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Abstract
With the emergence of large-scale evolving (time-
varying) networks, dynamic network analy-
sis (DNA) has become a very hot research topic
in recent years. Although a lot of DNA methods
have been proposed by researchers from differ-
ent communities, most of them can only model
snapshot data recorded at a very rough temporal
granularity. Recently, some models have been
proposed for DNA which can be used to model
large-scale citation networks at a fine temporal
granularity. However, they suffer from a significant
decrease of accuracy over time because the learned
parameters or node features are static (fixed)
during the prediction process for evolving citation
networks. In this paper, we propose a novel model,
called online egocentric model (OEM), to learn
time-varying parameters and node features for
evolving citation networks. Experimental results
on real-world citation networks show that our
OEM can not only prevent the prediction accuracy
from decreasing over time but also uncover the
evolution of topics in citation networks.

1 Introduction
Network analysis [Goldenberg et al., 2009; Li and Ye-
ung, 2009; Li et al., 2009a; 2009b; Wang et al., 2010;
Li et al., 2011; Li and Yeung, 2012; Zhu, 2012; McAuley
and Leskovec, 2012; Kim and Leskovec, 2012; Myers et al.,
2012], especially dynamic network analysis (DNA) has be-
come increasingly important in many fields like social sci-
ence and biology. Although there have been a lot of work-
s on DNA, most of them either focus on large-scale da-
ta at a very rough temporal granularity [Fu et al., 2009;
Wyatt et al., 2010; Hanneke et al., 2010; Richard et al., 2012;
Sarkar et al., 2012; Jin et al., 2011; Wang and Groth, 2011;
Nori et al., 2011] or focus on small networks at a fine tem-
poral granularity [Wasserman, 1980; Snijders, 2005]. Re-
cently, dynamic egocentric model (DEM) [Vu et al., 2011b],
which is based on multivariate counting processes, has been
successfully proposed to model large-scale evolving citation
networks at a fine temporal granularity of individual time-
stamped events.

Although DEM can dynamically update the link features
(statistics) of the nodes (papers), the learned parameters and
topic features of DEM1 are static (fixed) during the prediction
process for evolving networks. Hence, DEM suffers from a
decrease of accuracy over time because typically both the pa-
rameters and the topic features of the papers will evolve over
time. For example, one of the link features reflects the in-
degree (number of citations) of a paper until some time point.
As time goes on, the cumulative number of citations for ex-
isting papers will become larger and larger. Hence, the dis-
tribution of the citations for the whole data set will change
over time. As a consequence, the corresponding parameter
which typically reflects the distribution of the features should
also change over time. At first sight, it seems a little confus-
ing that the topic features of a paper can change over time
because the content of a published paper is typically static.
However, the citations to an existing paper are dynamic. It
is more reasonable to combine both the citation and content
information to decide the topic of a paper. For example, a
paper about neural network considered to be highly related
to the topic psychology in the 1950s may be more likely to
be classified as a machine learning paper today because more
and more machine learning papers cite that neural network
paper. Hence, it is very obvious to find that the topic features
will also change over time. Without the ability to adaptively
learn the parameters and topic features, DEM fails to model
the evolution of networks. This phenomenon of decreasing
prediction accuracy over time can also be observed from the
experimental results in Figure 2 of [Vu et al., 2011b].

In this paper, we propose an online extension of DEM,
called online egocentric model (OEM), to capture the evo-
lution of both topic features and model parameters. The con-
tributions of this paper are briefly outlined as follows:

• OEM takes the evolution of both topic features and pa-
rameters into consideration and maintains high predic-
tion accuracy regardless of the elapse of time.

1In [Vu et al., 2011b], there are two variants of DEM. One mod-
els only the link features, and the other models both the link and top-
ic features (textual information). Unless otherwise stated, the DEM
in this paper refers to the variant with both link and topic features
because it achieves far better accuracy than DEM without topic fea-
tures [Vu et al., 2011b] and we can always get the topic features for
a paper if we want.



• During the online training of OEM, we can also uncover
the evolution of topic features for each paper and the
propagation of topic features between pairs of papers.

• Extensive experiments on two real-world citation net-
works are performed to demonstrate the effectiveness of
our novel model.

2 Dynamic Egocentric Model
In this section, we briefly review the DEM [Vu et al., 2011b]
which we base our work on. For ease of understanding, we
use the same notations as those in [Vu et al., 2011b].

Let n denote the total number of nodes (papers) in the
network. DEM tries to model a dynamic (citation) network
by placing a counting process Ni(t) on each node i (i =
1, 2, · · · , n) , where Ni(t) denotes the cumulative number
of events associated with node i until time t. The definition
of events depends on context. For example, an event corre-
sponds to a citation in citation networks.

Although a continuous-time model can be estimated by
maximizing the full likelihood of the counting process, for ci-
tation networks it is more practical to estimate the parameters
associated with the time-dependent statistics at event times
by maximizing the partial likelihood. Then the DEM tries to
maximize the following likelihood of the whole network:

L(β) =

m∏
e=1

exp(βT sie(te))
n∑

i=1

Yi(te) exp(β
T si(te))

, (1)

where m is the total number of citation events, e is the index
of each citation event, ie denotes the paper cited in event e, te
denotes the time of event e, Yi(t) is 1 if node i already exists
at time t and 0 otherwise, si(te) denotes the feature vector of
node i at the time te, and β is a vector of parameters to learn.

The features in si(te) can be divided into two types. One
type is called link features (statistics), and the other type is
called topic features. In [Vu et al., 2011b], eight link fea-
tures, including three preferential attachment statistics, three
triangle statistics and two out-path statistics, are extracted for
each node. Fifty topic features are extracted by performing
Latent Dirichlet Allocation (LDA) [Blei et al., 2003] on the
abstracts of the papers. More specifically, assuming the arriv-
ing paper is i at the time te, we can compute the topic features
of any existing paper j as follows:

sLDA
j (te) = θi ◦ θj ,

where θi denotes the topic proportion of paper i, ◦ denotes
the element-wise multiplication.

Hence, si(te) is a vector of 58 features, with the first 8 fea-
tures being link features and the last 50 features being topic
features. Correspondingly, β is a vector of length 58. More
details about the features can be found in [Vu et al., 2011b].

3 Online Egocentric Model
During the prediction process for evolving networks, the link
features of nodes will be dynamically updated in DEM. How-
ever, both the learned parameters (β) and topic features (θi)

of DEM will not change with the evolution of network-
s, which will cause the accuracy of DEM to decrease over
time. In this section, we present our online egocentric mod-
el (OEM) to solve the problems faced by DEM. The basic
idea is to adaptively update the parameters and topic features
after some new events are observed.

Although we can learn the whole LDA model from the col-
lection of papers, it will be very time-consuming in gener-
al even if we adopt the online LDA model [Hoffman et al.,
2010]. Hence, in this paper we just learn the topic proportions
θ with the topics fixed. This is reasonable because the main
topics in the citation networks are relatively stable although
the topic proportions for some papers will change over time.
We only need to update the whole topics after a long time pe-
riod. From our experiments, we find that good performance
can still be achieved by only updating the topic proportions.

Hence, our OEM tries to minimize the following objective
function after observing some new events:

minimize − logL(β,ω) + λ
n∑

k=1

‖ωk − θk‖22 (2)

subject to : ωk � 0, 1Tωk = 1,

where ωk is the new topic proportions of node k that need
to be learned and θk is the current topic proportions of node
k, ω = {ωk}nk=1, L(β,ω) has the same definition as L(β)
in (1) by treating both β and topic proportions as variables2,
ωk � 0 denotes each element in ωk is non-negative, 1 is
a vector of all 1s, the constraints are used to guarantee that
all elements in ωk are non-negative and the summation of
the elements in ωk is 1, λ is a hyperparameter to control the
tradeoff between two terms.

When a new event or a set of new events are observed, the
second term in (2) will guarantee that the updated topic pro-
portion ωk will not be too far away from the current topic
proportion θk. Furthermore, we use the current β as initial-
ization to get the updated β. Hence, by effectively using the
information of the existing events, we successfully get an on-
line learning algorithm.

It is easy to see that the optimization problem in (2) is not
jointly convex in (β,ω). But we can prove that the objective
function is convex in either β or ω with the other variable
fixed. In this paper, we design an alternating projection algo-
rithm to find the solutions. More specifically, each time we
fix one variable and then update the other one. The procedure
is briefly outlined as follows:

• online β step: Fix ω, and apply Newton’s method to
update the parameter β by using the current β for ini-
tialization;

• online topic step: Fix β, and minimize the problem in
(2) to get the updated topic proportions ωk based on the
current topic proportions θk.

The above procedure will be repeated for several iterations
until some termination condition is satisfied. We can prove
that the learning algorithm is convergent.

2Please note L(β,ω) is different from L(β). In L(β), only β is
a variable and ω is a constant (fixed value).



Mini-batches: In OEM introduced above, every time a
new paper i arrives, we can join it into the network and it-
erate between the online β step and the online topic step un-
til it converges. However, it’s computationally expensive for
large-scale citation networks. A common technique is to con-
sider multiple events per update. Not only can this kind of
mini-batch strategy save computational cost, but it also re-
duces noise [Hoffman et al., 2010]. Hence, in our imple-
mentation, rather than perform updating for each event, we
perform one updating for every q citation events. q is set to
about 1500 in our experiments.

The following content in this section will detail the al-
gorithms for online β learning and online topic proportion
learning.

3.1 Online β Step
With ω fixed, the objective function to learn β is as follows:

L(β) =

x+q−1∏
e=x

exp(βT sie(te))
n∑

i=1

Yi(te) exp(β
T si(te))

,

where x is the starting event in the mini-batch of q events.
To avoid walking through all the citation events when up-

dating the parameter β, we can use a training window to re-
strict the training in a small subset of the citation events. With
the training window of width Wt (1 ≤ Wt ≤ q), β can be
trained by optimizing:

Lw(β) =

x+q−1∏
e=x+q−Wt

exp(βT sie(te))
n∑

i=1

Yi(te) exp(β
T si(te))

.

Furthermore, we can cache the link features of each node
to further cut the computational time, as done in [Vu et al.,
2011b].

3.2 Online Topic Step
In this section, we first formulate the full online topic step to
learn the updated topic proportions ωk. After that, we derive
an approximative online topic step to speed up the optimiza-
tion process.

Full Online Topic Step
It is very time-consuming if we update all the topic propor-
tions in ω at a time. We also design an alternating algorithm
for updating ω. More specifically, each time we optimize
the topic proportion for one paper, say ωk, with all the other
{ωi|i 6= k} fixed. Given a mini-batch of size q, if node k
gets cited at citation event e1, e2, . . . , ep and doesn’t get cited
at time ep+1, ep+2, . . . , eq (note that e2 does not necessari-
ly happen before ep+2 although its subscript is smaller), the
function f(ωk) we optimize is:

− log(

p∏
i=1

αi exp(a
T
i ωk)

Ai + αi exp(aTi ωk)

q∏
u=p+1

Cu

Bu + γu exp(bT
uωk)

)

+ λ‖ωk − θk‖22, (3)

where
αi = exp(βT

l s
l
k(tei)),

γu = exp(βT
l s

l
k(teu)),

Ai =
∑
j 6=k

Yj(tei) exp(β
T sj(tei)),

Bu =
∑
j 6=k

Yj(teu) exp(β
T sj(teu)),

ai = βt ◦ θi,
bu = βt ◦ θu.

Here, βl contains the first 8 elements of the parameter β (cor-
responding to link features), βt contains the last 50 elements
of β (corresponding to the topic features), θi is the topic pro-
portion of the citer at citation event ei and slk(tei) is the link
features (first 8 features) of node k at citation event ei, Cu is
a constant irrelevant to ωk.

The first and second order derivatives of (3) are as follows:

∂f

∂ωk
=−

p∑
i=1

ai +

p∑
i=1

aiαi exp(a
T
i ωk)

Ai + αi exp(aTi ωk)

+

q∑
u=p+1

buγu exp(b
T
uωk)

Bu + γu exp(bT
uωk)

+ 2λ(ωk − θk), (4)

∂2f

∂ω2
k

=

p∑
i=1

Aiαiaia
T
i exp(aTi ωk)

(Ai + αi exp(aTi ωk))2

+

q∑
u=p+1

Buγubub
T
u exp(bT

uωk)

(Bu + γu exp(bT
uωk))2

+ 2λI,

where I is an identity matrix.
It is easy to prove that the second order derivative (Hessian)

is positive definite (PD). Hence, the function in (3) is convex.
We can use some solver to find a global optimal solution.

Approximative Online Topic Step
In (4), Ai is far larger than aiαi exp(a

T
i ωk) and

αi exp(a
T
i ωk), and p is relatively small in each batch.

Similarly, Bu is far larger than buγu exp(b
T
uωk) and

γu exp(b
T
uωk), and (q − p) is relatively small. Hence, the

second and third terms in (4) are much smaller than the other
two. Consequently, we can remove these two smaller terms
to get the following approximative gradient:

∂f

∂ωk
≈−

p∑
i=1

ai + 2λ(ωk − θk).

Based on the above approximative gradient, we can recover
the following approximative objective function of (2):

minimize −
p∑

i=1

aTi ωk + λ

n∑
k=1

‖ωk − θk‖22 (5)

subject to : ωk � 0,1Tωk = 1.

We call the OEM variant in (5) approximative OEM and
the original OEM in (2) full OEM. In our experiments, we find
that the approximative OEM achieves accuracy comparable
with that of full OEM with much less computational cost.



Table 1: Information of data sets
DATA SET #PAPERS #CITATIONS #UNIQUE TIMES
ARXIV-TH 14226 100025 10500
ARXIV-PH 16526 125311 1591

3.3 Convergence Analysis
In each iteration, the learning algorithm ensures that the ob-
jective function value always decreases. Furthermore, the ob-
jective function is bounded below by 0. Hence, the learning
algorithm will converge.

4 Experiment
We apply DEM and OEM to two citation networks and com-
pare the results between them. Furthermore, we will also an-
alyze the evolution of papers’ topic proportions.

4.1 Data Sets
Since this paper mainly focuses on citation network analysis
which is one of the most important applications of dynam-
ic network analysis, we use two citation data sets, arXiv-TH
and arXiv-PH, which are crawled from arXiv3. The general
information of these data sets is summarized in Table 1.

The arXiv-TH data set is a collection of articles on high
energy physics theory. It spans from 1993 to 1997 with
high-resolution timestamps (millisecond resolution). The
arXiv-PH data set is a collection of articles on high energy
physics phenomenology. It spans from 1993 to 1997 on a dai-
ly scale. Since the resolution is high enough, we assume that
every new paper joins the network at a unique time and obvi-
ously there can be more than one citation event happening at
each unique time. As mentioned in the previous section, we
update the topic proportions and parameters batch by batch.
More specifically, we partition the data sets into mini-batches
and each mini-batch contains citation events happening in a
span of unique times. For arXiv-TH the number of unique
times per batch is 100 and for arXiv-PH the number is 20.
And the number of events for each mini-batch is about 1500.

4.2 Baseline
We choose the following four models for comparison in the
experiments:

• DEM: The original DEM with 8 link features and 50
topic features. Note that the original DEM is not on-
line and the parameters and topic features are fixed after
training.

• OEM-β: The OEM with only online β step, where the
β will be adaptively updated while the topic features
(topic proportions) of each paper will not change over
time.

• OEM-full: The full OEM with both online β and topic
steps, where both the topic features and parameters are
adaptively learned over time using the objective function
in (2).

3http://snap.stanford.edu/data

Table 2: Data set partition for building, training and testing.

DATA SETS BUILDING TRAINING TESTING
ARXIV-TH 62239 1465 36328
ARXIV-PH 82343 1739 41229

• OEM-appr: The approximative OEM with both online
β and topic steps, where both the topic features and pa-
rameters are adaptively learned over time using the ap-
proximative objective function in (5).

4.3 Evaluation Metrics
As in [Vu et al., 2011b], we evaluate the above models with
the following three metrics:

• Average held-out log-likelihood: By taking a logarithm
of the likelihood L(β) in (1) for each testing citation
event, we can get the held-out log-likelihood. We divide
the summation of log-likelihood over all testing events in
a batch by the number of events in that batch to get the
average held-out log-likelihood of that batch. A higher
average held-out log-likelihood indicates a better testing
accuracy.

• Recall of top-K recommendation list: The recall is de-
fined as the fraction of true citation events in the top
K (measured using likelihood) possible citation events.
Here K is the cut-point.

• Average held-out normalized rank: The “rank” for each
citation event is the position of the true citation in the
sorted list (in decreasing order of likelihoods) of possi-
ble citations. The rank is then normalized by the number
of possible citations. A lower rank indicates a better pre-
dictive power.

4.4 Results and Analysis
As in DEM [Vu et al., 2011b], we split each data set into three
parts which are used for the building phase, training phase
and testing phase, respectively. The building phase is aimed
to build up the statistics of the citation networks and it is rel-
atively long in order to mitigate the truncation effect (citation
events happening before 1993 is not contained in the data set-
s) and avoid biases. In the training phase, we train the initial
model parameters and the topic features. To fully demon-
strate and compare the predictive power of these models, we
have a relatively long testing phase and the testing phase is
divided into 24 batches. Please remember that the statistics
(link features) are dynamically changed in both training and
testing phases. The sizes (measured by the numbers of cita-
tion events) of each phase are listed in Table 2.

To further cut the time cost of OEM, we randomly choose
a fraction of unique times in every batch to optimize the topic
proportions. For example, when optimizing the topic pro-
portions for paper i after the first batch comes, we randomly
choose 10% (here 10% is what we call citer percentage in the
rest of this paper) of citers instead of the whole set of them.
This can be used to speed up the computation. In OEM, we
set the hyperparameters λ = 0.1 and citer percentage = 10
unless otherwise stated. The effect of these hyperparameters
(citer percentage and λ) will be detailed in later experiments.



The testing procedure of OEM is detailed as follows. We
first train an initial OEM using the building and training data
sets. Hence, this initial OEM is actually equivalent to DEM.
Then, we evaluate the predictive power on Batch 1 of the test-
ing set (note that we don’t use the data of Batch 1 during the
training). After that (testing Batch 1), we absorb Batch 1 as
extra training data and update OEM with the online learning
algorithms. Then, we use the updated OEM to predict Batch
2. That is to say, to test a specific batch, we DO NOT use any
data from this batch for training. Hence, the testing results of
OEM will truly reflect the generalization/predictive ability of
OEM.

Figure 1 (a) and (b) show the average held-out log-
likelihood for all the models. Because the initial OEM is e-
quivalent to DEM, we can see that all the models have the
same performance on testing Batch 1. However, as time goes
on, the performance of DEM will dramatically decrease while
all the OEM variants can prevent the performance from de-
creasing. For example, from Figure 1 (a), we can see that
the log-likelihood of the original DEM decreases significant-
ly over time and the log-likelihood of OEM-β decreases only
from -8.24 to -8.97. Our OEM-full outperforms the previous
two with the log-likelihood ranging from -7.89 to -8.38 and
the log-likelihood of OEM-appr decreases only from -8.24 to
-8.56.

Figure 1 (c) and (d) show the recall of top-K recommen-
dation list with K=250. We can find that the performance of
DEM, OEM-β, and OEM-appr decreases over time. Howev-
er, our OEM-full can prevent the performance from decreas-
ing. Although the performance of OEM-appr also decreas-
es over time, it still outperforms DEM. The performance of
OEM-β is as bad as that of DEM, which implies that the topic
features are very informative and it is not enough to learn only
β for this metric. Please note similar results can be observed
when K takes other values. Here, we omit those results due
to space limitation.

Figure 1 (e) and (f) show the average held-out normalized
rank. We find that the performance of DEM and OEM-β
can not be improved over time. However, the performance
of OEM-full and OEM-appr will be improved as time goes
on. Note that a lower rank indicates a better predictive pow-
er. Once again, the bad performance of OEM-β indicates
the importance of topic features for this metric. Because the
number of possible citations for later batches are larger than
that of former batches, the performance in terms of absolute
rank of DEM actually decreases over time. But OEM-full
can present the performance in terms of absolute rank from
decreasing. This conforms to the results in Figure 1 (a), (b),
(c), and (d).

Table 3 compares the computation cost between full OEM
and approximative OEM. We can see that although the ap-
proximative OEM achieves a slightly worse predictive accu-
racy than full OEM, it saves more than 50% of the time.

To measure how the hyperparamters, citer percentage and
λ, affect the predictive performance, we use the arXiv-TH
data set and compute the average log-likelihood of all testing
batches for each choice of citer percentage and λ. The results
are shown in Table 4 and Table 5. Table 4 indicates that 0.1 is
the best value for λ. Table 5 shows that the predictive perfor-

mance increases moderately and the time cost increases sig-
nificantly when the citer percentage is larger than 10%, which
means that 10% may be a good choice of the citer percentage.
Overall, our model is not sensitive the these hyperparameters.

To show the topic evolution of papers, we choose three sets
of papers in arXiv-TH. To avoid clutter we take the average
topic proportions of each paper set and we select the topics
(elements of vectors) which have the highest average propor-
tion on all 24 time periods to demonstrate the effect of topic
evolution. Specifically, we use St = {r1, r2, . . . , rl} to de-
note the set of papers cited at unique time t (thus papers in
the same set are cited by the same paper). And we denote

φt =
1
l

l∑
i=1

ωri to be the average topic vector of paper set St.

We choose S8001 and S8005 to be our examples, which are
shown in Figure 1 (g) and (h).

From Figure 1 (g), we can see that proportions of Topic 7
(namely φ(7)8001) and Topic 46 (namely φ(46)8001) are decreasing
over time. Yet proportions of Topic 15 (φ(15)8001) and Topic 44
(φ(44)8001) show the opposite tendency. One explanation is that
the set of papers cited at the 8001st unique time is originally
on some sub-fields of physics, but as time goes on, the val-
ues of the papers are found by researchers in other sub-fields.
Citations by papers of other sub-fields will transfer some pro-
portions from the original topics (Topic 7 and Topic 46) to
the new topics (Topic 15 and Topic 44). The same thing hap-
pens in the fields of statistics, phycology (as original topics)
and machine learning (as the newly arising topic). The topic
evolution of the paper set at the 8005th unique time (name-
ly S8005) is similar to the one at the 8001st unique time, as
shown in Figure 1 (h).

5 Related Work
Dynamic network analysis (DNA) has been widely studied by
researchers from a diversity of fields such as social networks,
citation networks and email networks [Leskovec et al., 2005;
Kossinets and Watts, 2006; Viswanath et al., 2009]. However,
most existing works [Sarkar and Moore, 2005; Hanneke et al.,
2010; Fu et al., 2009; Wyatt et al., 2010; Foulds et al., 2011;
Ho et al., 2011] focus either on small networks at a fine tem-
poral granularity or on large-scale networks at a rough tem-
poral granularity. Although DEM [Vu et al., 2011b] is able
to handle large-scale networks at a fine temporal granulari-
ty, its parameters remain static, which leads to an obvious
decrease of accuracy over time. Continuous-time regression
models for longitudinal networks [Vu et al., 2011a] allow the
parameter to be updated over time. However they are used to
model edges rather than nodes. Furthermore, they do not take
the topic information of papers into consideration. But in our
proposed OEM, topic information is effectively integrated in-
to the model’s building, training and testing phases.

Another line of research related to our work is about topic
models. By extending the original LDA topic model [Blei
et al., 2003], many methods have been proposed to mod-
el the topic evolution over time [Wang et al., 2008; 2009;
Chen et al., 2012; Dubey et al., 2013]. There also ex-
ist some methods which can model both network structure
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Figure 1: (a) and (b) are the average held-out log-likelihood of testing citation events. (c) and (d) are the recall of top-K
recommendation lists. (e) and (f) are the average held-oud normalized ranks of testing citation events. Since all models have
the same initial parameters after the building and training phases, all models have the same performance on the first testing
batch, which can be seen from (a) to (f). (g) and (h) are the topic evolution of sets of papers cited at the 8001st and 8005th
unique time. To avoid clutter, we only show the topics with the largest proportions (top topics).

Table 3: Computation time (in seconds) of OEM-full and OEM-appr with λ = 0.1.

CITER PERCENTAGE 2% 5% 10% 20% 30% 50% 100%
OEM-FULL 0.13 0.43 0.87 1.42 1.96 2.61 3.91
OEM-APPR 0.06 0.22 0.41 0.70 0.95 1.29 1.94

Table 4: Average held-out log-likelihood when citer percentage is 10%

λ 10−4 0.01 0.1 0.5 1 2 104

LOG-LIKELIHOOD -8.61 -8.33 -8.15 -8.28 -8.33 -8.35 -8.56

Table 5: Average held-out log-likelihood when λ = 0.1

CITER PERCENTAGE 2% 5% 10% 20% 30% 50% 100%
LOG-LIKELIHOOD -8.94 -8.43 -8.15 -8.10 -8.09 -8.03 -7.98
AVERAGE TIME 0.13 0.43 0.87 1.42 1.96 2.61 3.91

and node features [Kataria et al., 2011; Hu et al., 2012;
Krafft et al., 2012]. Generally, it is very time-consuming
to simultaneously update the topics and topic proportions for
time-varying data.

Instead of utilizing some existing online LDA model-
s [Canini et al., 2009; Hoffman et al., 2010], we choose to
directly adjust the topic proportions of papers. This is be-
cause online inference of LDA interacts with the text contents
of the papers, which will take a lot more time to update all the
LDA vectors. However in our OEM, we only need to solve
small convex optimization problems to update the vectors.

6 Conclusion
In this paper, an online egocentric model (OEM) is proposed
for evolving citation network modeling. By adaptively learn-
ing the parameters and topic features over time, OEM has

successfully overcome the problem of DEM whose predictive
accuracy will decrease significantly over time. Experimental
results on real-world citation networks demonstrate that OEM
can achieve very promising performance in real applications.

Although the experiments in this paper are only for paper
citation networks, as stated in [Vu et al., 2011b], our model
can be generalized to other types of networks, which will be
pursued in our future work.
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