see, maximizing
−λl

2 tr(S
TLaS) is equivalent to making sj closer to sj′ if

item j and item j′ are linked (namely Ajj′ = 1).

Learning Relational Representation
We now derive an EM-style algorithm for maximum a
posteriori (MAP) estimation.

In terms of the relational latent matrix S, we first fix all
rows of S except the kth one Sk∗ and then update Sk∗.
Specifically, we take the gradient of L with respect to Sk∗,
set it to 0, and get the following linear system:

(λlLa + λrI)Sk∗ = λrX
T
L
2 ,∗k

. (4)

A naive approach is to solve the linear system by setting
Sk∗ = λr(λlLa + λrIJ)

−1XT
L
2 ,∗k

. Unfortunately, the

complexity is O(J3) for one single update. Similar to (Li
and Yeung 2009), the steepest descent method (Shewchuk
1994) is used to iteratively update Sk∗:

Sk∗(t+ 1)← Sk∗(t) + δ(t)r(t)

r(t)← λrX
T
L
2 ,∗k
− (λlLa + λrIJ)Sk∗(t)

δ(t)← r(t)T r(t)

r(t)T (λlLa + λrIJ)r(t)
.

As discussed in (Li and Yeung 2009), the use of steepest
descent method dramatically reduces the computation cost
in each iteration from O(J3) to O(J).

Given S, we can learn Wl and bl for each layer using the
back-propagation algorithm. By alternating the update of S,
Wl, and bl, a local optimum for L can be found. Also,
techniques such as including a momentum term may help to
avoid being trapped in a local optimum.

Tag Recommendation
After the representation for each item is learned, we can
use a simplified version of CTR (Wang and Blei 2011) to
learn the latent vectors ui for tag i and vj for item j.
Similar to (Wang and Blei 2011), predicted ratings Rij can
be computed as the inner product of ui and vj . Essentially
we will be maximizing the following objective function:

L =− λu
2

∑
i

‖ui‖22 −
λv
2

∑
j

‖vj −XT
L
2 ,j∗
‖22

−
∑
i,j

cij
2
(Rij − uTi vj)

2,

where λu and λv are hyperparameters. cij is set to 1 for the
existing ratings and 0.01 for the missing entries.

Experiments
Datasets
For our experiments, we use three real-world datasets with
two (Wang and Blei 2011; Wang, Chen, and Li 2013) from
CiteULike4 and one from MovieLens5. There are 7386 tags,
16980 articles (items), and 204987 tag-item pairs in the
first dataset, citeulike-a. For the second one, citeulike-t,
the numbers are 8311, 25975, and 134860. The third
dataset, movielens-plot, originally from MovieLens-10M
and enriched by us, contains 2988 tags, 7261 movies (items),
and 51301 tag-item pairs.

The text information (item content) extracted from the
titles and abstracts of the articles and from the plots of
movies has been preprocessed using the same procedure as
that in (Wang and Blei 2011). The sizes of the vocabulary are
8000, 20000, and 20000 for the three datasets respectively.

Regarding the relational information, we use the citation
networks for citeulike-a and citeulike-t. For movielens-plot
we have two types of relational information (two graphs):
co-staff graph and co-genre graph. Existence of an edge
in the co-staff graph means that the two connected movies
share more than one staff member and an edge in the
co-genre graph means that the two movies have identical
genre combination. The numbers of edges in the citation
networks are 44709 and 32665 for citeulike-a and citeulike-t,
respectively. For the co-staff graph in movielens-plot there
are 118126 edges in total and that number is 425495
for the co-genre graph. Note that our RSDAE model can
support multi-relational data (like movielens-plot), though
we present the uni-relational setting in the previous section
for simplicity. Details of the full multi-relational SDAE can
be found in the supplementary material.

Evaluation Scheme
In each dataset, similar to (Wang, Chen, and Li 2013), P
items associated with each tag are randomly selected to form
the training set and all the rest of the dataset is used as the
test set. P is set to 1 and 10, respectively, to evaluate and
compare the models under both sparse and dense settings
in the experiments. For each value of P , the evaluation is
repeated five times with different randomly selected training
sets and the average performance is reported.

Following (Wang and Blei 2011; Purushotham, Liu, and
Kuo 2012; Wang, Chen, and Li 2013), we use recall as the
performance measure since the rating information appears
in the form of implicit feedback (Hu, Koren, and Volinsky
2008; Rendle et al. 2009), which means a zero entry may
be due to irrelevance between the tag and the item or the
user’s ignorance of the tags when tagging items. As such,
precision is not suitable as a performance measure. Like
most recommender systems, we sort the predicted ratings
of the candidate tags and recommend the top M tags to the
target item. The recall@M for each item is defined as:

recall@M =
number of tags the item is associated with in top M

total number of tags the item is associated with
.

4CiteULike allows users to create their own collections of
articles. There are abstract, title, and tags for each article.

5http://www.grouplens.org/datasets



The final reported result is the average recall over all items.

Experimental Settings
Experiments in (Wang, Chen, and Li 2013) have
demonstrated that CTR and CTR-SR clearly outperform
state-of-the-art content-based methods, co-occurrence
based methods, and other hybrid methods. Due to space
constraints, in the experiments we use only CTR (Wang
and Blei 2011) and CTR-SR (Wang, Chen, and Li 2013) as
baselines. CTR is a model combining LDA and PMF for
recommendation. CTR-SR is a powerful extension of CTR
in a sense that it seamlessly incorporates relational data into
the model. We fixK = 50 and use a validation set to find the
optimal hyperparameters for CTR and CTR-SR. For SDAE
and RSDAE, tag recommendation can be divided into two
steps: learning relational representation and PMF. We set
λs to infinity for efficient computation and fair comparison
with SDAE. Furthermore, since there are only four terms
left in Equation (3) after the last term vanishes, we can
directly fix λr = 1. The remaining hyperparameters of the
first step (λl, λw, and λn) are found by grid search (λw is
the hyperparameter for weight decay and can be ignored if
we choose not to use it) and hyperparameters of the second
step are fixed to values the same as those of CTR. For
the grid search, we split the training data and 5-fold cross
validation is used.

On the SDAE side, a masking noise with a noise level of
0.3 is added to the clean input Xc to obtain the corrupted
input X0. We use a fixed dropout rate of 0.1 (Hinton
et al. 2012; Wager, Wang, and Liang 2013) to achieve
adaptive regularization. For the network architecture, we
set the number of non-bottleneck hidden units Kl to 200.
K0 and KL are set to B, the number of words in the
dictionary. KL/2 is equal to K, the number of latent factors
in PMF. For example, a 2-layer SDAE has an architecture of
‘20000-200-50-200-20000’ for the dataset movielens-plot.

Performance Evaluation
Figures 2, 3, and 4 show the recall@M for all three
datasets in the sparse and dense settings, with M ranging
from 50 to 300. As we can see, CTR-SR outperforms
CTR by incorporating relational data into the model.
What is surprising is that even without using any
relational information, SDAE in conjunction with PMF
still outperforms CTR-SR which utilizes abundant relational
information, especially for citeulike-t as shown in Figure 3.
Furthermore, RSDAE can achieve even higher recall by
jointly performing representation learning and relational
learning in a principled way.

Figure 5(left) shows the recall@M of RSDAE
for citeulike-t in the sparse setting when L =
2, 4, 6 (corresponding to 1-layer, 2-layer, and 3-layer
RSDAE, respectively). As we can see, the recall increases
with the number of layers. Similar phenomena can be
observed for other datasets which are omitted here due
to space constraints. Note that the standard deviations
are negligible in all experiments (from 4.56 × 10−5 to
3.57× 10−3). To prevent clutter, the standard deviations are
not separately reported for all figures in this paper.
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Figure 2: Performance comparison of all methods based on
recall@M for citeulike-a when P = 1 (left) and P = 10 (right).
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Figure 3: Performance comparison of all methods based on
recall@M for citeulike-t when P = 1 (left) and P = 10 (right).
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Figure 4: Performance comparison of all methods based on
recall@M for movielens-plot when P = 1 (left) and P =
10 (right).

50 100 150 200 250 300
0.15

0.2

0.25

0.3

0.35

M

R
ec

al
l

 

 
3−layer RSDAE
2−layer RSDAE
1−layer RSDAE

10
−1

10
0

10
1

10
2

10
3

10
4

0.12

0.14

0.16

0.18

0.2

0.22

0.24

λn

R
ec

al
l

 

 

M=300
M=200
M=100

Figure 5: The effect of the number of layers in RSDAE (left) and
the effect of λn in RSDAE (right).

Sensitivity to Hyperparameters
Figure 5(right) shows how recall@M is affected by the
choice of hyperparameter λn for movielens-plot in the sparse
setting when λr = 1 and λl = 100. As shown in the
figure, recall@M increases with λn initially and gradually
decreases at some point after λn = 1. It is not very
sensitive within a wide range of values, especially after the
optimal point. Similar phenomena are observed for other
hypeparameters like λl. More details can be found in the
supplementary material.

Case Study
To gain a deeper insight into the difference between
SDAE and RSDAE, we choose one example article from
citeulike-a and one example movie from movielens-plot to
conduct a case study. The experiments are conducted in
the sparse setting for citeulike-a and in the dense setting



Table 1: Example items (one movie and one article) with recommended tags

Example Article
Title: Mining the Peanut Gallery: Opinion Extraction and Semantic Classification of Product Reviews
Top topic 1: language, text, mining, representation, semantic, concepts, words, relations, processing, categories

Top 10 recommended tags

SDAE True tag? RSDAE True tag?
1. instance within labeled concepts no 1. sentiment analysis no
2. consumer yes 2. instance within labeled concepts no
3. sentiment analysis no 3. consumer yes
4. summary no 4. summary no
5. 31july09 no 5. sentiment yes
6. medline no 6. product review mining yes
7. eit2 no 7. sentiment classification yes
8. l2r no 8. 31july09 no
9. exploration no 9. opinion mining yes
10. biomedical no 10. product yes

Example Movie
Title: E.T. the Extra-Terrestrial
Top topic 1: crew, must, on, earth, human, save, ship, rescue, by, find, scientist, planet

Top 10 recommended tags

SDAE True tag? RSDAE True tag?
1. Saturn Award (Best Special Effects) yes 1. Steven Spielberg yes
2. Want no 2. Saturn Award (Best Special Effects) yes
3. Saturn Award (Best Fantasy Film) no 3. Saturn Award (Best Writing) yes
4. Saturn Award (Best Writing) yes 4. Oscar (Best Editing) no
5. Cool but freaky no 5. Want no
6. Saturn Award (Best Director) no 6. Liam Neeson no
7. Oscar (Best Editing) no 7. AFI 100 (Cheers) yes
8. almost favorite no 8. Oscar (Best Sound) yes
9. Steven Spielberg yes 9. Saturn Award (Best Director) no
10. sequel better than original no 10. Oscar (Best Music - Original Score) yes

for movielens-plot. We list the top 10 recommended tags
provided by SDAE and RSDAE for the target items.
Note that in the sparse setting recommendation is very
challenging due to extreme sparsity of tagging information.
As we can see in Table 1, the precisions for the target
article are 10% and 60%, respectively. For the target movie
the numbers are 30% and 60%. The huge gap shows that
relational information plays a significant role in boosting the
recommendation accuracy for the target items.

Looking into the recommended tag lists and the data
more closely, we find that the example article ‘Mining
the Peanut Gallery: Opinion Extraction and Semantic
Classification of Product Reviews’ is a WWW paper about
sentiment classification. As shown in the table, most of
the recommended tags provided by SDAE are trivial or
irrelevant while RSDAE can understand the focus of the
article a lot better and achieve a precision up to 60%. Among
the six tags correctly predicted by RSDAE, two of them are
related to articles linked to the target article directly. This
means RSDAE is not simply recommending tags associated
to linked articles in the citation network. By jointly
performing relational learning and deep representation
learning, these two parts actually benefit from each other and
yield additional performance gain.

A similar phenomenon is observed in the example movie
‘E.T. the Extra-Terrestrial’ directed by Steven Spielberg.
RSDAE correctly recommends three more tags for the
award-winning movie. Among the three, two tags are related
to movies directly linked to the target one. Interestingly,
although the remaining tag ‘Oscar (Best Music - Original
Score)’ does not show up in the tag lists of the linked movies,
we find that ‘E.T. the Extra-Terrestrial’ is directly linked to

the movie ‘Raiders of the Lost Ark’ (also directed by Steven
Spielberg), which was once nominated for Oscar’s academy
award for best music. These results show that RSDAE as a
relational representation learning model seems to do quite a
good job in predicting award winners as well.

Conclusion
In this paper we first adapt SDAE to learn deep item
representations for tag recommendation. Furthermore, we
develop a probabilistic formulation for SDAE and, by
extending this probabilistic SDAE, we propose RSDAE
as a novel relational extension for integrating deep
representation learning and relational learning in a
principled way. Our model can also be naturally extended to
handle multi-relational data due to its probabilistic nature.
Experiments on real-world datasets from different domains
show that our models are effective and outperform the state
of the art. Besides, our framework is general enough to be
adapted for other deep learning models like CNN as well.
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