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1 Proof of Theorem 1

Theorem 1. Assume an exponential-family distribution po(x|η) = h(x)g(η) exp{ηTu(x)}, where
the vector u(x) = (u1(x), u2(x), . . . , uM (x))T (M is the number of natural parameters). If activa-
tion function v(x) = r − q exp(−τui(x)) is used, the first two moments of v(x),

∫
po(x|η)v(x)dx

and
∫
po(x|η)v(x)2dx, can be expressed in closed form. Here i ∈ {1, 2, . . . ,M} and r, q, and τ are

constants.

Proof. We first let η = (η1, η2, . . . , ηM ), η̃ = (η1, η2, . . . , ηi − τ, . . . , ηM ), and η̂ =
(η1, η2, . . . , ηi − 2τ, . . . , ηM ). The first moment of v(x) is

E(v(x)) =

∫
po(x|η)(r − q exp(−τui(x)))dx

= r − q
∫
h(x)g(η) exp{ηTu(x)− τui(x)}dx

= r − q
∫
h(x)

g(η)

g(η̃)
g(η̃) exp{η̃Tu(x)}dx

= r − q g(η)

g(η̃)

∫
h(x)g(η̃) exp{η̃Tu(x)}dx

= r − q g(η)

g(η̃)
.
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Figure 1: Activation functions for the gamma distribution (left), the beta distribution (middle), and
the Rayleigh distribution (right).

Similarly the second moment

E(v(x)2) =

∫
po(x|η)(r − q exp(−τui(x)))2dx

=

∫
po(x|η)(r2 + q2 exp(−2τui(x))− 2rq exp(−τui(x)))dx

= r2

∫
po(x|η)dx+ q2

∫
h(x)g(η) exp{ηTu(x)− 2τui(x)}dx

− 2rq

∫
h(x)g(η) exp{ηTu(x)− τui(x)}dx

= r2 + q2

∫
h(x)g(η) exp{η̂Tu(x)}dx− 2rq

∫
h(x)g(η) exp{η̃Tu(x)}dx

= r2 + q2

∫
h(x)

g(η)

g(η̂)
g(η̂) exp{η̃Tu(x)}dx− 2rq

∫
h(x)

g(η)

g(η̃)
g(η̃) exp{η̃Tu(x)}dx

= r2 + q2 g(η)

g(η̂)

∫
h(x)g(η̂) exp{η̃Tu(x)}dx− 2rq

g(η)

g(η̃)

∫
h(x)g(η̃) exp{η̃Tu(x)}dx

= r2 + q2 g(η)

g(η̂)
− 2rq

g(η)

g(η̃)
.

2 Exponential-Family Distributions and Activation Functions

In this section we provide a list of exponential-family distributions with corresponding activation
functions that could lead to close-form expressions of the first two moments of v(x), namely
E(v(x)) and E(v(x)2). With Theorem 1, we only need to find the constants (r, q, and τ ) that make
v(x) = r − q exp(−τui(x)) monotonically increasing and bounded.

As mentioned in the paper, we use the activation function v(x) = r(1− exp(−τx)) for the gamma
NPN and the Poisson NPN. Figure 1(left) plots this function with different τ when r = 1. As we
can see, this function has a similar shape with the positive half of v(x) = tanh(x) (the negative
part is irrelevant because both the gamma distribution and the Poisson distribution have support over
positive values only). Note that the activation function v(x) = 1 − exp(−1.5x) is very similar to
v(x) = tanh(x).

For beta distributions, since the support set is (0, 1) the domain of the activation function is also
(0, 1). In this case v(x) = qxτ is a reasonable activation function when τ ∈ (0, 1) and q = 1.
Figure 1(middle) shows this function with differnt τ when q = 1. Since we expect the nonlinearly
transformed distribution to be another beta distribution, the domain of the function should be (0, 1)
and the field should be [0, 1]. With these criteria, v(x) = 1.3 tanh(x) might be a better activation
function than v(x) = tanh(x). As shown in the figure, different τ leads to different shapes of the
function.

For Rayleigh distributions with support over positive reals, v(x) = r − qe−τx2

is a proper activation
function with the domain x ∈ R+. Figure 1(right) plots this function with different τ when r = q = 1.
We can see that this function also has a similar shape with the positive half of v(x) = tanh(x).
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2.1 Gamma Distributions

For gamma distributions with (v(x) = r(1− exp(−τx)), as mentioned in the paper,

am =

∫
po(oj |oc,od)v(o)do = r

∫ +∞

0

1

Γ(oc)
ooc

d ◦ o
oc−1e−od◦o(1− e−τo)do

= r(1−
ooc

d

Γ(oc)

∫ +∞

0

ooc−1e−(od+τ)◦odo)

= r(1−
ooc

d

Γ(oc)
◦ Γ(oc) ◦ (od + τ)−oc)

= r(1− (
od

od + τ
)oc).

Similarly we have

as =

∫
po(oj |oc,od)v(o)2do− a2

m

= r2

∫ +∞

0

1

Γ(oc)
ooc

d ◦ o
oc−1e−od◦o(1− 2e−τo + e−2τo)do− a2

m

= r2(1− 2
ooc

d

Γ(oc)
◦ Γ(oc) ◦ (od + τ)−oc +

ooc

d

Γ(oc)
◦ Γ(oc) ◦ (od + 2τ)−oc)− a2

m

= r2(1− 2(
od

od + τ
)oc + (

od
od + 2τ

)oc)− a2
m

= r2((
od

od + 2τ
)oc − (

od
od + τ

)2oc).

Equivalently we can obtain the same am and as by following Theorem 1. For the gamma distribution

p(x|c, d) =
dc

Γ(c)
exp{(c− 1) log x+ (−b)x}.

Thus we have η = (c − 1,−d)T , u(x) = (log x, x)T , and g(η) = dc

Γ(c) . Using v(x) = r(1 −
exp(−τx)) implies g(η̃) = (d+τ)c

Γ(c) and g(η̂) = (d+2τ)c

Γ(c) . Hence we have

am = r − r g(η)

g(η̃)
= r(1− (

od
od + τ

)oc),

and the variance

as = r2 + r2 g(η)

g(η̂)
− 2r2 g(η)

g(η̃)
− r2(1− g(η)

g(η̃)
)2

= r2((
od

od + 2τ
)oc − (

od
od + τ

)2oc).

2.2 Poisson Distributions

For Poisson distributions with v(x) = r(1 − exp(−τx)), using the Taylor expansion of
exp(exp(−τ)λ) with respect to λ,

exp(exp(−τ)λ) =

+∞∑
x=0

λx exp(−τx)

x!
,
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we have

am = r

+∞∑
x=0

oxc exp(−oc)
x!

(1− exp(−τx))

= r(

+∞∑
x=0

oxc exp(−oc)
x!

−
+∞∑
x=0

oxc exp(−oc)
x!

exp(−τx))

= r(1− exp(−oc)
+∞∑
x=0

oxc exp(−τx)

x!
)

= r(1− exp(−oc) exp(exp(−τ)oc))

= r(1− exp((exp(−τ)− 1)oc)).

Similarly, we have

as = r2
+∞∑
x=0

oxc exp(−oc)
x!

(1− exp(−τx))2 − a2
m

= r2
+∞∑
x=0

oxc exp(−oc)
x!

(1− 2 exp(−τx) + exp(−2τx))− a2
m

= r2(

+∞∑
x=0

oxc exp(−oc)
x!

− 2

+∞∑
x=0

oxc exp(−oc)
x!

exp(−τx) +

+∞∑
x=0

oxc exp(−oc)
x!

exp(−2τx))− a2
m

= r2(exp((exp(−2τ)− 1)oc)− exp(2(exp(−τ)− 1)oc).

Equivalently we can follow Theorem 1 to obtain am and as. For the Poisson distribution

p(x|c) =
1

x!
exp(−c) exp{x log c}

Thus we have η = log c, u(x) = x, and g(η) = exp(−c). Using v(x) = r(1− exp(−τx)) implies
g(η̃) = exp(− exp(−τ)c) and g(η̂) = exp(− exp(−2τ)c). Hence we have

am = r − r g(η)

g(η̃)

= r(1− exp((exp(−τ)− 1)oc)),

and the variance

as = r2 + r2 g(η)

g(η̂)
− 2r2 g(η)

g(η̃)
− r2(1− g(η)

g(η̃)
)2

= r2(exp((exp(−2τ)− 1)oc)− exp(2(exp(−τ)− 1)oc)).

2.3 Gaussian Distributions

In this subsection, we provide detailed derivation of (am,as) for Gaussian distributions.

2.3.1 Sigmoid Activation

We start by proving the following theorem:
Theorem 2. Consider a univariate Gaussian distributionN (x|µ, σ2) and the probit function Φ(x) =∫ x
−∞N (θ|0, 1)dθ. If ζ2 = π

8 , for any constants a and b, the following equation holds:∫
Φ(ζa(x+ b)N (x|µ, σ2)dx = Φ(

ζa(µ+ b)

(1 + ζ2a2σ2)
1
2

). (1)

Proof. Making the change of variable x = µ+ σz, we have

I =

∫
Φ(ζa(x+ b)N (x|µ, σ2)dx

=

∫
Φ(ζa(µ+ σz + b))

1

(2πσ)
1
2

exp{−1

2
z2}σdz.
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Taking the derivative with respect to µ,

∂I
∂µ

=
ζa

2π

∫
exp{−1

2
z2 − 1

2
ζ2a2(µ+ σz + b)2}dz

=
ζa

2π

∫
exp{−1

2
z2 − 1

2
ζ2a2(µ2 + σ2z2 + b2 + 2µσz + 2µb+ 2σzb)}dz

=
ζa

2π

∫
exp{−1

2
(1 + ζ2a2σ2)(z2 +

2ζ2a2σ(µ+ b)

1 + ζ2a2σ2
z +

(µ2 + b2 + 2µb)ζ2a2

1 + ζ2a2σ2
)}dz

=
ζa

2π

∫
exp{−1

2
(1 + ζ2a2σ2)((z +

ζ2a2σ(µ+ b)

1 + ζ2a2σ2
)2 − ζ4a4σ2(µ+ b)2

(1 + ζ2a2σ2)2
+

(µ+ b)2ζ2a2

1 + ζ2a2σ2
)}dz

=
ζa

2π

∫
exp{−1

2
(1 + ζ2a2σ2)((z +

ζ2a2σ(µ+ b)

1 + ζ2a2σ2
)2 +

1

2

ζ4a4σ2(µ+ b)2

1 + ζ2a2σ2
− 1

2
(µ+ b)2ζ2a2)}dz

=
ζa

2π

∫
exp{−1

2
(1 + ζ2a2σ2)((z +

ζ2a2σ(µ+ b)

1 + ζ2a2σ2
)2 − 1

2

(µ+ b)2ζ2a2

1 + ζ2a2σ2
)}dz

=
1

(2π)
1
2

ζa

(1 + ζ2a2σ2)
1
2

exp{−1

2

(µ+ b)2ζ2a2

1 + ζ2a2σ2
}.

Taking derivative of the right-hand side of Equation (1) also gives

1

(2π)
1
2

ζa

(1 + ζ2a2σ2)
1
2

exp{−1

2

(µ+ b)2ζ2a2

1 + ζ2a2σ2
},

which means the derivatives of the left and right hand sides of Equation (1) with respect to µ are
equal. When µ approaches negative infinity, the derivatives go to zero, which implies that the constant
of the integration is zero. Hence Equation (1) holds.

As mentioned in the paper (with a slight abuse of notation on σ), if the sigmoid activation v(x) =
σ(x) = 1

1+exp(−x) is used,

am =

∫
N (o|oc, diag(od)) ◦

1

1 + exp(−o)
do

≈
∫
N (o|oc, diag(od)) ◦ Φ(ζo)do. (2)

Following Theorem 2 with a = 1 and b = 0, we have

am ≈ Φ(
oc

(ζ−2 + od)
1
2

)

= σ(
oc

(1 + ζ2od)
1
2

).

For the variance,

as ≈
∫
N (o|oc, diag(od)) ◦ Φ(ζα(o + β))do− a2

m

= σ(
α(om + β)

(1 + ζ2α2os)1/2
)− a2

m. (3)

Equation (3) holds due to Theorem 2 with a = α = 4− 2
√

2 and b = β = − log(
√

2 + 1).

5



2.3.2 Hyperbolic Tangent Activation

If the tanh activation v(x) = tanh(x) is used, since tanh(x) = 2σ(2x)− 1, we have

am =

∫
N (o|oc, diag(od)) ◦ (2σ(2o)− 1)do

= 2

∫
N (o|oc, diag(od)) ◦ σ(2o)do− 1

≈ 2

∫
N (o|oc, diag(od)) ◦ Φ(2ζo)do− 1

= 2Φ(
2ζoc

(1 + 4ζ2od)
1
2

)− 1 (4)

= 2σ(
oc

(0.25 + ζ2od)
1
2

)− 1,

where Equation (4) is due to Theorem 2 with a = 2 and b = 0. For the variance of a:

as =

∫
N (o|oc, diag(od)) ◦ (2σ(2o)− 1)2do− a2

m

=

∫
N (o|oc, diag(od)) ◦ (4σ(2o)2 − 4σ(2o) + 1)do− a2

m

≈
∫
N (o|oc, diag(od)) ◦ (4Φ(ζα(o + β))− 4σ(2o) + 1)do− a2

m

= 4σ(
α(oc + β)

(1 + ζ2α2od)
1
2

)− a2
m − 2am − 1, (5)

where Equation (5) follows from Theorem 2 with a = α = 8− 4
√

2 and b = β = −0.5 log(
√

2 + 1).

2.3.3 ReLU Activation

If the ReLU activation v(x) = max(0, x) is used, we can use the techniques in [3] to obtain the first
two moments of z = max(z1, z2) where z1 ∼ N (µ1, σ

2
1) and z2 ∼ N (µ2, σ

2
2). Specifically,

E(z) = µ1Φ(γ) + µ2Φ(−γ) + νφ(γ)

E(z2) = (µ2
1 + σ2

1)Φ(γ) + (µ2
2 + σ2

2)Φ(−γ) + (µ1 + µ2)νφ(γ),

where Φ(x) =
∫ x
−∞N (θ|0, 1)dθ, φ(x) = N (x|0, 1), ν =

√
σ2

1 + σ2
2 , and γ = µ1−µ2

ν . If
N (µ1, σ

2
1) = N (c, d) and N (µ2, σ

2
2) = N (0, 0), we recover the probabilistic version of ReLU. In

this case,

E(z) = Φ(
c√
d

)c+

√
d

2π
exp{−1

2

c2

d
}

D(z) = E(z2)− E(z)2 = Φ(
c√
d

)(c2 + d) +
c
√
d√

2π
exp{−1

2

c2

d
} − c2.

Hence we have the following equations as in the main text:

a(l)
m = Φ(om ◦ o(l)

s

− 1
2 ) ◦ om +

√
os√
2π
◦ exp(−om

2

2os
)

a(l)
s = Φ(om ◦ o(l)

s

− 1
2 ) ◦ (om

2 + os) +
o

(l)
m ◦
√
os√

2π
◦ exp(−om

2

2os
)− a2

m.

3 Mapping Function for Poisson Distributions

Since the mapping function involves Gaussian approximation to a Poisson distribution, we start with
proving the connection between Gaussian distributions and Poisson distributions.
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Lemma 1. Assume Y is a Poisson random variable with mean c and variance c. If X1, X2, . . . , Xc

are independent Poisson random variables with mean 1, we have:

Y =

c∑
i=1

Xi

Proof. We can use the concept of moment generating functions (i.e., two distributions are identical if
they have exactly the same moment generating function), which is defined as M(t) = E(exp(tZ))
for a random variable Z, to prove the lemma. The moment generating function for a Poisson random
variable with mean c and variance c is:

M1(t) = exp(c(exp(t)− 1)).

On the other hand, the moment generating function for
c∑
i=1

Xi is:

M2(t) = E(exp(t

c∑
i=1

Xi))

= E(

c∏
i=1

exp(tXi))

=

c∏
i=1

E(exp(tXi)) (6)

=

c∏
i=1

exp(exp(t)− 1) (7)

= exp(c(exp(t)− 1))

= M1(t),

where Equation (6) is due to the fact that X1, X2, . . . , Xc are independent. Equation (7) is the result

of using the moment generating functions of Poisson distributions. Since
c∑
i=1

Xi has exactly the same

moment generating function as a Poisson random variable with mean c and variance c, by definition
of Y , we have:

Y =

c∑
i=1

Xi

Theorem 3. A Poisson distribution with mean c and variance c can be approximated by a Gaussian
distribution N (c, c) if c is sufficiently large.

Proof. We first use Y to denote the random variable corresponding to the Poisson distribution with

mean c and variance c. According to Lemma 1, we have Y =
c∑
i=1

Xi where X1, X2, . . . , Xc are

independent Poisson random variables with mean 1. Hence,

Y − c√
c

=

c∑
i=1

Xi − c
√
c

=
√
c(

1

c

c∑
i=1

Xi − 1),

where 1
c

c∑
i=1

Xi is the sample mean. By the central limit theorem, we know that if c is sufficiently

large,
√
c( 1
c

c∑
i=1

Xi − 1) can be approximated by the Gaussian distribution N (0, 1). Thus Y can be

approximated by the Gaussian distribution N (c, c).
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Note that although c is a nonnegative integer above, the proof can be easily generalized to the case in
which c is a nonnegative real value.

During the feedforward computation of the Poisson NPN, after obtaining the mean o
(l)
m and variance

o
(l)
s of the linearly transformed distribution over o(l), we map them back to the proxy natural

parameters o(l)
c . Unfortunately the mean and variance of a Poisson are the same, which is obviously

not the case for o(l)
m and o

(l)
s . Here we propose to find o

(l)
c by minimizing the KL divergence of the

factorized Poisson distribution p(o(l)|o(l)
c ) and the Gaussian distribution N (o

(l)
m , diag(o

(l)
s ))1.

Since the direct KL divergence involves the computation of an infinite series in the entropy term
of the Poisson distribution, closed-form solutions are not available. To address the problem, we
use a Gaussian distribution N (o

(l)
c , diag(o

(l)
c )) as a proxy of the Poisson distribution with the

mean o
(l)
c (which is justified by Theorem 3)2. Specifically, we aim to find a Gaussian distribution

N (o
(l)
c , diag(o

(l)
c )) to best approximateN (o

(l)
m , diag(o

(l)
s )) and directly use o(l)

c in the new Gaussian
as the result of mapping.

For simplicity, we consider the univariate case where we aim to find a Gaussian distribution N (c, c)
to approximate N (m, s). The KL divergence between N (c, c) and N (m, s)

DKL(N (c, c)‖N (m, s)) =
1

2
(
c

s
+

(c−m)2

s
− 1 + log s− log c),

which is convex with respect to c > 0. We set the gradient of DKL(N (c, c)‖N (m, s)) with respect
to c as 0 and solve for c, giving

c =
2m− 1±

√
(2m− 1)2 + 8s

4
.

Since in Poisson distributions, c is always positive, there is only one solution for c:

c =
2m− 1 +

√
(2m− 1)2 + 8s

4
.

Thus the mapping is

o(l)
c =

1

4
(2o(l)

m − 1 +

√
(2o

(l)
m − 1)2 + 8o

(l)
s ).

4 AUC for Link Prediction and Different Data Splitting

In this section, we show the AUC for different models on the link prediction task. As we can see in
Table 1 above, the result in AUC is consistent with that in link rank (as shown in Table 3 of the paper).
NPN is able to achieve much higher AUC than SAE, SDAE, and VAE. Among different variants of
NPN, the Gaussian NPN seems to perform better in datasets with fewer words like Citeulike-t (18.8
words per document). The Poisson NPN, as a more natural choice to model text, achieves the best
performance in datasets with more words (Citeulike-a with 66.6 words per document and arXiv with
88.8 words per document).

For the link prediction task, we also try to split the data in a different way and compare the performance
of different models. Specifically, we randomly select 80% of the observed links (rather than nodes) as
the training set and use the others as the test set. The results are consistent with those for the original
data-splitting method.

5 Hyperparameters and Preprocessing

In this section we provide details on the hyperparameters and preprocessing of the experiments as
mentioned in the paper.

1The relationships between Poisson distributions and Gaussian distributions are described in Theorem 3. The
theorem, however, cannot be directly used here since o

(l)
m and o

(l)
s are not identical. This is why we have to

resort to the KL divergence.
2Note that for Theorem 3 to be valid, c has to be sufficiently large, which is why we do not normalize the

word counts as preprocessing and why we use a large r for the activation v(x) = r(1− exp(−τx)).
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Table 1: AUC on Three Datasets

Method SAE SDAE VAE gamma NPN Gaussian NPN Poisson NPN
Citeulike-a 0.915 0.917 0.929 0.938 0.951 0.956
Citeulike-t 0.891 0.920 0.922 0.936 0.940 0.934
arXiv 0.811 0.840 0.834 0.861 0.878 0.879

5.1 Toy Regression Task

For the toy 1d regression task, we use networks with one hidden layer containing 100 neurons and
ReLU activation, as in [1, 4]. For the Gaussian NPN, we use the KL divergence loss and isotropic
Gaussian priors with precision 10−4 for the weights (and biases). The same priors are used in other
experiments.

5.2 MNIST Classification

For preprocessing, following [2, 1], pixel values are normalized to the range [0, 1]. For the NPN
variants, we use these hyperparameters: minibatch size 128, number of epochs 2000 (the same as
BDK). For the learning rate, AdaDelta is used. Note that since NPN is dropout-compatible, we can
use dropout (with nearly no additional cost) for effective regularization. The training and testing of
dropout NPN are similar to those of the vanilla dropout NN.

5.3 Second-Order Representation Learning

For all models, we preprocess the BOW vectors by normalizing them into the range [0, 1]. Although
theoretically Poisson NPN does not need any preprocessing since Poisson distributions naturally
model word counts, in practice, we find normalizing the BOW vectors will increase both stability
during training and the predictive performance. For simplicity, in the Poisson NPN, r is set to 1 and
τ = 0.1 (these two hyperparameters can be tuned to further improve performance). For the Gaussian
NPN, sigmoid activation is used. The other hyperparameters of NPN are the same as in the MNIST
experiments.

Algorithm 1 Deep Nonlinear NPN

1: Input: The data {(xi,yi)}Ni=1, number of iterations T , learning rate ρt, number of layers L.
2: for t = 1 : T do
3: for l = 1 : L do
4: Compute (o(l)

m ,o
(l)
s ) from (a

(l−1)
m ,a

(l−1)
s ). (o

(l)
c ,o

(l)
d ) = f−1(o

(l)
m ,o

(l)
s ).

5: Compute (a
(l)
m ,a

(l)
s ) from (o

(l)
c ,o

(l)
d ).

6: end for
7: Compute the error E.
8: for l = L : 1 do
9: Compute ∂E

∂W
(l)
m

, ∂E

∂W
(l)
s

, ∂E

∂b
(l)
m

, and ∂E

∂b
(l)
s

. Compute ∂E

∂W
(l)
c

, ∂E

∂W
(l)
d

, ∂E

∂b
(l)
c

, and ∂E

∂b
(l)
d

.

10: end for
11: Update W

(l)
c , W(l)

d , b(l)
c , and b

(l)
d in all layers.

12: end for

6 Details on Variants of NPN

6.1 Gamma NPN

In gamma NPN, parameters W
(l)
c , W(l)

d , b(l)
c , and b

(l)
d can be learned following Algorithm 1.

Specifically, during the feedforward phase, we will compute the error E given the input a(0)
m = x

(a(0)
s = 0) and the parameters (W(l)

c , W(l)
d , b(l)

c , and b
(l)
d ). With the mean a

(l−1)
m and variance

a
(l−1)
s from the previous layer, o(l)

m and o
(l)
s can be computed according to equations in Section 2.2

of the paper, where

(W(l)
m ,W(l)

s ) = (W(l)
c ◦W

(l)
d

−1
,W(l)

c ◦W
(l)
d

−2
), (b(l)

m ,b(l)
s ) = (b(l)

c ◦ b
(l)
d

−1
,b(l)

c ◦ b
(l)
d

−2
). (8)

9



After that we can get the proxy natural parameters using (o
(l)
c ,o

(l)
d ) = (o

(l)
m ◦ o(l)

s

−1
,o

(l)
m

2
◦ o(l)

s ).

With the proxy natural parameters for the gamma distributions over o(l), the mean a
(l)
m and variance

a
(l)
s for the nonlinearly transformed distribution over a(l) would be obtained. As mentioned before,

using traditional activation functions like tanh v(x) = tanh(x) and ReLU v(x) = max(0, x) could
not give us closed-form solutions for the integrals. Following Theorem 1, closed-form solutions are
possible with v(x) = r(1 − exp(−τx)) (r = q and ui(x) = x) where r and τ are constants. This
function has a similar shape with the positive half of v(x) = tanh(x) with r as the saturation point
and τ controlling the slope.

With the computation procedure for the feedforward phase, the gradients of E with respect to
parameters W

(l)
c , W(l)

d , b(l)
c , and b

(l)
d can be derived and used for backpropagation. Note that

to ensure positive entries in the parameters we can use the function k(x) = log(1 + exp(x)) or
k(x) = exp(x− h). For example, we can let b(l)

c = log(1 + exp(b
(l)
c′ )) and treat b(l)

c′ as parameters
to learn instead of b(l)

c .

We can add the KL divergence between the learned distribution and the prior distribution on weights
to the objective function to regularize gamma NPN. If we use an isotropic Gaussian prior N (0, λ−1

s )
for each entry of the weights, we can compute the KL divergence for each entry (between Gam(c, d)
and N (0, λ−1

s )) as:

KL(Gam(x|c, d)‖N (x|0, λ−1
s ))

=

∫
Gam(x|c, d) logGam(x|c, d)dx−

∫
Gam(x|c, d) logN (x|0, λ−1

s )

= − log Γ(c) + (c− 1)ψ(c) + log d− c+
1

2
log(2π)− 1

2
log λs +

1

2
λs

∫
dc

Γ(c)
xc+2−1 exp(−dx)dx

= − log Γ(c) + (c− 1)ψ(c) + log d− c+
1

2
log(2π)− 1

2
log λs +

1

2
λs

Γ(c+ 2)

Γ(c)

= − log Γ(c) + (c− 1)ψ(c) + log d− c+
1

2
log(2π)− 1

2
log λs +

1

2
λsc(c+ 1), (9)

where ψ(x) = d
dx

log Γ(x) is the digamma function.

6.2 Gaussian NPN

For details on the Bayesian nonlinear transformation, please refer to Section 2.3 above. For the KL
divergence between the learned distribution and the prior distribution on weights, we can compute it
as:

KL(N (x|c, d)‖N (x|0, λ−1
s )) =

1

2
(λs + λsc

2 − 1− log λs − log d), (10)

As we can see, the term − 1
2 log d will help to prevent the learned variance d from collapsing to 0 (in

practice we can use 1
2λd(d− h)2, where λd and h are hyperparameters, to approximate this term for

better numerical stability) and the term 1
2c

2 is equivalent to L2 regularization. Similar to BDK, we
can use a mixture of Gaussians as the prior distribution.

6.3 Poisson NPN

The Poisson distribution, as another member of the exponential family, is often used to model counts
(e.g., number of events happened or number of words in a document). Different from the previous
distributions, it has support over nonnegative integers. The Poisson distribution takes the form
p(x|c) = cx exp(−c)

x! with one single natural parameter log c (we use c as the proxy natural parameter).
It is this single natural parameter that makes the learning of a Poisson NPN trickier. For text modeling,
assuming Poisson distributions for neurons is natural because they can model the counts of words
and topics (even super topics) in documents. Here we assume a factorized Poisson distribution
p(o(l)|o(l)

c ) =
∏
j p(o

(l)
j |o

(l)
c,j) and do the same for a(l). To ensure having positive natural parameters

we use gamma distributions for the weights. Interestingly, this design of Poisson NPN can be seen as
a neural analogue of some Poisson factor analysis models [5].

10



Following Algorithm 1, we need to compute E during the feedforward phase given the input a(0)
m = x

(a(0)
s = 0) and the parameters (W(l)

c , W(l)
d , b(l)

c , and b
(l)
d ), the first step being to compute the mean

o
(l)
m and variance o

(l)
s . Since gamma distributions are assumed for the weights, we can compute the

mean and variance of the weights as follows:

(W(l)
m ,W(l)

s ) = (W(l)
c ◦W

(l)
d

−1
,W(l)

c ◦W
(l)
d

−2
), (b(l)

m ,b(l)
s ) = (b(l)

c ◦ b
(l)
d

−1
,b(l)

c ◦ b
(l)
d

−2
). (11)

Having computed the mean o
(l)
m and variance o

(l)
s of the linearly transformed distribution over o(l),

we map them back to the proxy natural parameters o(l)
c . Unfortunately the mean and variance of a

Poisson are the same, which is obviously not the case for o(l)
m and o

(l)
s . Hence we propose to find

o
(l)
c by minimizing the KL divergence of the factorized Poisson distribution p(o(l)|o(l)

c ) and the
Gaussian distribution N (o

(l)
m , diag(o

(l)
s )), resulting in the mapping (see Section 3 for proofs and

justifications):

o(l)
c =

1

4
(2o(l)

m − 1 +

√
(2o

(l)
m − 1)2 + 8o

(l)
s ). (12)

After finding o
(l)
c , the next step in Algorithm 1 is to get the mean a

(l)
m and variance a

(l)
s of the

nonlinearly transformed distribution. As is the case for gamma NPN, traditional activation functions
will not give us closed-form solutions. Fortunately, the activation v(x) = r(1 − exp(−τx)) also
works for Poisson NPN. Specifically,

am = r

+∞∑
x=0

oxc exp(−oc)
x!

(1− exp(−τx)) = r(1− exp((exp(−τ)− 1)oc)),

where the superscript (l) is dropped. Similarly, we have

as = r2(exp((exp(−2τ)− 1)oc)− exp(2(exp(−τ)− 1)oc)).

Full derivation is provided in Section 2.2.

Once we go through L layers to get the proxy natural parameters o(L)
c for the distribution over o(L),

the error E can be computed as the negative log-likelihood. Assuming that the target output y has
nonnegative integers as entries,

E = −1T (y ◦ log o(L)
c − o(L)

c − log(y!)).

For y with real-valued entries, the L2 loss could be used as the error E. Note that if we use the
normalized BOW as the target output, the same error E can be used as the Gaussian NPN. Besides
this loss term, we can add the KL divergence term in Equation (9) to regularize Poisson NPN.

During backpropagation, the gradients are computed to update the parameters W
(l)
c , W(l)

d , b(l)
c ,

and b
(l)
d . Interestingly, since o

(l)
c is guaranteed to be nonnegative, the model still works even if we

directly use W
(l)
m and W

(l)
s as parameters, though the resulting models are not exactly the same.

In the experiments, we use this Poisson NPN for a Bayesian autoencoder and feed the extracted
second-order representations into a Bayesian LR algorithm for link prediction.

7 Derivation of Gradients

In this section we list the gradients used in backpropagation to update the NPN parameters.

7.1 Gamma NPN

In the following we assume an activation function of v(x) = r(1 − exp(−τx)) and use ψ(x) =
d
dx log Γ(x) to denote the digamma function. E is the error we want to minimize.

E → o(L):
∂E

∂o
(L)
c

= ψ(o(L)
c )− log o

(L)
d − logy

∂E

∂o
(L)
d

= −o
(L)
c

o
(L)
d

+ y.

11



o(l) → a(l−1):

∂E

∂a
(l−1)
m

=
∂E

∂o
(l)
m

W(l)
m

T
+ (

∂E

∂o
(l)
s

W(l)
s

T
) ◦ 2a(l−1)

m

∂E

∂a
(l−1)
s

=
∂E

∂o
(l)
s

W(l)
s

T
+

∂E

∂o
(l)
s

(W(l)
m ◦W(l)

m )
T

a(l) → o(l):

∂E

∂o
(l)
c

=
∂E

∂a
(l)
m

◦ (−r(
o

(l)
d

o
(l)
d + τ

)o
(l)
c ◦ log(

o
(l)
d

o
(l)
d + τ

))

+ r2 ∂E

∂a
(l)
s

((
o

(l)
d

o
(l)
d + 2τ

)o
(l)
c ◦ log(

o
(l)
d

o
(l)
d + 2τ

)− 2(
o

(l)
d

o
(l)
d + 2τ

)2o(l)
c ◦ log(

o
(l)
d

o
(l)
d + 2τ

))

∂E

∂o
(l)
c

=
∂E

∂a
(l)
m

◦ (−ro(l)
c ◦ (

o
(l)
d

o
(l)
d + τ

)o
(l)
c −1 ◦ τ

(o
(l)
d + τ)2

)

+ r2 ∂E

∂a
(l)
s

◦ (o(l)
c ◦ (

o
(l)
d

o
(l)
d + 2τ

)o
(l)
c −1 ◦ 2τ

(o
(l)
d + 2τ)2

− 2o(l)
c ◦ (

o
(l)
d

o
(l)
d + τ

)2o(l)
c −1 ◦ τ

(o
(l)
d + τ)2

).

o(l) →W(l),o(l) → b(l):

The gradients with respect to the mean-variance pairs:

∂E

∂W
(l)
m

= a(l−1)
m

T ∂E

∂o
(l)
m

+ (a(l−1)
s

T ∂E

∂o
(l)
s

) ◦ 2W(l)
m

∂E

∂W
(l)
s

= a(l−1)
s

T ∂E

∂o
(l)
s

+ (a(l−1)
m ◦ a(l−1)

m )T
∂E

∂o
(l)
s

∂E

∂b
(l)
m

=
∂E

∂o
(l)
m

∂E

∂b
(l)
s

=
∂E

∂o
(l)
s

The gradients with respect to the proxy natural parameters:

∂E

∂W
(l)
c

=
∂E

∂W
(l)
m

◦ 1

W
(l)
d

+
∂E

∂W
(l)
s

◦ 1

W
(l)
d

2

∂E

∂W
(l)
d

= − ∂E

∂W
(l)
m

◦ W
(l)
c

W
(l)
d

2 − 2
∂E

∂W
(l)
s

◦ W
(l)
c

W
(l)
d

3

∂E

∂b
(l)
c

=
∂E

∂b
(l)
m

◦ 1

b
(l)
d

+
∂E

∂b
(l)
s

◦ 1

b
(l)
d

2

∂E

∂b
(l)
d

= − ∂E

∂b
(l)
m

◦ b
(l)
c

b
(l)
d

2 − 2
∂E

∂b
(l)
s

◦ b
(l)
c

b
(l)
d

3

7.2 Gaussian NPN

In the following we assume the sigmoid activation function and use cross-entropy loss. Other
activation functions and loss could be derived similarly. For the equations below, α = 4 − 2

√
2,

β = − log(
√

2 + 1), ζ2 = π
8 , and κ(x) = (1 + ζ2x)−

1
2 .
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E → o(L):

∂E

∂o
(L)
m

= (σ(κ(o(L)
s ) ◦ o(L)

m )− y) ◦ κ(o(L)
s )

∂E

∂o
(L)
s

= (σ(κ(o(L)
s ) ◦ o(L)

m )− y) ◦ o(L)
m ◦ (− π

16
(1 + πo(L)

s /8)−3/2).

o(l) → a(l−1):

∂E

∂a
(l−1)
m

=
∂E

∂o
(l)
m

W(l)
m

T
+ (

∂E

∂o
(l)
s

W(l)
s

T
) ◦ 2a(l−1)

m

∂E

∂a
(l−1)
s

=
∂E

∂o
(l)
s

W(l)
s

T
+

∂E

∂o
(l)
s

(W(l)
m ◦W(l)

m )
T
.

a(l) → o(l):

∂E

∂o
(l)
m

=
∂E

∂a
(l)
m

◦ dsigmoid(κ(o(l)
s ) ◦ o(l)

m ) ◦ κ(o(l)
s )

+ α
∂E

∂a
(l)
s

◦ dsigmoid(
α(o

(l)
m + β)

(1 + ζ2α2o
(l)
s )1/2

) ◦ (1 + ζ2α2o(l)
s )−1/2

− 2a(l)
m ◦

∂E

∂a
(l)
s

◦ dsigmoid(κ(o(l)
s ) ◦ o(l)

m ) ◦ κ(o(l)
s )

∂E

∂o
(l)
s

=
∂E

∂a
(l)
m

◦ dsigmoid(κ(o(l)
s ) ◦ o(l)

m ) ◦ o(l)
m ◦ (−1

2
ζ2(1 + ζ2o(l)

s )−3/2)

+
∂E

∂a
(l)
s

◦ dsigmoid(
α(o

(l)
m + β)

(1 + ζ2α2o
(l)
s )1/2

) ◦ (α(o(l)
m + β)) ◦ (−1

2
ζ2α2(1 + ζ2α2o(l)

s )−3/2)

− 2a(l)
m ◦

∂E

∂a
(l)
s

◦ dsigmoid(κ(o(l)
s ) ◦ o(l)

m ) ◦ o(l)
m ◦ (−1

2
ζ2(1 + ζ2o(l)

s )−3/2),

where dsigmoid(x) is the gradient of σ(x).

o(l) →W(l),o(l) → b(l):

∂E

∂W
(l)
c

= a(l−1)
m

T ∂E

∂o
(l)
m

+ (a(l−1)
s

T ∂E

∂o
(l)
s

) ◦ 2W(l)
c

∂E

∂W
(l)
d

= a(l−1)
s

T ∂E

∂o
(l)
s

+ (a(l−1)
m ◦ a(l−1)

m )T
∂E

∂o
(l)
s

∂E

∂b
(l)
c

=
∂E

∂o
(l)
m

∂E

∂b
(l)
d

=
∂E

∂o
(l)
s

Note that we directly use the mean and variance as proxy natural parameters here.

7.3 Poisson NPN

In the following we assume the activation function v(x) = r(1−exp(τx)) and use Poisson regression
loss E = 1T (y ◦ log o

(L)
c − o

(L)
c − log(y!)) (the target output y is a vector with nonnegative integer

entries). Gamma distributions are used on weights.

E → o
(L)
c :

∂E

∂o
(L)
c

=
y

o
(L)
c

− 1.
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o
(l)
c → o

(l)
m ,o

(l)
c → o

(l)
s :

∂E

∂o
(l)
m

=
∂E

o
(l)
c

◦ (
1

2
+

1

2
((2o(l)

m − 1)2 + 8o(l)
s )−

1
2 ◦ (2o(l)

m − 1))

∂E

∂o
(l)
s

=
∂E

o
(l)
c

◦ ((2o(l)
m − 1)2 + 8o(l)

s )−
1
2 .

o(l) → a(l−1):
∂E

∂a
(l−1)
m

=
∂E

∂o
(l)
m

W(l)
m

T
+ (

∂E

∂o
(l)
s

W(l)
s

T
) ◦ 2a(l−1)

m

∂E

∂a
(l−1)
s

=
∂E

∂o
(l)
s

W(l)
s

T
+

∂E

∂o
(l)
s

(W(l)
m ◦W(l)

m )
T
.

a(l) → o
(l)
c :

∂E

∂o
(l)
c

= −r(exp(−τ)− 1)
∂E

∂a
(l)
m

◦ exp((exp(−τ)− 1)o(l)
c )

+ r2 ∂E

∂a
(l)
s

◦ ((exp(−2τ)− 1) exp((exp(−2τ)− 1)o(l)
c )

− 2(exp(−τ)− 1) exp(2(exp(−τ)− 1)o(l)
c ))

o(l) →W(l),o(l) → b(l):

The gradients with respect to the mean-variance pairs:

∂E

∂W
(l)
m

= a(l−1)
m

T ∂E

∂o
(l)
m

+ (a(l−1)
s

T ∂E

∂o
(l)
s

) ◦ 2W(l)
m

∂E

∂W
(l)
s

= a(l−1)
s

T ∂E

∂o
(l)
s

+ (a(l−1)
m ◦ a(l−1)

m )T
∂E

∂o
(l)
s

∂E

∂b
(l)
m

=
∂E

∂o
(l)
m

∂E

∂b
(l)
s

=
∂E

∂o
(l)
s

The gradients with respect to the proxy natural parameters:

∂E

∂W
(l)
c

=
∂E

∂W
(l)
m

◦ 1

W
(l)
d

+
∂E

∂W
(l)
s

◦ 1

W
(l)
d

2

∂E

∂W
(l)
d

= − ∂E

∂W
(l)
m

◦ W
(l)
c

W
(l)
d

2 − 2
∂E

∂W
(l)
s

◦ W
(l)
c

W
(l)
d

3

∂E

∂b
(l)
c

=
∂E

∂b
(l)
m

◦ 1

b
(l)
d

+
∂E

∂b
(l)
s

◦ 1

b
(l)
d

2

∂E

∂b
(l)
d

= − ∂E

∂b
(l)
m

◦ b
(l)
c

b
(l)
d

2 − 2
∂E

∂b
(l)
s

◦ b
(l)
c

b
(l)
d

3

8 Figures in the Paper

In this section we provide larger versions of figures in the paper for readers’ convenience.
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Figure 2: Predictive distributions for PBP, BDK, dropout NN, and NPN. The shaded regions corre-
spond to ±3 standard deviations. The black curve is the data-generating function and blue curves
show the mean of the predictive distributions. Red stars are the training data.

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Variance

A
cc

ur
ac

y

Figure 3: Classification accuracy for different variance (uncertainty). Note that ‘1’ in the x-axis
means a(L)

s 1T ∈ [0, 0.04), ‘2’ means a(L)
s 1T ∈ [0.04, 0.08), etc.
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Figure 4: Reconstruction error and estimated uncertainty for each data point in Citeulike-a.
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