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1 MAP Estimation for RDL
We derive below an EM-style algorithm for obtaining the MAP estimates when the feature generator
distribution h(φi|XT
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, λ−1p IK).
Maximizing the posterior probability is equivalent to maximizing the joint log-likelihood of {Xl}, Xc,

{Wl}, {bl}, {φi}, η, and {li,i′} given λp, λe, λw, λs, and λn:
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If λs goes to infinity, the likelihood becomes:
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where the encoder function fe(·,W+) takes the corrupted content vector X0,i∗ of item i as input and
computes the encoding of the item, and the function fr(·,W+) also takes X0,i∗ as input, computes the
encoding and then the reconstructed content vector of item i. For example, if the number of layers L = 6,
fe(X0,i∗,W

+) is the output of the third layer while fr(X0,i∗,W
+) is the output of the sixth layer.

For φi and η, since we cannot directly take the gradients of L with respect to φi or η and set them
to zero, gradient descent is used given the current W+. The gradient of L with respect to η is:
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Given φi and η, we can learn the weights Wl and biases bl for each layer using the back-propagation
learning algorithm.

Another choice of the distribution h(φi|XT
L
2 ,i∗

, λp) is the Dirichlet distribution Dir(φi|λpXT
L
2 ,i∗

). In
this more complex case, the joint log-likelihood in Equation (1) would become:
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where f (k)e (X0,i∗,W
+) is the k-th element of fe(X0,i∗,W

+) and φ
(k)
i is the k-th element of φi. Γ(·) is

the gamma function. The gradient of L with respect to φi becomes:
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where 1 is a vector of all 1’s, ◦ is the Hadamard product (element-wise product) of two vectors, and φ−1i
denotes a vector where the k-th element is 1/φ

(k)
i . We normalize φi to ensure that the sum of all elements

is 1 and all elements are positive after each update. Also, when using back-propagation to update W+,
the gradient ge,L2

with respect to fe(X0,i∗,W
+) becomes
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where logφi is a vector where the k-th element is logφ
(k)
i . ψ(a) = d

da ln Γ(a) is the digamma function,
and gr,L2

is the gradient from the sixth term of Equation (2).

2 Bayesian Treatment for RDL
In this section we detail the Bayesian treatment of RDL. The learning process is summarized in Algorithm 1.

As mentioned in the paper, we follow the procedure of variational inference to update the logarithm of
variational distributions as the expectation of the joint log-likelihood. Specifically, we have the following
general update rule:

log q∗j (Zj) = Ei 6=j [log p(X0,Xc,Z)] + const,

where Z denotes the collection of all latent variables and parameters to learn, i.e., W+, {φi}, η, and ξii′
(note that ξii′ is the variational parameter to approximate the sigmoid function σ(·)). The j-th part of Z
(e.g., η) is denoted by Zj with q∗j (Zj) as its corresponding variational distribution.

Learning W+: We denote the vectorization of W+, vec(W+), as w = (we,wd)
T where we is the

collection of weights and biases of the encoder part of the RDL while wd is for the decoder part.
For w, we can first write down the terms in L associated with w:
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Given the hyperparameters, we can find a local maximum of the posterior wMAP using the back-
propagation algorithm. Having found the mode wMAP , we can make a local Gaussian approximation
by evaluating the Hessian matrix A of −Lw: A = −∇∇Lw = λwI + H, where H is the Hessian matrix
corresponding to the negation of the last two terms (except the constant term) in Lw. Note that to
dramatically speed up training we can approximate the Hessian matrix using diagonal approximation [1]
or outer product approximation (Levenberg-Marquardt approximation) [2]. The approximation of the
posterior is given by q(w) = N (w|wMAP ,A

−1).

Algorithm 1 Bayesian RDL

1: Input: corrupted attributes X0, clean attributes Xc, observed links {li,i′}(I,I)(i,i′)=(1,1), number of
iterations T , learning rate {ρt}Tt=1, hyperparameters λw, λp, λe, and λn

2: for t = 1 : T do
3: // For distribution q(w)
4: Update wMAP := wMAP − ρt∇wLw

5: Compute the Hessian matrix H
6: // For distribution q(φi)
7: Update Σ−1i := S−1i + S′i

−1

8: Update µi := Σi(S
−1
i mi + S′i

−1
m′i)

9: // For distribution q(η)
10: Update S−1e = λeIK + 2

∑
li,i′=1 λ(ξii′)E((φi ◦ φi′)(φi ◦ φi′)T )

11: Update me := 1
2Se

∑
li,i′=1 E(φi ◦ φi′)

12: // For variational parameters ξii′
13: Update ξii′ :=

√
(mT

e (µi ◦ µi′))2 + σ2
s

Learning {φi}: We can write down the terms in L associated with {φi} as:

L{φi}
=− λp

2

∑
i

‖φi − fe(X0,i∗,w)T ‖22 +
∑
li,i′=1

log σ(ηT (φi ◦ φi′)) + const. (3)
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Since the first two terms can both be approximated by Gaussians, φi can be approximated using the
product of Gaussians (still a Gaussian distribution). We take one term at a time.

First Gaussian: If we omit the second term, given w, the features

φi ∼ N (fe(X0,i∗,w)T , λ−1p IK),

we can further approximate the distribution of φi:
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i is the j-th element of φi and w

(j)
e is a sub-vector of we which corresponds to the computation

of φ(j)
i . Unfortunately the integration is still analytically intractable due to the nonlinearity of fe(X0,i∗,w)

with respect to w. If we assume that q(w) has small variance, a Taylor series expansion of f (j)e (X0,i∗,w
(j)
e )

can be made around w
(j)
e,MAP where f (j)e (·) is the j-th element of fe(·) and w

(j)
e,MAP is a sub-vector of

we,MAP which corresponds to the computation of φ(j)
i :

f (j)e (X0,i∗,w
(j)
e ) ≈ f (j)e (X0,i∗,w

(j)
e,MAP ) + gTij(w

(j)
e −w

(j)
e,MAP )

gij = ∇
w

(j)
e
f (j)e (X0,i∗,w

(j)
e )|

w
(j)
e =w

(j)
e,MAP

.

We then have

p(φ
(j)
i |X0,i∗,w

(j)
e ) ≈ N (φ

(j)
i |f

(j)
e (X0,i∗,w

(j)
e,MAP ) + gTij(w

(j)
e −w

(j)
e,MAP ), λ−1p ).

Taking the integration in Equation (4),
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(j)
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Remark : The mean of q1(φi|X0,i∗) is the encoding of the input, and the covariance matrix depends on
the second-order information of the network.

Second Gaussian: If we omit the first term and use the variational lower bound σ(a) ≥ σ(ξ) exp{(a−
ξ)/2− λ(ξ)(a2 − ξ2)}, where λ(ξ) = 1

2ξ (σ(ξ)− 1
2 ), we can write L{φi}

in Equation (3) as
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Thus by completing the square for the second term, we can get the second Gaussian
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where the expectations are taken over the current q(η) and q(φi′ |X0,i′∗). Thus we have
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Remark : The covariance matrix of q2(φi|X0,i∗) depends on a weighted sum of the covariance of η ◦φi′ ,
and the mean depends on the features of linked nodes transformed by S′i.

Product of Gaussians: Finally we can get the update rules for q(φi|X0,i∗) according to q1(φi|X0,i∗)
and q2(φi|X0,i∗):

q(φi|X0,i∗) ≈ N (φi|µi,Σi)

µi = Σi(S
−1
i mi + S′i

−1
m′i)

Σ−1i = S−1i + S′i
−1
.

Remark : The first Gaussian absorbs information from the content and the second is relevant to the
link information. The final update rule as the product of these two Gaussians then summarizes both
information sources and yields more powerful features.

Learning η: Similar to the second part of learning {φi}, we can get the update rules for η:

q(η) = N (η|me,Se)

me =
1

2
Se

∑
li,i′=1

E(φi ◦ φi′)

S−1e = λeIK + 2
∑
li,i′=1

λ(ξii′)E((φi ◦ φi′)(φi ◦ φi′)T ),

where the expectations are taken over the current q(φi|X0,i∗), q(φi′ |X0,i′∗), and q(η). Thus we have

me =
1

2
Se

∑
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T
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Learning ξii′ : To update ξii′ , we can set the derivative of E(L ) with respect to ξii′ to zero and get

0 = λ′(ξii′)(E((ηT (φi ◦ φi′))2)− ξ2ii′).

Since λ′(ξ) is a monotonic function of ξ when ξ ≥ 0 and we set ξ ≥ 0 without loss of generality due to
symmetry of the bound around ξ = 0, λ′(x) 6= 0. Hence the square ξ2ii′ = E((ηT (φi ◦ φi′))2), where the
expectation is taken over the current q(φi|X0,i∗), q(φi′ |X0,i′∗), and q(η). Thus we have

ξ2ii′ = (mT
e (µi ◦ µi′))2 + σ2

s

σ2
s = tr(SeSh) + mT

e Shme + mT
hSemh

mh = µi ◦ µi′
Sh = Σi ◦Σi′ + (µiµ

T
i ) ◦Σi′ + (µi′µ

T
i′ ) ◦Σi.

Predicting ψ(li,i′ = 1|φi,φi′ ,η) = σ(ηT (φi ◦ φi′)): To calculate the probability of the link between
item i and item i′, σ(ηT (φi ◦φi′)), we first approximate a = ηT (φi ◦φi′) using the Gaussian distribution
N (a|µs, σ2

s), where

µs = mT
e (µi ◦ µi′)

σ2
s = tr(SeSh) + mT

e Shme + mT
hSemh

mh = µi ◦ µi′
Sh = Σi ◦Σi′ + (µiµ

T
i ) ◦Σi′ + (µi′µ

T
i′ ) ◦Σi.

The probability

ψ(li,i′ = 1|φi,φi′ ,η) =

∫
σ(a)N (a|µs, σ2

s)da.

Since it cannot be evaluated analytically, we approximate σ(a) by the probit function Φ(λa) =
∫ λa
−∞N (θ|0, 1)dθ

and λ2 = π/8. Finally, we can get ψ(li,i′ = 1|φi,φi′ ,η) = σ(κ(σ2
s)µs) where κ(σ2

s) = (1 + πσ2
s/8)−1/2.

Since the final prediction takes both the mean and variance into account, the estimation is expected to be
more robust.
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Table 1: Top 10 link predictions made by gRTM and RDL for two articles from citeulike-a.

Query: Object class recognition by unsupervised scale-invariant learning

gR
T
M

Layered depth images
Using spin images for efficient object recognition in cluttered 3D scenes
Snakes: active contour models
Visual learning and recognition of 3-D objects from appearance
Contextual priming for object detection
Visual categorization with bags of keypoints
Non-parametric model for background subtraction
Alignment by maximization of mutual information
Rapid object detection using a boosted cascade of simple features
W4: real-time surveillance of people and their activities

R
D
L

Distinctive image features from scale-invariant keypoints
visual learning and recognition of 3-D objects from appearance
Object recognition with features inspired by visual cortex
Unsupervised learning of models for recognition
Robust object recognition with cortex-like mechanisms
Generative versus discriminative methods for object recognition
Using spin images for efficient object recognition in cluttered 3D scenes
Learning generative visual models from few training examples
3D object modeling and recognition using affine-invariant patches
A Bayesian approach to unsupervised one-shot learning of object categories
Query: SCOP database in 2004: refinements integrate structure and sequence family data

gR
T
M

Pfam: multiple sequence alignments and HMM-profiles of protein domains
Structure, function and evolution of multidomain proteins
Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB
Nature of the protein universe
The CATH domain structure database and related resources
Phylogenetic classification of short environmental DNA fragments
The catalytic site atlas: a resource of catalytic sites and residues identified in enzymes
LGA: a method for finding 3D similarities in protein structures
Amino acid substitution matrices from protein blocks
Multiple protein sequence alignment

R
D
L

The universal protein resource (UniProt)
E-MSD: an integrated data resource for bioinformatics
Gene3D: comprehensive structural and functional annotation of genomes
The universal protein resource (UniProt) in 2010
Gene3D: modelling protein structure, function and evolution
The universal protein resource (UniProt): an expanding universe of protein information
Pfam: clans, web tools and services
The Pfam protein families database
The protein data bank
SCOP: a structural classification of proteins database

3 Case Study
To gain a better insight into the difference between RDL and gRTM, we first look at two example articles
from the test set and the top 10 predicted links (citations) for them returned by RDL and gRTM. In Table
1 (articles with titles in bold mean correct predictions), the first example (query) is a computer vision
paper with the title ‘Object class recognition by unsupervised scale-invariant learning’. As we can see,
while gRTM is able to capture the problem ‘object class recognition’ and suggest links to articles on ‘visual
categorization’ and ‘object detection’ (which is a problem closely related to ‘object class recognition’),
it fails to identify the key notions on ‘unsupervised learning’ and ‘scale-invariant learning’ of the target
article. On the other hand, these notions are successfully captured by RDL to predict links to articles
like ‘Distinctive image features from scale-invariant keypoints’, ‘Unsupervised learning of models for
recognition’, and ‘Learning generative visual models from few training examples’, aside from ‘object class
recognition’ papers like ‘Object recognition with features inspired by visual cortex’. Consequently, gRTM
attains a precision of only 20% while RDL is able to significantly boost the performance to achieve a
precision of 60%. Another example is a biology and bioinformatics paper with the title ‘SCOP database
in 2004: refinements integrate structure and sequence family data’. Similarly, gRTM can only recognize
that the target paper is on the structure of proteins but miss the fact that this paper is mainly on
a bioinformatics database. Again, RDL is able to recognize that this article is from the community
researching on bioinformatics databases and predict the links to several relevant articles on this topic.
As a result, the precision for gRTM is only 10% but RDL is able to achieve a much higher precision
of 50%. From these examples, we can see that by jointly and deeply modeling the node attributes and
link structures, RDL is able to better partition the topic space and community structures of nodes and
more accurately pinpoint the target node (article) in the semantic space. In addition, RDL is able to
simultaneously capture multiple concepts of interest while gRTM cannot.

4 Hyperparameter Sensitivity
Figure 1 shows the hyperparameter sensitivity of λe for different K. Since the hyperparameters are highly
correlated to K, we use λe/K in the x-axis instead of λe for clarity and consistence among different K
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Figure 1: Hyperparameter sensitivity of λe for link rank and AUC.

values. As we can see, the performance is not very sensitive to λe. RDL can achieve both the lowest link
rank and the highest AUC in a relatively wide range of values for λe/K for different K. The performance
slightly decreases if λe/K is lower than the range and dramatically decreases if λe/K is higher than the
range. Similar phenomena can be observed for other hyperparameters.
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