# Supplementary Material: Relational Stacked Denoising Autoencoder for Tag Recommendation 

## Multi-Relational Stacked Denoising Autoencoder

Here we present a generalized version of RSDAE called multi-relational stacked denoising autoencoder (MRSDAE). This generalization allows the new model to handle multi-relational data. We assume that there are $Q$ types of relational data ( $Q$ networks) and use $q$ to denote any one type. The graphical model of MRSDAE is shown in Figure 1 and the generative process is listed as follows:

1. For each type of relational data (each of the $Q$ networks), draw the relational latent matrix $\mathbf{S}^{(q)}=$ $\left[\mathbf{s}_{1}^{(q)}, \mathbf{s}_{2}^{(q)}, \ldots, \mathbf{s}_{J}^{(q)}\right]$ from a matrix variate normal distribution (Gupta and Nagar 2000):

$$
\begin{equation*}
\mathbf{S}^{(q)} \sim \mathcal{N}_{K, J}\left(0, \mathbf{I}_{K} \otimes\left(\lambda_{l} \mathscr{L}_{a q}\right)^{-1}\right) \tag{1}
\end{equation*}
$$

2. For layer $l$ of the SDAE network where $l=1,2, \ldots, \frac{L}{2}-$ 1,
(a) For each column $n$ of the weight matrix $\mathbf{W}_{l}$, draw $\mathbf{W}_{l, * n} \sim \mathcal{N}\left(0, \lambda_{w}^{-1} \mathbf{I}_{K_{l}}\right)$.
(b) Draw the bias vector $\mathbf{b}_{l} \sim \mathcal{N}\left(0, \lambda_{w}^{-1} \mathbf{I}_{K_{l}}\right)$.
(c) For each row $j$ of $\mathbf{X}_{l}$, draw

$$
\mathbf{X}_{l, j *} \sim \mathcal{N}\left(\sigma\left(\mathbf{X}_{l-1, j *} \mathbf{W}_{l}+\mathbf{b}_{l}\right), \lambda_{s}^{-1} \mathbf{I}_{K_{l}}\right)
$$

3. For layer $\frac{L}{2}$ of the SDAE network, draw the representation vector for item $j$ from the product of $Q+1$ Gaussians (PoG) (Gales and Airey 2006):

$$
\begin{gather*}
\mathbf{X}_{\frac{L}{2}, j *} \sim \operatorname{PoG}\left(\sigma\left(\mathbf{X}_{\frac{L}{2}-1, j *} \mathbf{W}_{l}+\mathbf{b}_{l}\right),\left(\mathbf{s}_{j}^{1}\right)^{T}, \ldots,\left(\mathbf{s}_{j}^{Q}\right)^{T}\right. \\
\left.\lambda_{s}^{-1} \mathbf{I}_{K}, \lambda_{r}^{-1} \mathbf{I}_{K}, \ldots, \lambda_{r}^{-1} \mathbf{I}_{K}\right) . \tag{2}
\end{gather*}
$$

4. For layer $l$ of the SDAE network where $l=\frac{L}{2}+1, \frac{L}{2}+$ $2, \ldots, L$,
(a) For each column $n$ of the weight matrix $\mathbf{W}_{l}$, draw $\mathbf{W}_{l, * n} \sim \mathcal{N}\left(0, \lambda_{w}^{-1} \mathbf{I}_{K_{l}}\right)$.
(b) Draw the bias vector $\mathbf{b}_{l} \sim \mathcal{N}\left(0, \lambda_{w}^{-1} \mathbf{I}_{K_{l}}\right)$.
(c) For each row $j$ of $\mathbf{X}_{l}$, draw

$$
\mathbf{X}_{l, j *} \sim \mathcal{N}\left(\sigma\left(\mathbf{X}_{l-1, j *} \mathbf{W}_{l}+\mathbf{b}_{l}\right), \lambda_{s}^{-1} \mathbf{I}_{K_{l}}\right)
$$

[^0]5. For each item $j$, draw a clean input
$$
\mathbf{X}_{c, j *} \sim \mathcal{N}\left(\mathbf{X}_{L, j *}, \lambda_{n}^{-1} \mathbf{I}_{B}\right)
$$

Here $K=K_{\frac{L}{2}}$ is the dimensionality of the learned representation vector for each item. $\mathbf{S}^{(q)}$ denotes the $K \times J$ relational latent matrix in which column $j$ is the relational latent vector $\mathbf{s}_{j}^{(q)}$ for item $j$. Note that $\mathcal{N}_{K, J}\left(0, \mathbf{I}_{K} \otimes\right.$ $\left.\left(\lambda_{l} \mathscr{L}_{a q}\right)^{-1}\right)$ in (1) is a matrix variate normal distribution defined as (Gupta and Nagar 2000):

$$
\begin{align*}
p\left(\mathbf{S}^{(q)}\right) & =\mathcal{N}_{K, J}\left(0, \mathbf{I}_{K} \otimes\left(\lambda_{l} \mathscr{L}_{a q}\right)^{-1}\right) \\
& =\frac{\exp \left\{\operatorname{tr}\left[-\frac{\lambda_{l}}{2} \mathbf{S}^{(q)} \mathscr{L}_{a q}\left(\mathbf{S}^{(q)}\right)^{T}\right]\right\}}{(2 \pi)^{J K / 2}\left|\mathbf{I}_{K}\right|^{J / 2}\left|\lambda_{l} \mathscr{L}_{a q}\right|^{-K / 2}}, \tag{3}
\end{align*}
$$

where the operator $\otimes$ denotes the Kronecker product of two matrices (Gupta and Nagar 2000), $\operatorname{tr}(\cdot)$ denotes the trace of a matrix, and $\mathscr{L}_{a q}$ is the Laplacian matrix incorporating the $q$ th type of relational data. $\mathscr{L}_{a q}=\mathbf{D}^{(q)}-\mathbf{A}^{(q)}$, where $\mathbf{D}^{(q)}$ is a diagonal matrix whose diagonal elements $\mathbf{D}_{i i}^{(q)}=\sum_{j} \mathbf{A}_{i j}^{(q)}$ and $\mathbf{A}^{(q)}$ is the adjacency matrix of the $q$ th type of relational data with binary entries indicating the links (or relations) between items. $\mathbf{A}_{j j^{\prime}}^{(q)}=1$ indicates that there is a link between item $j$ and item $j^{\prime}$ and $\mathbf{A}_{j j^{\prime}}^{(q)}=0$ otherwise. Equation (2) denotes the product of the Gaussian $\mathcal{N}\left(\sigma\left(\mathbf{X}_{\frac{L}{2}-1, j *} \mathbf{W}_{l}+\mathbf{b}_{l}\right), \lambda_{s}^{-1} \mathbf{I}_{K}\right)$ and $Q$ Gaussians of the form $\mathcal{N}\left(\left(\mathbf{s}_{j}^{(q)}\right)^{T}, \lambda_{r}^{-1} \mathbf{I}_{K}\right)$, which is also a Gaussian (Gales and Airey 2006).

According to the generative process above, maximizing the posterior probability is equivalent to maximizing the joint log-likelihood of $\left\{\mathbf{X}_{l}\right\}, \mathbf{X}_{c},\left\{\mathbf{S}^{(q)}\right\},\left\{\mathbf{W}_{l}\right\}$, and $\left\{\mathbf{b}_{l}\right\}$
given $\lambda_{s}, \lambda_{w}, \lambda_{l}, \lambda_{r}$, and $\lambda_{n}$ :

$$
\begin{aligned}
\mathscr{L}= & -\frac{\lambda_{l}}{2} \sum_{q} \operatorname{tr}\left(\mathbf{S}^{(q)} \mathscr{L}_{a q}\left(\mathbf{S}^{(q)}\right)^{T}\right) \\
& -\frac{\lambda_{r}}{2} \sum_{q} \sum_{j}\left\|\left(\left(\mathbf{s}_{j}^{(q)}\right)^{T}-\mathbf{X}_{\frac{L}{2}, j *}\right)\right\|_{2}^{2} \\
& -\frac{\lambda_{w}}{2} \sum_{l}\left(\left\|\mathbf{W}_{l}\right\|_{F}^{2}+\left\|\mathbf{b}_{l}\right\|_{2}^{2}\right) \\
& -\frac{\lambda_{n}}{2} \sum_{j}\left\|\mathbf{X}_{L, j *}-\mathbf{X}_{c, j *}\right\|_{2}^{2} \\
& -\frac{\lambda_{s}}{2} \sum_{l} \sum_{j}\left\|\sigma\left(\mathbf{X}_{l-1, j *} \mathbf{W}_{l}+\mathbf{b}_{l}\right)-\mathbf{X}_{l, j *}\right\|_{2}^{2}
\end{aligned}
$$

Similar to the generalized SDAE, taking $\lambda_{s}$ to infinity, the joint log-likelihood becomes:

$$
\begin{align*}
\mathscr{L}= & -\frac{\lambda_{l}}{2} \sum_{q} \operatorname{tr}\left(\mathbf{S}^{(q)} \mathscr{L}_{a q}\left(\mathbf{S}^{(q)}\right)^{T}\right) \\
& -\frac{\lambda_{r}}{2} \sum_{q} \sum_{j}\left\|\left(\left(\mathbf{s}_{j}^{(q)}\right)^{T}-\mathbf{X}_{\frac{L}{2}, j *}\right)\right\|_{2}^{2} \\
& -\frac{\lambda_{w}}{2} \sum_{l}\left(\left\|\mathbf{W}_{l}\right\|_{F}^{2}+\left\|\mathbf{b}_{l}\right\|_{2}^{2}\right) \\
& -\frac{\lambda_{n}}{2} \sum_{j}\left\|\mathbf{X}_{L, j *}-\mathbf{X}_{c, j *}\right\|_{2}^{2} \tag{4}
\end{align*}
$$

where $\mathbf{X}_{l, j *}=\sigma\left(\mathbf{X}_{l-1, j *} \mathbf{W}_{l}+\mathbf{b}_{l}\right)$. Note that by simple manipulation, we have

$$
\begin{align*}
\operatorname{tr}\left(\mathbf{S}^{(q)} \mathscr{L}_{a q}\left(\mathbf{S}^{(q)}\right)^{T}\right) & =\frac{1}{2} \sum_{j=1}^{J} \sum_{j^{\prime}=1}^{J} \mathbf{A}_{j j^{\prime}}\left\|\mathbf{S}_{* j}^{(q)}-\mathbf{S}_{* j^{\prime}}^{(q)}\right\|^{2}  \tag{5}\\
& =\frac{1}{2} \sum_{j=1}^{J} \sum_{j^{\prime}=1}^{J}\left[\mathbf{A}_{j j^{\prime}} \sum_{k=1}^{K}\left(\mathbf{S}_{k j}^{(q)}-\mathbf{S}_{k j^{\prime}}^{(q)}\right)^{2}\right] \\
& =\frac{1}{2} \sum_{k=1}^{K}\left[\sum_{j=1}^{J} \sum_{j^{\prime}=1}^{J} \mathbf{A}_{j j^{\prime}}\left(\mathbf{S}_{k j}^{(q)}-\mathbf{S}_{k j^{\prime}}^{(q)}\right)^{2}\right] \\
& =\sum_{k=1}^{K}\left(\mathbf{S}_{k *}^{(q)}\right)^{T} \mathscr{L}_{a q} \mathbf{S}_{k *}^{(q)},
\end{align*}
$$

where $\mathbf{S}_{r *}^{(q)}$ denotes the $r$ th row of $\mathbf{S}^{(q)}$ and $\mathbf{S}_{* c}^{(q)}$ denotes the $c$ th column of $\mathbf{S}^{(q)}$. As we can see, maximizing $-\frac{\lambda_{l}}{2} \operatorname{tr}\left(\left(\mathbf{S}^{(q)}\right)^{T} \mathscr{L}_{a q} \mathbf{S}^{(q)}\right)$ is equivalent to making $\mathbf{s}_{j}^{(q)}$ closer to $\mathbf{s}_{j^{\prime}}^{(q)}$ if item $j$ and item $j^{\prime}$ are linked (namely $\mathbf{A}_{j j^{\prime}}=1$ ).

The learning procedure of MRDSAE can also be derived similarly.

## Sensitivity to Hyperparameters

Figure 2 shows the sensitivity of RSDAE's performance to the hyperparameter $\lambda_{l}$ for movielens-plot in the sparse setting $(P=1) . \lambda_{r}=1$ and $\lambda_{n}=1$. As we can see, the recall is not very sensitive over a wide range of values either.


Figure 1: Graphical model of MRSDAE when $L=4$ and there are two types of relational data. $\lambda_{s}$ is not shown here to prevent clutter.


Figure 2: Effect of $\lambda_{l}$ in RSDAE.

## References

Gales, M. J. F., and Airey, S. S. 2006. Product of gaussians for speech recognition. CSL 20(1):22-40.
Gupta, A., and Nagar, D. 2000. Matrix Variate Distributions. Chapman \& Hall/CRC Monographs and Surveys in Pure and Applied Mathematics. Chapman \& Hall.


[^0]:    Copyright © $C_{2} \mathbf{2 0 1 4}$, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

