
Supplementary Material:
Relational Stacked Denoising Autoencoder for Tag Recommendation

Multi-Relational Stacked Denoising
Autoencoder

Here we present a generalized version of RSDAE called
multi-relational stacked denoising autoencoder (MRSDAE).
This generalization allows the new model to handle
multi-relational data. We assume that there are Q types of
relational data (Q networks) and use q to denote any one
type. The graphical model of MRSDAE is shown in Figure 1
and the generative process is listed as follows:

1. For each type of relational data (each of the Q

networks), draw the relational latent matrix S(q) =

[s
(q)
1 , s

(q)
2 , · · · , s(q)J ] from a matrix variate normal

distribution (Gupta and Nagar 2000):

S(q) ∼ NK,J(0, IK ⊗ (λlLaq)
−1). (1)

2. For layer l of the SDAE network where l = 1, 2, . . . , L2 −
1,

(a) For each column n of the weight matrix Wl, draw
Wl,∗n ∼ N (0, λ−1w IKl

).
(b) Draw the bias vector bl ∼ N (0, λ−1w IKl

).
(c) For each row j of Xl, draw

Xl,j∗ ∼ N (σ(Xl−1,j∗Wl + bl), λ
−1
s IKl

).

3. For layer L2 of the SDAE network, draw the representation
vector for item j from the product of Q + 1
Gaussians (PoG) (Gales and Airey 2006):

XL
2 ,j∗
∼ PoG(σ(XL

2 −1,j∗
Wl + bl), (s

1
j )
T , . . . , (sQj )

T ,

λ−1s IK , λ
−1
r IK , . . . , λ

−1
r IK). (2)

4. For layer l of the SDAE network where l = L
2 + 1, L2 +

2, . . . , L,

(a) For each column n of the weight matrix Wl, draw
Wl,∗n ∼ N (0, λ−1w IKl

).
(b) Draw the bias vector bl ∼ N (0, λ−1w IKl

).
(c) For each row j of Xl, draw

Xl,j∗ ∼ N (σ(Xl−1,j∗Wl + bl), λ
−1
s IKl

).
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5. For each item j, draw a clean input

Xc,j∗ ∼ N (XL,j∗, λ
−1
n IB).

Here K = KL
2

is the dimensionality of the learned
representation vector for each item. S(q) denotes the K × J
relational latent matrix in which column j is the relational
latent vector s

(q)
j for item j. Note that NK,J(0, IK ⊗

(λlLaq)
−1) in (1) is a matrix variate normal distribution

defined as (Gupta and Nagar 2000):

p(S(q)) = NK,J(0, IK ⊗ (λlLaq)
−1)

=
exp{tr[−λl

2 S
(q)Laq(S

(q))T ]}
(2π)JK/2|IK |J/2|λlLaq|−K/2

, (3)

where the operator⊗ denotes the Kronecker product of two
matrices (Gupta and Nagar 2000), tr(·) denotes the trace
of a matrix, and Laq is the Laplacian matrix incorporating
the qth type of relational data. Laq = D(q) − A(q),
where D(q) is a diagonal matrix whose diagonal elements
D

(q)
ii =

∑
jA

(q)
ij and A(q) is the adjacency matrix of the

qth type of relational data with binary entries indicating the
links (or relations) between items. A(q)

jj′ = 1 indicates that

there is a link between item j and item j′ and A
(q)
jj′ = 0

otherwise. Equation (2) denotes the product of the Gaussian
N (σ(XL

2 −1,j∗
Wl + bl), λ

−1
s IK) and Q Gaussians of the

form N ((s
(q)
j )T , λ−1r IK), which is also a Gaussian (Gales

and Airey 2006).

According to the generative process above, maximizing
the posterior probability is equivalent to maximizing the
joint log-likelihood of {Xl}, Xc, {S(q)}, {Wl}, and {bl}



given λs, λw, λl, λr, and λn:

L =− λl
2

∑
q

tr(S(q)Laq(S
(q))T )

− λr
2

∑
q

∑
j

‖((s(q)j )T −XL
2 ,j∗

)‖22

− λw
2

∑
l

(‖Wl‖2F + ‖bl‖22)

− λn
2

∑
j

‖XL,j∗ −Xc,j∗‖22

− λs
2

∑
l

∑
j

‖σ(Xl−1,j∗Wl + bl)−Xl,j∗‖22.

Similar to the generalized SDAE, taking λs to infinity, the
joint log-likelihood becomes:

L =− λl
2

∑
q

tr(S(q)Laq(S
(q))T )

− λr
2

∑
q

∑
j

‖((s(q)j )T −XL
2 ,j∗

)‖22

− λw
2

∑
l

(‖Wl‖2F + ‖bl‖22)

− λn
2

∑
j

‖XL,j∗ −Xc,j∗‖22, (4)

where Xl,j∗ = σ(Xl−1,j∗Wl + bl). Note that by simple
manipulation, we have

tr(S(q)Laq(S
(q))T ) =

1

2

J∑
j=1

J∑
j′=1

Ajj′‖S(q)
∗j − S

(q)
∗j′‖

2

(5)

=
1

2

J∑
j=1

J∑
j′=1

[Ajj′

K∑
k=1

(S
(q)
kj − S

(q)
kj′)

2]

=
1

2

K∑
k=1

[

J∑
j=1

J∑
j′=1

Ajj′(S
(q)
kj − S

(q)
kj′)

2]

=

K∑
k=1

(S
(q)
k∗ )

TLaqS
(q)
k∗ ,

where S
(q)
r∗ denotes the rth row of S(q) and S

(q)
∗c denotes

the cth column of S(q). As we can see, maximizing
−λl

2 tr((S
(q))TLaqS

(q)) is equivalent to making s
(q)
j closer

to s
(q)
j′ if item j and item j′ are linked (namely Ajj′ = 1).

The learning procedure of MRDSAE can also be derived
similarly.

Sensitivity to Hyperparameters
Figure 2 shows the sensitivity of RSDAE’s performance
to the hyperparameter λl for movielens-plot in the sparse
setting (P = 1). λr = 1 and λn = 1. As we can see, the
recall is not very sensitive over a wide range of values either.
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Figure 1: Graphical model of MRSDAE when L = 4 and
there are two types of relational data. λs is not shown here
to prevent clutter.
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Figure 2: Effect of λl in RSDAE.
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