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Abstract

Semantic analysis is a core area of natural language understanding that has typically
focused on predicting domain-independent representations. However, such represen-
tations are unable to fully realize the rich diversity of technical content prevalent in a
variety of specialized domains. Taking the standard supervised approach to domain-
specific semantic analysis requires expensive annotation effort for each new domain
of interest. In this thesis, we study how multiple granularities of semantic analysis
can be learned from unlabeled documents within the same domain. By exploiting in-
domain regularities in the expression of text at various layers of linguistic phenomena,
including lexicography, syntax, and discourse, the statistical approaches we propose
induce multiple kinds of structure: relations at the phrase and sentence level, content
models at the paragraph and section level, and semantic properties at the document
level. Each of our models is formulated in a hierarchical Bayesian framework with the
target structure captured as latent variables, allowing them to seamlessly incorporate
linguistically-motivated prior and posterior constraints, as well as multiple kinds of
observations. Our empirical results demonstrate that the proposed approaches can
successfully extract hidden semantic structure over a variety of domains, outperform-
ing multiple competitive baselines.
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Chapter 1

Introduction

Building semantic representations of raw text is a core problem of natural language

understanding. Such representations can come in a variety of forms — extracting

phrase-level relations describing important entities and their interactions, structuring

sentences and paragraphs into semantically cohesive topics, or clustering documents

into groups implying similar semantic properties. These representations all provide

a window into the meaning of the text in a structured manner, facilitating database-

style access and processing. Semantic analysis also serves as a stepping stone toward

other important language processing tasks, such as question answering, information

retrieval, machine translation, and summarization.

Traditional approaches to semantic analysis typically target domain-independent

output representations [4, 55, 123]. Under the usual supervised setup, such systems

can take advantage of a number of annotated corpora. For phrase-level analysis, for

example, resources such as PropBank [101], VerbNet [75], and FrameNet [48] provide

detailed breakdowns of a number of predicate classes into their canonical argument

representations. These resources are produced using heterogeneous corpora with an-

notations describing domain-independent semantic structure, e.g., in FrameNet a

building frame (predicate) is associated with an agent argument who uses compo-

nents to construct a created entity. Note that this frame refers to arbitrary notions

of building across different domains, encompassing everything from architectural con-

structions to abstract assembling of ideas or concepts.
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The newly-released Katana LX is the successor to the Katana II and latest addition
to Sanyos Katana line ... We really like the minimalist design of the LX and our only
complaint is the keypad and cheap materials that Sanyo continues to use ... Sanyos
calling card has long been excellent reception ... The battery is rated at a more than
respectable 4.8 hours (288 minutes) ...

From the minute you pick the Centro up its obvious that the device is totally different
than the Treo ... Overall, we have found the design of the Centro to be excellent. It is
as close to perfect as we have encountered for a full featured smartphone ... From our
perspective the call quality of the Centro was good ... The battery is rated at 4 hours
of talk time ...

The new Touch Cruise, successor to the P3300 Artemis should make you feel like a
discoverer wherever you go ... Its overall appearance has changed, making the phone
much more beautiful and classy compared to the last model ... A nice surprise was the
call quality ... The battery will give you up to 7 hours of talk time ...

Figure 1-1: Excerpts from PhoneArena.com cell phone reviews.

A strong earthquake with a preliminary magnitude of 5.1 rocked part of Sumba island
in eastern Indonesia ... There were no immediate reports of damage or casualties ... He
located the quake’s epicenter in the Sawu sea, between Sumba and Timor island, at a
depth of 61 kilometers (38 miles) ...

Dozens of people were feared buried in the rubble of collapsed buildings Sunday after a
strong earthquake with a preliminary magnitude of 6.0 rocked western Turkey. At least
14 people were killed and 193 others wounded ... Sunday’s quake hit at 5:57 p.m. (1557
GMT) ...

A strong earthquake with numerous aftershocks knocked over buildings and killed at
least 23 people in mountainous southwestern Yunnan province Tuesday morning ... The
quake with a preliminary magnitude of 6.5 struck at about 6:46 am (2246 GMT) ... Beds
shook in the provincial capital of Kunming, about 100 kilometers (60 miles) southeast
of the epicenter in Wuding County ...

Figure 1-2: Excerpts from newswire articles about earthquakes.
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In-domain Semantic Analysis Frequently, however, the sort of semantic knowl-

edge we wish to glean from text is very specialized and domain-specific. For example,

consider the excerpts from a set of cell phone reviews presented in Figure 1-1. The

kinds of semantic information that would aptly characterize the information in these

reviews is very particular to the cell phone domain — for instance, aspects of the

phone’s exterior design, battery information, and the audio quality in calls. Now

consider the excerpts from newswire articles about earthquake incidents in Figure 1-

2. There, target extractions include earthquake magnitude and epicenter, affected

regions, information about casualties and damage, and date and time. These do not

overlap with the semantic properties germane to the cell phone review domain.

Furthermore, these kinds of domain-specific, technical extractions are not encoded

in domain-independent resources, which focus instead on broad classes of entity and

clause interactions prevalent across heterogeneous corpora. For example, the nearest

analogue in FrameNet for the phone-specific battery life is a generic duration relation,

describing a period for any arbitrary eventuality. Such a broad relation encompasses

semantic knowledge irrelevant to battery life, such as the phone’s timeline for avail-

ability or its maximum video recording length.

Taking a supervised approach is costly for domain-specific analysis, due to the

need to annotate target structures repeatedly for every new domain. Research in

the domain-specific task of information extraction, for example, has primarily relied

on several key annotated corpora, including terrorism news reports, citation text,

seminar announcements, and corporate acquisition articles [61, 81, 92]. However,

constructing such training instances requires extensive human labor, typically by an-

notators with expert domain knowledge following carefully designed guidelines [137].

We cannot expect that such an annotation enterprise can be undertaken for every

possible domain of interest. Furthermore, an exploratory mechanism for understand-

ing the structure of complex, unfamiliar domains is itself beneficial, particularly when

domain experts are unavailable.
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Linguistic Intuitions In this thesis, we focus on learning domain-specific and

domain-relevant semantic analyses from raw text in a single domain without labeled

data. We demonstrate that such a setup is feasible for learning a wide range of se-

mantic structures at different levels of granularity. The common insight behind our

various approaches is that documents within a single domain exhibit strong patterns

of textual regularity that can drive the learning process [132]. These regularities

occur at multiple layers of linguistic phenomena. For example, consider again the

excerpts from cell phone reviews shown in Figure 1-1. At the lexicographic layer, a

number of domain-specific terms provide strong cues for identifying different aspects

of the review. Words such as “battery” and “hours,” for instance, are indicative

of battery-related information, whereas “call quality” and “reception” are cues for

reception characteristics. We also observe regularities in the way relations are ex-

pressed at the syntactic level, consistent with prior studies showing that the bulk of

relation instances are verbalized using a small set of syntactic patterns [6, 115]. For

example, the verbalization of battery life is contained within the object of a clause

whose subject is consistently the word “battery”; in two cases, the verb is also the

same word “rated.” At the document structure level, these documents are organized

in similar ways, progressing through a discussion of exterior design, call quality, and

battery life (along with many other topics not shown).

Computational Approach Unsupervised learning approaches have exploited var-

ious forms of these regularities in the past to deduce various forms of semantic struc-

ture [5, 8, 11, 23, 63, 83]. Clustering-based approaches [8, 83] use manually defined

similarity metrics to drive induction. With the breadth of regularities we consider,

spanning lexicography, syntax, and discourse, it is difficult to produce an appropriate

domain-independent metric that can properly balance different sources of knowledge.

Instead, we take a generative Bayesian approach that uses latent variables to

stochastically represent semantic structure, akin to various previous unsupervised

models [11, 23, 63]. Compared to previous work, the approaches we propose utilize a

broader range of knowledge sources to drive higher-accuracy induction, including:

24



• Deeper regularities that capture nuances of semantic structure coherence not

exploited by past approaches,

• Declaratively-specified constraints that explicitly express linguistically-informed

preferences for certain kinds of output structures, and

• Noisy annotations in the form of user-generated semantic metadata provided

by the documents’ authors in conjunction with the text.

To properly incorporate these disparate knowledge sources, our approaches take full

advantage of the flexibility of the Bayesian framework by using:

• Prior distributions that are selected for their ability to directly encode lin-

guistic intuitions,

• Posterior constraints to explicitly eliminate analyses that contradict declar-

ative knowledge about the appropriate output structures, and

• Model structures that generate different sets of observed data from shared

latent structures, allowing multiple information sources to be easily unified in

a principled manner.

Furthermore, our proposed approaches enjoy all the other benefits of a fully Bayesian

generative framework, such as a rich variety of principled approximate inference tech-

niques for performing parameter estimation.

1.1 Tasks

Since we are interested in inducing a range of semantic structures using different

kinds of constraints to guide unsupervised learning, we tackle three tasks at different

levels of textual granularity. The common thread linking each of these models is the

incorporation of linguistic knowledge in a principled manner. Here, we describe the

different tasks, identify the regularities and constraints we exploit in modeling, and

summarize our approaches and empirical findings.
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1.1.1 Content Modeling

Task Description The goal of content modeling is to uncover the hidden topic

structure of documents at the paragraph and section level. Content models assign

each discourse unit of a document (typically a paragraph in our work) to a numeric

topic value; discourse units in different documents with the same topic assignment

should be semantically related. We note that these topics should reflect domain-

specific structure, rather than the broad discourse relations encoded by domain-

independent annotated resources such as the Penn Discourse Treebank [107]. For

example, for the cell phone reviews possible topics could correspond to hardware de-

sign, call quality, and battery. Content modeling is an important step in a variety of

linguistic processing pipelines, contributing in particular to summarization [11] and

text analysis applications [119].

Regularities The regularities we rely on for content modeling are at the word and

document structure levels. First, the same topic should share similar word choices

across documents, e.g., a battery topic would be associated with words “battery”

and “hours.” At the document structure level, we observe that in-domain documents

exhibit recurring patterns in topic organization. For example, a cell phone review

will dwell longer on hardware design and less on infrequently used features such as

voice dialing, and will typically present the former before the latter. This global

regularity in ordering is richer than the Markovian constraints exploited by previous

work [11, 63, 108].

Approach and Findings The content model that we propose directly captures

regularity in organizational regularity by biasing the model toward content struc-

tures coherent in topic organization. In the generative process, the hidden variables

encode both the frequency of topics and their order of occurrence within a document.

The coherence bias is instituted via careful choices of the hidden variable priors. In

particular, topic frequencies are drawn from a common multinomial distribution and

topic orderings from a common Generalized Mallows Model, a simple and compact
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distribution over topic permutations that places highest probability mass on similar

orderings. Parameter estimation is accomplished with an efficient collapsed Gibbs

sampler that learns the hidden variables given document text. We apply the model

to inter-document paragraph alignment, intra-document topic segmentation, and in-

ductive information ordering, and find that the model outperforms previous state-

of-the-art baselines on each task. Our experiments also show that the Generalized

Mallows Model component is successful at capturing ordering regularity. In particu-

lar, replacing it with a more or less tightly constrained distribution over permutations

degrades performance.

1.1.2 Relation Discovery

Task Description The task of relation discovery is to find important clusters of

phrases across documents that characterize domain-relevant attributes of the text.

For example, possible relations for the cell phone reviews include battery life and call

quality, with corresponding values “4.8 hours” and “excellent.” Note the difference in

granularity between content modeling and relation modeling — content topics tend

to characterize general themes of a section of text (e.g., this paragraph discusses the

battery), while relations identify individual facts and attributes (e.g., this phrase gives

the precise value of the battery life). Relation analysis provides a database-oriented

view of text that supports a variety of applications such as question answering and

structured search.

Regularities Regularities in relation expression occur in lexicography, syntax, and

document structure. At the lexicographic level, instances of a single relation share

word attributes, such as having numerals or proper nouns. Furthermore, these in-

stances are typically situated near words in the same sentence that are likely to be

“evocative” of the relation, such as “battery” for battery life. We also observe that

the relation-evoking word and relation phrase will typically be linked with particular

syntactic patterns, e.g., the word “battery” being the grammatical subject of the verb

whose object is battery life. Finally, as with content modeling, across well-structured

27



documents the same relation information tends to occur in the same relative locations

— for example, call quality information at the beginning of documents, and battery

life toward the end. Previous work [5, 104] has not exploited regularities at all these

levels of textual phenomena simultaneously.

Approach and Findings Our approach to relation discovery integrates all these

sources of evidence in a unified model through a combination of modeling techniques.

Relations are encoded as clusters of related indicator words and argument phrases

across documents. Indicators represent relation-evoking words, while arguments com-

prise the actual phrase values of the relations. We propose a generative model whose

structure encourages coherence in lexicographic and syntactic properties of the indi-

cator and argument values, as well as consistency in the relative position of a rela-

tion within each document. Using the posterior regularization technique, we impose

additional domain-independent declarative constraints on relation expression during

variational inference, particularly on how indicators and arguments are syntactically

linked. Our results show that the model is effective at discovering relation types and

their instances, and that further performance improvements can be achieved by in-

troducing simple additional domain-specific declarative knowledge. We also find that

the declarative constraints are crucial for high accuracy, as removing any of them

hurts performance.

1.1.3 Semantic Property Induction

Task Description Semantic property induction concerns finding clusters of docu-

ments that express semantically similar domain-specific characteristics. For example,

we may identify that some subset of the cell phone reviews implies the property of

good audio quality, while some other subset supports bad price. Unlike both rela-

tion and content modeling, the goal here is to glean semantic properties relevant to a

whole document. Identifying semantic properties provides a way of concisely distilling

documents to their key points, thus facilitating rapid browsing and multi-document

summarization.
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In our semantic property setup, we assume access to an additional source of noisy

information in the form of free-text annotations. For reviews, these come in the form

of pros/cons keyphrases written by the document author to summarize their own

review; for blog postings, tags are an example of such annotations. We use these

free-text annotations as a complementary source of observed information to improve

semantic property induction.

Regularities Here, the regularities that drive learning are at both the word and

keyphrase levels. Documents expressing similar properties should use similar words,

such as “expensive” or “overpriced” for bad price. They should also have similar

keyphrase annotations, such as “way too expensive” or “not a good value.” A key

challenge of using free-text annotations is that we do not know a priori which different

keyphrases express the same semantic property.

Approach and Findings The model we propose addresses uncertainty in keyphrase

clusters and document text by modeling both jointly, learning a single set of semantic

properties from both kinds of observed data. The key technical challenge in modeling

keyphrases is that they are fraught with inconsistent phrase usage and are frequently

incomplete representations of the corresponding text. To properly learn from such

annotations, we propose a Bayesian model that induces a hidden clustering of the

keyphrases linked to the topic word distributions, and a Gibbs sampling algorithm

for parameter estimation of the model. By jointly inferring the clustering and the

word distributions, our model learns parallel views of each topic as both keyphrases

and words. Our results show that this technique is effective for both predicting prop-

erties of individual documents, as well as summarizing multiple documents, compared

to baselines using standard supervised approaches. Furthermore, we demonstrate that

joint learning of keyphrase clusters and word models is superior to learning either in

isolation.
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1.2 Contributions

Using Broad Linguistic Knowledge for Semantic Analysis The main contri-

bution of this thesis is a demonstration that multiple forms of linguistically-motivated

regularities, situated in a unified, principled probabilistic formalism, can drive the in-

duction of a wide range of useful domain-specific semantic structures. While such

regularities have been used for unsupervised learning in the past, the models we pro-

pose apply a wider range of previously explored constraints and exploit new linguistic

insights to drive learning. Our content model looks at global regularities in content

selection and ordering, above the level of the local transition properties exploited by

previous work [11, 63]. Our relation model uses both model structure and posterior

constraints to simultaneously learn from regularities at all three levels of lexicogra-

phy, syntax, and document structure, more than what has been studied by earlier

approaches [5, 83, 104]. Our semantic properties model discovers latent topics that

have parallel views as both language models and keyphrase annotation distributions,

a richer representation than previous word-only topic modeling approaches [23, 125]

that nonetheless does not require manual expert annotations [21]. As a consequence

of our rich modeling, our models are able to learn more robust and accurate structures

that outperform a variety of previous approaches.

Technical Modeling Insights A secondary contribution of this thesis is the tech-

nical modeling ideas underlying our approaches:

• Our content model is the first NLP work to apply the Generalized Mallows

Model, a popular probability model over permutations previously used for learn-

ing rankings, to the problem of modeling linguistic orderings. We expect that

the Mallows model can be reused as a component of other ordering-sensitive lin-

guistic tasks, such as semantic role labeling, multilingual part-of-speech tagging,

and grounded language acquisition.

• Our relation model demonstrates that domain-independent meta-constraints,

applied via posterior regularization, can guide the induction of relation types
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in conjunction with a generative process over words and documents. This work

suggests that the posterior regularization framework is a promising technique for

encoding domain-independent declarative linguistic knowledge for other tasks,

such as sentiment analysis and summarization.

• Our results with the semantic properties model show that the signal contained

within either long prose or summary phrases can help disambiguate the noise

in the other. This finding makes a case for the joint generative modeling of

multiple sources of evidence.

1.3 Outline

The remainder of this thesis proceeds as follows.

• Chapter 2 describes our approach to content modeling, focusing on how the

Generalized Mallows Model is a particularly suitable choice of distribution for

topic orderings.

• Chapter 3 presents the details of our relation discovery model, and explains

how the posterior regularization technique is applied for enforcing declarative

constraints.

• Chapter 4 explains our model for learning semantic properties, focusing on

the noise inherent to free-text annotations and how they can be mitigated with

joint modeling.

• Chapter 5 summarizes the main points of this thesis and presents avenues for

future work.
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Chapter 2

Learning Content Structure using

Latent Permutations

In this chapter, we describe an unsupervised approach to learning document-level con-

tent structure, a central problem of discourse analysis. This structure encompasses

the topics that are addressed and the order in which these topics appear across doc-

uments in a single domain. Modeling content structure is particularly germane for

domains that exhibit recurrent patterns in content organization, such as news and en-

cyclopedia articles. Our model aims to induce, for example, that articles about cities

typically contain information about History, Economy, and Transportation, and that

descriptions of History usually precede those of Transportation.

Previous work [11, 46] has demonstrated that content models can be learned from

raw unannotated text, and are useful in a variety of text processing tasks such as

summarization and information ordering. However, the expressive power of these

approaches is limited: by taking a Markovian view on content structure, they only

model local regularities in topic organization, such as topic transitions. This short-

coming is substantial since many discourse regularities described in the literature are

global in nature [58, 120].

Our model of content structure explicitly represents two important global con-

straints on topic selection.1 The first constraint posits that each document follows a

1We will use “topic” to refer interchangeably to both the discourse unit and language model
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progression of coherent, nonrecurring topics [64]. Following the example above, this

constraint captures the notion that a single topic, such as History, is expressed in a

contiguous block within the document, rather than spread over disconnected sections.

The second constraint states that documents from the same domain tend to exhibit

regularity in organization, i.e., they present similar topics in similar orders [7, 132].

This constraint guides toward selecting sequences with similar topic ordering, such

as placing History before Transportation. While these constraints are not universal

across all genres of human discourse, they are applicable to many important domains,

ranging from newspaper text to product reviews.2

We present a latent topic model over in-domain documents that encodes these dis-

course constraints by positing a single distribution over the entirety of a document’s

content ordering. Specifically, we represent content structure as a permutation over

topics. This naturally enforces the first constraint since a permutation does not al-

low topic repetition. To learn the distribution over permutations, we employ the

Generalized Mallows Model (GMM). This model concentrates probability mass on

permutations close to a centroid permutation. Permutations drawn from this distri-

bution are likely to be similar, allowing it to capture the regularities expressed by

the second constraint. A major benefit of the GMM is its compact parameterization

using a set of real-valued dispersion values. These dispersion parameters allow the

model to learn how strongly to bias each document’s topic ordering toward the cen-

troid permutation. Furthermore, the number of parameters grows linearly with the

number of topics, thus sidestepping tractability problems typically associated with

the large discrete space of permutations.

We position the GMM within a larger hierarchical Bayesian model that explains

how a set of in-domain documents is generated. For each document, the model posits

that a topic ordering is drawn from the GMM, and that a set of topic frequencies is

drawn from a multinomial distribution. Together, these draws specify the document’s

entire topic structure, in the form of topic assignments for each textual unit. As with

views of a topic.
2An example of a domain where the first constraint is violated is dialogue. Texts in such domains

follow the stack structure that allows topics to recur throughout a conversation [62].
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other topic models, such as our semantic properties model (Chapter 4), words are

then drawn from language models indexed by topic. This model structure encourages

probability mass to be placed on content structures that are highly regular within

a domain, both in the relative frequency of topics in a document as well as their

ordering. To estimate the model posterior, we perform Gibbs sampling over the topic

structures and GMM dispersion parameters while analytically integrating out the

remaining hidden variables.

We apply our model to three complex document-level tasks. First, in the alignment

task, we aim to discover paragraphs across different documents that share the same

topic. In our experiments, our permutation-based model outperforms the Hidden

Topic Markov Model [63] by a wide margin — the gap averaged 28% percentage

points in F-score. Second, we consider the segmentation task, where the goal is to

partition each document into a sequence of topically coherent segments. The model

yields an average Pk measure of 0.231, a 7.9% percentage point improvement over a

competitive Bayesian segmentation method that does not take global constraints into

account [44]. Third, we apply our model to the ordering task, that is, sequencing

a held out set of textual units into a coherent document. As with the previous

two applications, the difference between our model and a state-of-the-art baseline is

substantial: our model achieves an average Kendall’s τ of 0.602, compared to a value

of 0.267 for the HMM-based content model [11].3

The success of the permutation-based model in these three complementary tasks

demonstrates its flexibility and effectiveness, and attests to the versatility of the gen-

eral document structure induced by our model. We find that encoding global ordering

constraints into topic models makes them more suitable for discourse-level analysis,

in contrast to the local decision approaches taken by previous work. Furthermore,

in most of our evaluation scenarios, our full model yields significantly better results

than its simpler variants that either use a fixed ordering or are order-agnostic.

The remainder of this chapter proceeds as follows. In Section 2.1, we describe how

3See Sections 2.5.3 and 2.5.4 for definitions of the segmentation and ordering evaluation metrics,
respectively.
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our approach relates to previous work in both topic modeling and statistical discourse

processing. We provide a problem formulation in Section 2.2.1 followed by an overview

of our content model in Section 2.2.2. At the heart of this model is the distribution

over topic permutations, for which we provide background in Section 2.2.3, before

employing it in a formal description of the model’s probabilistic generative story in

Section 2.2.4. Section 2.3 discusses the estimation of the model’s posterior distribution

given example documents using a collapsed Gibbs sampling procedure. Techniques

for applying our model to the three tasks of alignment, segmentation, and ordering

are explained in Section 2.4. We then evaluate our model’s performance on each of

these tasks in Section 2.5 before concluding by touching upon directions for future

work in Section 2.6.

2.1 Related Work

We describe two bodies of previous work related to our approach. From the algorith-

mic perspective our work falls into a broad class of topic models. While earlier work

on topic modeling took the bag of words view of documents, many recent approaches

have expanded topic models to capture some structural constraints. In Section 2.1.1,

we describe these extensions and highlight their differences from our model. On the

linguistic side, our work relates to research on modeling text structure in statistical

discourse processing. We summarize this work in Section 2.1.2, drawing comparisons

with the functionality supported by our model.

2.1.1 Topic Models

Probabilistic topic models, originally developed in the context of language modeling,

have today become popular for a range of NLP applications, such as text classification

and document browsing. Topic models posit that a latent state variable controls the

generation of each word. Their parameters are estimated using approximate inference

techniques such as Gibbs sampling and variational methods. In traditional topic

models such as Latent Dirichlet Allocation (LDA) [23, 59], documents are treated

36



as bags of words, where each word receives a separate topic assignment and words

assigned to the same topic are drawn from a shared language model. While the bag of

words representation is sufficient for some applications, in many cases this structure-

unaware view is too limited. Previous research has considered extensions of LDA

models in two orthogonal directions, covering both intrasentential and extrasentential

constraints.

Modeling Intrasentential Constraints

One promising direction for improving topic models is to augment them with con-

straints on topic assignments of adjoining words within sentences. For example, Grif-

fiths et al. [60] propose a model that jointly incorporates both syntactic and semantic

information in a unified generative framework and constrains the syntactic classes of

adjacent words. In their approach, the generation of each word is controlled by two

hidden variables, one specifying a semantic topic and the other specifying a syntactic

class. The syntactic class hidden variables are chained together as a Markov model,

whereas semantic topic assignments are assumed to be independent for every word.

As another example of intrasentential constraints, Wallach [130] proposes a way

to incorporate word order information, in the form of bigrams, into an LDA-style

model. In this approach, the generation of each word is conditioned on both the

previous word and the topic of the current word, while the word topics themselves

are generated from per-document topic distributions as in LDA. This formulation

models text structure at the level of word transitions, as opposed to the work of

Griffiths et al. [60] where structure is modeled at the level of hidden syntactic class

transitions.

Our focus is on modeling high-level document structure in terms of its semantic

content. As such, our work is complementary to methods that impose structure on

intrasentential units; it should be possible to combine our model with constraints on

adjoining words.

37



Modeling Extrasentential Constraints

Given the intuitive connection between the notion of topic in LDA and the notion

of topic in discourse analysis, it is natural to assume that LDA-like models can be

useful for discourse-level tasks such as segmentation and topic classification. This hy-

pothesis motivated research on models where topic assignment is guided by structural

considerations [108, 63, 125], particularly relationships between the topics of adjacent

textual units. Depending on the application, a textual unit may be a sentence, para-

graph, or speaker utterance. A common property of these models is that they bias

topic assignments to cohere within local segments of text.

Models in this category vary in terms of the mechanisms used to encourage local

topic coherence. For instance, the model of Purver et al. [108] biases the topic distri-

butions of adjacent utterances (textual units) in discourse transcripts to be similar.

Their model generates each utterance from a mixture of topic language models. The

parameters of this topic mixture distribution is assumed to follow a type of Marko-

vian transition process — specifically, with high probability an utterance u will have

the same topic distribution as the previous utterance u − 1; otherwise, a new topic

distribution is drawn for u. Thus, each textual unit’s topic distribution only depends

on the previous textual unit, controlled by a parameter indicating whether a new

topic distribution is drawn.

In a similar vein, the Hidden Topic Markov Model (HTMM) [63] posits a generative

process where each sentence (textual unit) is assigned a single topic, so that all of

the sentence’s words are drawn from a single language model. As with the model

of Purver et al., topic transitions between adjacent textual units are modeled in a

Markovian fashion — specifically, sentence i has the same topic as sentence i − 1

with high probability, or receives a new topic assignment drawn from a shared topic

multinomial distribution.

In both HTMM and our model, the assumption of a single topic per textual unit

allows sections of text to be related across documents by topic. In contrast, Purver

et al.’s model is tailored for the task of segmentation, so each utterance is drawn
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from a mixture of topics. Thus, their model does not capture how utterances are

topically aligned across in-domain documents. More importantly, both HTMM and

the model of Purver et al. are only able to make local decisions regarding topic

transitions, and thus have difficulty respecting long-range discourse constraints such

as topic contiguity. Our model instead takes a global view on topic assignments for all

textual units by explicitly generating an entire document’s topic ordering from one

joint distribution. As we show later in this chapter, this global view yields significant

performance gains.

More recently, the Multi-Grain Latent Dirichlet Allocation (MGLDA) model [125]

has also studied topic assignments at the level of sub-document textual units. In

MGLDA, a set of local topic distributions is induced for each sentence, dependent

on a window of local context around the sentence. Individual words are then drawn

either from these local topics or from document-level topics as in standard LDA.

MGLDA represents local context using a sliding window, where each window frame

comprises overlapping short spans of sentences. In this way, local topic distributions

are shared between sentences in close proximity.

MGLDA can represent more complex topical dependencies than the models of

Purver et al. and Gruber et al., because the window can incorporate a much wider

swath of local context than two adjacent textual units. However, MGLDA is unable

to encode longer range constraints, such as contiguity and ordering similarity, be-

cause sentences not in close proximity are only loosely connected through a series of

intervening window frames. In contrast, our work is specifically oriented toward these

long-range constraints, necessitating a whole-document notion of topic assignment.

2.1.2 Modeling Ordering Constraints in Discourse Analysis

The global constraints encoded by our model are closely related to research in dis-

course on information ordering with applications to text summarization and gener-

ation [9, 46, 73, 79]. The emphasis of that body of work is on learning ordering

constraints from data, with the goal of reordering new text from the same domain.

These methods build on the assumption that recurring patterns in topic ordering can
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be discovered by analyzing patterns in word distribution. The key distinction between

prior methods and our approach is that existing ordering models are largely driven by

local constraints with limited ability to capture global structure. Below, we describe

two main classes of probabilistic ordering models studied in discourse processing.

Discriminative Models

Discriminative approaches aim directly to predict an ordering for a given set of sen-

tences. Modeling the ordering of all sentences simultaneously leads to a complex

structure prediction problem. In practice, however, a more computationally tractable

two-step approach is taken: first, probabilistic models are used to estimate pairwise

sentence ordering preferences; next, these local decisions are combined to produce a

consistent global ordering [3, 79]. Training data for pairwise models is constructed

by considering all pairs of sentences in a document, with supervision labels based

on how they are actually ordered. Prior work has demonstrated that a wide range

of features are useful in these classification decisions [24, 68, 73, 79]. For instance,

Lapata [79] demonstrated that lexical features, such as verb pairs from the input

sentences, serve as a proxy for plausible sequences of actions, and thus are effective

predictors of well-formed orderings. During the second stage, these local decisions

are integrated into a global order that maximizes the number of consistent pairwise

classifications. Since finding such an ordering is NP-hard [40], various approximations

are used in practice [3, 79].

While these two-step discriminative approaches can effectively leverage informa-

tion about local transitions, they do not provide any means for representing global

constraints. In more recent work, Barzilay and Lapata [10] demonstrated that certain

global properties can be captured in the discriminative framework using a reranking

mechanism. In this set-up, the system learns to identify the best global ordering

given a set of n possible candidate orderings. The accuracy of this ranking approach

greatly depends on the quality of selected candidates. Identifying such candidates is

a challenging task given the large search space of possible alternatives.

The approach presented in this work differs from existing discriminative models
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in two ways. First, our model represents a distribution over all possible global order-

ings. Thus, we can use sampling mechanisms that consider this whole space rather

than being limited to a subset of candidates as with ranking models. The second dif-

ference arises out of the generative nature of our model. Rather than focusing on the

ordering task, our order-aware model effectively captures a layer of hidden variables

that explain the underlying structure of document content. Thus, it can be effectively

applied to a wider variety of applications, including those where sentence ordering is

already observed, by appropriately adjusting the observed and hidden components of

the model.

Generative Models

Our work is closer in technique to generative models that treat topics as hidden

variables. One instance of such work is the Hidden Markov Model (HMM)-based

content model [11]. In their model, states correspond to topics and state transitions

represent ordering preferences; each hidden state’s emission distribution is then a

language model over words. Thus, similar to our approach, these models implicitly

represent patterns at the level of topical structure. The HMM is then used in the

ranking framework to select an ordering with the highest probability.

In more recent work, Elsner et al. [46] developed a search procedure based on

simulated annealing that finds a high likelihood ordering. In contrast to ranking-

based approaches, their search procedure can cover the entire ordering space. On the

other hand, as we show in Section 2.4.3, we can define an ordering objective that can

be maximized very efficiently over all possible orderings during prediction once the

model parameters have been learned. Specifically, for a bag of p paragraphs, only

O(pK) calculations of paragraph probabilities are necessary, where K is the number

of topics.

Another distinction between our proposed model and prior work is in the way

global ordering constraints are encoded. In a Markovian model, it is possible to induce

some global constraints by introducing additional local constraints. For instance,

topic contiguity can be enforced by selecting an appropriate model topology (e.g., by
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augmenting hidden states to record previously visited states). However, other global

constraints, such as similarity in overall ordering across documents, are much more

challenging to represent. By explicitly modeling the topic permutation distribution,

we can easily capture this kind of global constraint, ultimately resulting in more

accurate topic models and orderings. As we show later in this chapter, our model

substantially outperforms the approach of Barzilay and Lee [11] on the information

ordering task to which they applied the HMM-based content model.

2.2 Model

In this section, we describe our problem formulation and proposed model.

2.2.1 Problem Formulation

Our content modeling problem can be formalized as follows. We take as input a

corpus {d1, . . . dD} of in-domain documents, and a specification of a number of top-

ics K.4 Each document d is comprised of an ordered sequence of Nd paragraphs

(pd,1, . . . , pd,Nd). As output, we predict a single topic assignment zd,p ∈ {1, . . . , K}

for each paragraph p.5 These z values should reflect the underlying content organiza-

tion of each document — related content discussed within each document, and across

separate documents, should receive the same z value.

Our formulation shares some similarity with the standard LDA setup in that a

common set of topics is assigned across a collection of documents. The difference is

that in LDA each word’s topic assignment is conditionally independent, following the

bag of words view of documents, whereas our constraints on how topics are assigned

let us connect word distributional patterns to document-level topic structure.
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θ – parameters of distribution over
topic counts

ρ – parameters of distribution over
topic orderings

t – vector of topic counts

v – vector of inversion counts

π – topic ordering

z – paragraph topic assignment

β – language model parameters of
each topic

w – document words

K – number of topics

D – number of documents in corpus

Nd – number of paragraphs in
document d

Np – number of words in paragraph p

θ ∼ Dirichlet(θ0)

for j = 1 . . . K − 1
ρj ∼ GMM0(ρ0, ν0)

for k = 1 . . . K
βk ∼ Dirichlet(β0)

for each document d
td ∼ Multinomial(θ)
vd ∼ GMM(ρ)
πd = Compute-π(vd)
zd = Compute-z(td, πd)

for each paragraph p in d
for each word w in p

w ∼ Multinomial(βzd,p)

Algorithm: Compute-π
Input: Inversion count vector v
Output: Permutation π

Create an empty list π
π[1]← K
for j = K − 1 down to 1

for i = K − 1 down to v[j]
π[i+ 1]← π[i]

π[v[j]]← j

Algorithm: Compute-z
Input: Topic counts t, permutation π
Output: Paragraph topic vector z

Create an empty list z
end← 1
for k = K to 1

for i = 1 to t[π[k]]
z[end]← π[k]
end← end+ 1

Figure 2-1: The plate diagram and generative process for our content model, along
with a table of notation for reference purposes. Shaded circles in the figure denote
observed variables, and squares denote hyperparameters. The dotted arrows indicate
that π is constructed deterministically from v according to algorithm Compute-π,
and z is constructed deterministically from t and π according to Compute-z.
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2.2.2 Model Overview

We propose a generative Bayesian model that explains how a corpus of D documents

can be produced from a set of hidden variables. At a high level, the model first

selects how frequently each topic is expressed in the document, and how the topics

are ordered. These topics then determine the selection of words for each paragraph.

Notation used in this and subsequent sections is summarized in Figure 2-1.

For each document d with Nd paragraphs, we separately generate a bag of topics

td and a topic ordering πd. The unordered bag of topics td, which contains Nd

elements, expresses how many paragraphs of the document are assigned to each of

the K topics. Equivalently, td can be viewed as a vector of occurrence counts for each

topic, with zero counts for topics that do not appear at all. Variable td is constructed

by taking Nd samples from a distribution over topics θ, a multinomial representing

the probability of each topic being expressed. Sharing θ between documents captures

the notion that certain topics are more likely across most documents in the corpus.

The topic ordering variable πd is a permutation over the numbers 1 through K

that defines the order in which topics appear in the document. We draw πd from

the Generalized Mallows Model, a distribution over permutations that we explain in

Section 2.2.3. As we will see, this particular distribution biases the permutation se-

lection to be close to a single centroid, reflecting the discourse constraint of preferring

similar topic structures across documents.

Together, a document’s bag of topics td and ordering πd determine the topic

assignment zd,p for each of its paragraphs. For example, in a corpus with K = 4, a

seven-paragraph document d with td = {1, 1, 1, 1, 2, 4, 4} and πd = (2, 4, 3, 1) would

induce the topic sequence zd = (2, 4, 4, 1, 1, 1, 1). The induced topic sequence zd

can never assign the same topic to two unconnected portions of a document, thus

satisfying the constraint of topic contiguity.

We assume that each topic k is associated with a language model βk. The words

4A nonparametric extension of this model would be to also learn K.
5In well structured documents, paragraphs tend to be internally topically consistent [64], so

predicting one topic per paragraph is sufficient. However, we note that our approach can be applied
with no modifications to other levels of textual granularity such as sentences.
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of a paragraph assigned to topic k are then drawn from that topic’s language model

βk. This portion is similar to standard LDA in that each topic relates to its own

language model. However, unlike LDA, our model enforces topic coherence for an

entire paragraph rather than viewing a paragraph as a mixture of topics.

Before turning to a more formal discussion of the generative process, we first

provide background on the permutation model for topic ordering.

2.2.3 The Generalized Mallows Model over Permutations

A central challenge of the approach we have presented is modeling the distribution

over possible topic orderings. For this purpose we use the Generalized Mallows Model

(GMM) [51, 77, 82, 95], which exhibits two appealing properties in the context of

this task. First, the model concentrates probability mass on some centroid ordering

and small perturbations (permutations) of that ordering. This characteristic matches

our constraint that documents from the same domain exhibit structural similarity.

Second, its parameter set scales linearly with the number of elements being ordered,

making it sufficiently constrained and tractable for inference.

We first describe the standard Mallows Model over orderings [87]. The Mallows

Model takes two parameters, a centroid ordering σ and a dispersion parameter ρ. It

then sets the probability of any other ordering π to be proportional to e−ρd(π,σ), where

d(π, σ) represents some distance metric between orderings π and σ. Frequently, this

metric is the Kendall τ distance, the minimum number of swaps of adjacent elements

needed to transform ordering π into the centroid ordering σ. Thus, orderings which

are close to the centroid ordering will have high probability, while those in which

many elements have been moved will have less probability mass.

The Generalized Mallows Model, first introduced by Fligner and Verducci [51],

refines the standard Mallows Model by adding an additional set of dispersion param-

eters. These parameters break apart the distance d(π, σ) between orderings into a set

of independent components. Each component can then separately vary in its sensitiv-

ity to perturbation. To tease apart the distance function into components, the GMM

distribution considers the inversions required to transform the centroid ordering into
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an observed ordering. We first discuss how these inversions are parameterized in the

GMM, then turn to the distribution’s definition and characteristics.

Inversion Representation of Permutations

Typically, permutations are represented directly as an ordered sequence of elements

— for example, (3, 1, 2) represents permuting the initial order by placing the third

element first, followed by the first element, and then the second. The GMM utilizes an

alternative permutation representation defined by a vector (v1, . . . , vK−1) of inversion

counts with respect to the identity permutation (1, . . . , K). Term vj counts the

number of times when a value greater than j appears before j in the permutation.

Note that the jth inversion count vj can only take on integer values from 0 to K − j

inclusive. Thus the inversion count vector has only K − 1 elements, as vK is always

zero. For instance, given the standard form permutation (3, 1, 5, 6, 2, 4), v2 = 3

because 3, 5, and 6 appear before 2, and v3 = 0 because no numbers appear before

it; the entire inversion count vector would be (1, 3, 0, 2, 0). Likewise, our previous

example permutation (2, 4, 3, 1) maps to inversion counts (3, 0, 1). The sum of all

components of an entire inversion count vector is simply that ordering’s Kendall τ

distance from the centroid ordering.

A significant appeal of the inversion representation is that every valid, distinct

vector of inversion counts corresponds to a distinct permutation and vice versa. To

see this, note that for each permutation we can straightforwardly compute its inversion

counts. Conversely, given a sequence of inversion counts, we can construct the unique

corresponding permutation. We insert items into the permutation, working backwards

from item K. Assume that we have already placed items j + 1 through K in the

proper order. To insert item j, we note that exactly vj of items j + 1 to K must

precede it, meaning that it must be inserted after position vj in the current order

(see the Compute-π algorithm in Figure 2-1). Since there is only one place where j

can be inserted that fulfills the inversion counts, induction shows that exactly one

permutation can be constructed to satisfy the given inversion counts.

In our model, we take the centroid topic ordering to always be the identity ordering
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(1, . . . , K). Because the topic numbers in our task are completely symmetric and not

linked to any extrinsic meaning, fixing the global ordering to a specific arbitrary value

does not sacrifice any representational power. In the general case of the GMM, the

centroid ordering is a parameter of the distribution.

Probability Mass Function

The GMM assigns probability mass to a particular order based on how that order is

permuted from the centroid ordering. More precisely, it associates a distance with ev-

ery permutation, where the centroid ordering has distance zero and permutations with

many inversions with respect to this canonical ordering have larger distance. The dis-

tance assignment is based on K− 1 real-valued dispersion parameters (ρ1, . . . , ρK−1).

The distance of a permutation with inversion counts v is then defined to be
∑

j ρjvj.

The GMM’s probability mass function is exponential in this distance:

GMM(v; ρ) =
e−

∑
j ρjvj

ψ(ρ)

=
K−1∏
j=1

e−ρjvj

ψj(ρj)
, (2.1)

where ψ(ρ) =
∏

j ψj(ρj) is a normalization factor with value:

ψj(ρj) =
1− e−(K−j+1)ρj

1− e−ρj
. (2.2)

Setting all ρj equal to a single value ρ recovers the standard Mallows Model with a

Kendall τ distance function. The factorization of the GMM into independent proba-

bilities per inversion count makes this distribution particularly easy to apply; we will

use GMMj to refer to the jth multiplicand of the probability mass function, which is

the marginal distribution over vj:

GMMj(vj; ρj) =
e−ρjvj

ψj(ρj)
. (2.3)
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Due to the exponential form of the distribution, requiring that ρj > 0 constrains the

GMM to assign highest probability mass to each vj being zero, i.e., the distributional

mode is the canonical identity permutation. A higher value for ρj assigns more

probability mass to vj being close to zero, biasing j to have fewer inversions.

Conjugate Prior

A major benefit of the GMM is its membership in the exponential family of distribu-

tions; this means that it is particularly amenable to a Bayesian representation, as it

admits a natural independent conjugate prior for each parameter ρj [93, 94]:

GMM0(ρj | vj,0, ν0) ∝ e(−ρjvj,0−logψj(ρj))ν0 . (2.4)

This prior distribution takes two parameters ν0 and vj,0. Intuitively, the prior states

that over ν0 previous trials, the total number of inversions observed was ν0vj,0. This

distribution can be easily updated with the observed vj to derive a posterior distri-

bution.

Because each vj has a different range, it is inconvenient to set the prior hyperpa-

rameters vj,0 directly. In our work, we take the novel approach of assigning a common

prior value for each parameter ρj, which we denote as ρ0. Then we set each vj,0 such

that the maximum likelihood estimate of ρj is ρ0. By differentiating the likelihood

of the GMM with respect to ρj, it is straightforward to verify that this works out to

setting:

vj,0 =
1

eρ0 − 1
− K − j + 1

e(K−j+1)ρ0 − 1
. (2.5)

2.2.4 Formal Generative Process

We now fully specify the details of our content model, whose plate diagram appears

in Figure 2-1. We observe a corpus of D documents, where each document d is an

ordered sequence of Nd paragraphs and each paragraph is represented as a bag of

words. The number of topics K is assumed to be pre-specified. The model induces a

set of hidden variables that probabilistically explain how the words of the corpus were
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produced. Our final desired output is the posterior distributions over the paragraphs’

hidden topic assignment variables. In the following, variables subscripted with 0 are

fixed prior hyperparameters.

1. For each topic k, draw a language model βk ∼ Dirichlet(β0). As with LDA,

these are topic-specific word distributions.

2. Draw a topic distribution θ ∼ Dirichlet(θ0), which expresses how likely each

topic is to appear regardless of position.

3. Draw the topic ordering distribution parameters ρj ∼ GMM0(ρ0, ν0) for j = 1

to K − 1. These parameters control how rapidly probability mass decays for

having more inversions for each topic. A separate ρj for every topic allows us

to learn that some topics are more likely to be reordered than others.

4. For each document d with Nd paragraphs:

(a) Draw a bag of topics td by sampling Nd times from Multinomial(θ).

(b) Draw a topic ordering πd, by sampling a vector of inversion counts vd ∼

GMM(ρ), and then applying algorithm Compute-π from Figure 2-1 to vd.

(c) Compute the vector of topic assignments zd for document d’s paragraphs

by sorting td according to πd, as in algorithm Compute-z from Figure 2-1.6

(d) For each paragraph p in document d:

i. Sample each word w in p according to the language model of p: w ∼

Multinomial(βzd,p).

2.2.5 Properties of the Model

In this section we describe the rationale behind using the GMM to represent the

ordering component of our content model.

6Multiple permutations can contribute to the probability of a single document’s topic assignments
zd, if there are topics that do not appear in td. As a result, our current formulation is biased toward
assignments with fewer topics per document. In practice, we do not find this to negatively impact
model performance.
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• Representational Power The GMM concentrates probability mass around

one centroid permutation, reflecting our preferred bias toward document struc-

tures with similar topic orderings. Furthermore, the parameterization of the

GMM using a vector of dispersion parameters ρ allows for flexibility in how

strongly the model biases toward a single ordering — at one extreme (ρ =∞)

only one ordering has nonzero probability, while at the other (ρ = 0) all or-

derings are equally likely. Because ρ is comprised of independent dispersion

parameters (ρ1, . . . , ρK−1), the distribution can assign different penalties for

displacing different topics. For example, we may learn that middle sections (in

the case of Cities, sections such as Economy and Culture) are more likely to

vary in position across documents than early sections (such as Introduction and

History).

• Computational Benefits The parameterization of the GMM using a vector

of dispersion parameters ρ is compact and tractable. Since the number of

parameters grows linearly with the number of topics, the model can efficiently

handle longer documents with greater diversity of content.

Another computational advantage of this model is its seamless integration into

a larger Bayesian model. Due to its membership in the exponential family

and the existence of its conjugate prior, inference does not become significantly

more complex when the GMM is used in a hierarchical context. In our case,

the entire document generative model also accounts for topic frequency and the

words within each topic.

One final beneficial effect of the GMM is that it breaks the symmetry of topic

assignments by fixing the distribution centroid. Specifically, topic assignments

are not invariant to relabeling, because the probability of the underlying per-

mutation would change. In contrast, many topic models assign the same prob-

ability to any relabeling of the topic assignments. Our model thus sidesteps

the problem of topic identifiability, the issue where a model may have multiple

maxima with the same likelihood due to the underlying symmetry of the hidden
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variables. Non-identifiable models such as standard LDA may cause sampling

procedures to jump between maxima or produce draws that are difficult to

aggregate across runs.

Finally, we will show in Section 2.5 that the benefits of the GMM extend from

the theoretical to the empirical: representing permutations using the GMM almost

always leads to superior performance compared to alternative approaches.

2.3 Inference via Collapsed Gibbs Sampling

The variables that we aim to infer are the paragraph topic assignments z, which are

determined by the bag of topics t and ordering π for each document. Thus, our goal

is to estimate the joint marginal distributions of t and π given the document text

while integrating out all remaining hidden parameters:

p(t, π, | w). (2.6)

We accomplish this inference task through Gibbs sampling [19, 54]. A Gibbs sam-

pler builds a Markov chain over the hidden variable state space whose stationary

distribution is the actual posterior of the joint distribution. Each new sample is

drawn from the distribution of a single variable conditioned on previous samples of

the other variables. We can “collapse” the sampler by integrating over some of the

hidden variables in the model, in effect reducing the state space of the Markov chain.

Collapsed sampling has been previously demonstrated to be effective for LDA and

its variants [59, 106, 125]. It is typically preferred over explicit Gibbs sampling of

all hidden variables because of the smaller search space and generally shorter mixing

time.

Our sampler analytically integrates out all but three sets of hidden variables: bags

of topics t, orderings π, and permutation inversion parameters ρ. After a burn-in

period, we treat the last samples of t and π as a draw from the posterior. When

samples of the marginalized variables θ and β are necessary, they can be estimated
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p(td,i = t | . . .) ∝ p(td,i = t | t−(d,i), θ0) p(wd | td, πd,w−d, z−d, β0)

∝
[
N(t−(d,i), t) + θ0

|t−(d,i)|+Kθ0

]
p(wd | z,w−d, β0),

p(vd,j = v | . . .) ∝ p(vd,j = v | ρj) p(wd | td, πd,w−d, z−d, β0)

= GMMj(v; ρj) p(wd | z,w−d, β0),

p(ρj | . . .) = GMM0

(
ρj;

∑
d vd,j + vj,0ν0

N + ν0

, N + ν0

)
,

Figure 2-2: The collapsed Gibbs sampling inference procedure for estimating our
content model’s posterior distribution. In each plate diagram, the variable being
resampled is shown in a double circle and its Markov blanket is highlighted in black;
other variables, which have no impact on the variable being resampled, are grayed
out. Variables θ and β, shown in dotted circles, are never explicitly depended on
or re-estimated, because they are marginalized out by the sampler. Each diagram is
accompanied by the conditional resampling distribution for its respective variable.
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based on the topic assignments as we show in Section 2.4.3. Figure 2-2 summarizes

the Gibbs sampling steps of our inference procedure.

Document Probability

As a preliminary step, consider how to calculate the probability of a single document’s

words wd given the document’s paragraph topic assignments zd and the remaining

documents and their topic assignments. Note that this probability is decomposable

into a product of probabilities over individual paragraphs where paragraphs with

different topics have conditionally independent word probabilities. Let w−d and z−d

indicate the words and topic assignments to documents other than d, and W be the

vocabulary size. The probability of the words in d is then:

p(wd | z,w−d, β0) =
K∏
k=1

∫
βk

p(wd | zd,βk) p(βk | z,w−d, β0) dβk

=
K∏
k=1

DCM({wd,i : zd,i = k} | {w−d,i : z−d,i = k}, β0), (2.7)

where DCM(·) refers to the Dirichlet compound multinomial distribution, the result

of integrating over multinomial parameters with a Dirichlet prior [17]. For a Dirichlet

prior with parameters α = (α1, . . . , αW ), the DCM assigns the following probability

to a series of observations x = {x1, . . . , xn}:

DCM(x; α) =
Γ(
∑

j αj)∏
j Γ(αj)

W∏
i=1

Γ(N(x, i) + αi)

Γ(|x|+
∑

j αj)
, (2.8)

where N(x, i) refers to the number of times word i appears in x. Here, Γ(·) is the

Gamma function, a generalization of the factorial for real numbers. Some algebra

shows that the DCM’s posterior probability density function conditioned on a series

of observations y = {y1, . . . , yn} can be computed by updating each αi with counts

of how often word i appears in y:

DCM(x | y,α) = DCM(x;α1 +N(y, 1), . . . , αW +N(y,W )). (2.9)
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Equations 2.7 and 2.9 will be used to compute the conditional distributions of the

hidden variables. We now turn to how each individual random variable is resampled.

Bag of Topics

First we consider how to resample td,i, the ith topic draw for document d conditioned

on all other parameters being fixed (note this is not the topic of the ith paragraph,

as we reorder topics using πd, which is generated separately):

p(td,i = t | . . .) ∝ p(td,i = t | t−(d,i), θ0) p(wd | td, πd,w−d, z−d, β0)

∝
[
N(t−(d,i), t) + θ0

|t−(d,i)|+Kθ0

]
p(wd | z,w−d, β0), (2.10)

where td is updated to reflect td,i = t, and zd is deterministically computed in the last

step using Compute-z from Figure 2-1 with inputs td and πd. The first step reflects

an application of Bayes rule to factor out the term for wd; we then drop superfluous

terms from the conditioning. In the second step, the former term arises out of the

DCM, by updating the parameters θ0 with observations t−(d,i) as in Equation 2.9

and dropping constants. The latter document probability term is computed using

Equation 2.7. The new td,i is selected by sampling from this probability computed

over all possible topic assignments.

Ordering

The parameterization of a permutation πd as a series of inversion values vd,j reveals a

natural way to decompose the search space for Gibbs sampling. For each document

d, we resample vd,j for j = 1 to K − 1 independently and successively according to

its conditional distribution:

p(vd,j = v | . . .) ∝ p(vd,j = v | ρj) p(wd | td, πd,w−d, z−d, β0)

= GMMj(v; ρj) p(wd | z,w−d, β0), (2.11)
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where πd is updated to reflect vd,j = v, and zd is computed deterministically according

to td and πd. The first term refers to Equation 2.3; the second is computed using

Equation 2.7. This probability is computed for every possible value of v, which ranges

from 0 to K − j, and term vd,j is sampled according to the resulting probabilities.

GMM Parameters

For each j = 1 to K − 1, we resample ρj from its posterior distribution:

p(ρj | . . .) = GMM0

(
ρj;

∑
d vd,j + vj,0ν0

N + ν0

, N + ν0

)
, (2.12)

where GMM0 is evaluated according to Equation 2.4. The normalization constant

of this distribution is unknown, meaning that we cannot directly compute and in-

vert the cumulative distribution function to sample from this distribution. However,

the distribution itself is univariate and unimodal, so we can expect that an MCMC

technique such as slice sampling [97] should perform well. In practice, MATLAB’s

built-in slice sampler provides a robust draw from this distribution.7

Computational Issues

During inference, directly computing document probabilities on the basis of Equa-

tion 2.7 results in many redundant calculations that slow the runtime of each iteration

considerably. To improve the computational performance of our proposed inference

procedure, we apply some memoization techniques during sampling. Within a single

iteration, for each document, the Gibbs sampler requires computing the document’s

probability given its topic assignments (Equation 2.7) many times, but each compu-

tation frequently conditions on only slight variations of those topic assignments. A

näıve approach would compute a probability for every paragraph each time a docu-

ment probability is desired, performing redundant calculations when topic assignment

sequences with shared subsequences are repeatedly considered.

Instead, we use lazy evaluation to build a three-dimensional cache, indexed by

7In particular, we use the slicesample function from the Matlab Statistics Toolbox.
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tuple (i, j, k), as follows. Each time a document probability is requested, it is broken

into independent subspans of paragraphs, where each subspan takes on one contigu-

ous topic assignment. This is possible due to the way Equation 2.7 factorizes into

independent per-topic multiplicands. For a subspan starting at paragraph i, ending

at paragraph j, and assigned topic k, the cache is consulted using key (i, j, k). For

example, topic assignments zd = (2, 4, 4, 1, 1, 1, 1) would result in cache lookups at

(1, 1, 2), (2, 3, 4), and (4, 7, 1). If a cached value is unavailable, the correct probabil-

ity is computed using Equation 2.7 and the result is stored in the cache at location

(i, j, k). Moreover, we also record values at every intermediate cache location (i, l, k)

for l = i to j−1, because these values are computed as subproblems while evaluating

Equation 2.7 for (i, j, k). The cache is reset before proceeding to the next document

since the conditioning changes between documents. For each document, this caching

guarantees that there are at most O(N2
dK) paragraph probability calculations. In

practice, because most individual Gibbs steps are small, this bound is very loose and

the caching mechanism reduces computation time by several orders of magnitude.

We also maintain caches of word-topic and paragraph-topic assignment frequen-

cies, allowing us to rapidly compute the counts used in equations 2.7 and 2.10. This

form of caching is also used by Griffiths and Steyvers [59].

2.4 Applications

In this section, we describe how our model can be applied to three challenging

discourse-level tasks: aligning paragraphs of similar topical content between docu-

ments, segmenting each document into topically cohesive sections, and ordering new

unseen paragraphs into a coherent document. In particular, we show that the pos-

terior samples produced by our inference procedure from Section 2.3 can be used to

derive a solution for each of these tasks.
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2.4.1 Alignment

For the alignment task we wish to find how the paragraphs of each document topi-

cally relate to paragraphs of other documents. Essentially, this is a cross-document

clustering task – an alignment assigns each paragraph of a document into one of

K topically related groupings. For instance, given a set of cell phone reviews, one

group may represent text fragments that discuss Price, while another group consists

of fragments about Reception.

Our model can be readily employed for this task: we can view the topic assignment

for each paragraph z as a cluster label. For example, for two documents d1 and d2

with topic assignments zd1 = (2, 4, 4, 1, 1, 1, 1) and zd2 = (4, 4, 3, 3, 2, 2, 2), paragraph

1 of d1 is grouped together with paragraphs 5 through 7 of d2, and paragraphs 2 and

3 of d1 with 1 and 2 of d2. The remaining paragraphs assigned to topics 1 and 3 form

their own separate per-document clusters.

Previously developed methods for cross-document alignment have been primarily

driven by similarity functions that quantify lexical overlap between textual units [8,

98]. These methods do not explicitly model document structure, but they specify some

global constraints that guide the search for an optimal alignment. Pairs of textual

units are considered in isolation for making alignment decisions. In contrast, our

approach allows us to take advantage of global structure and shared language models

across all related textual units without requiring manual specification of matching

constraints.

2.4.2 Segmentation

Segmentation is a well-studied discourse task where the goal is to divide a document

into topically cohesive contiguous sections. Previous approaches have typically relied

on lexical cohesion — that is, similarity in word choices within a document subspan

— to guide the choice of segmentation boundaries [22, 44, 52, 66, 86, 129, 108, 128].

Our model relies on this same notion in determining the language models of topics,

but connecting topics across documents and constraining how those topics appear
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allow it to better learn the words that are most indicative of topic cohesion.

The output samples from our model’s inference procedure map straightforwardly

to segmentations — contiguous spans of paragraphs that are assigned the same topic

number are taken to be one segment. For example, a seven-paragraph document d

with topic assignments zd = (2, 4, 4, 1, 1, 1, 1) would be segmented into three sections,

comprised of paragraph 1, paragraphs 2 and 3, and paragraphs 4 through 7. Note

that the segmentation ignores the specific values used for topic assignments, and only

heeds the paragraph boundaries at which topic assignments change.

2.4.3 Ordering

A third application of our model is to the problem of creating structured documents

from collections of unordered text segments. This text ordering task is an important

step in broader NLP tasks such as text summarization and generation. For this task,

we assume we are provided with well structured documents from a single domain as

training examples; once trained, the model is used to induce an ordering of previously

unseen collections of paragraphs from the same domain.

During training, our model learns a canonical ordering of topics for documents

within the collection, via the language models associated with each topic. Because the

GMM concentrates probability mass around the canonical (1, . . . , K) topic ordering,

we expect that highly probable words in the language models of lower -numbered

topics tend to appear early in a document, whereas highly probable words in the

language models of higher -numbered topics tend to appear late in a document. Thus,

we structure new documents according to this intuition — paragraphs with words tied

to low topic numbers should be placed earlier than paragraphs with words relating

to high topic numbers.

Formally, given an unseen document d comprised of an unordered set of paragraphs

{p1, . . . , pn}, we order paragraphs according to the following procedure. First, we find

the most probable topic assignment ẑi independently for each paragraph pi, according
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to parameters β and θ learned during the training phase:

ẑi = arg max
k

p(zi = k | pi,β,θ) = arg max
k

p(pi | zi = k,βk)p(zi = k | θ). (2.13)

Second, we sort the paragraphs by topic assignment ẑi in ascending order — since

(1 . . . K) is the GMM’s canonical ordering, this yields the most likely ordering con-

ditioned on a single estimated topic assignment for each paragraph. Due to possible

ties in topic assignments, the resulting document may be a partial ordering; if a full

ordering is required, ties are broken arbitrarily.

A key advantage of this proposed approach is that it is closed-form and computa-

tionally efficient. Though the training phase requires running the inference procedure

of Section 2.3, once the model parameters are learned, predicting an ordering for a

new set of p paragraphs requires computing only pK probability scores. In contrast,

previous approaches have only been able to rank a small subset of all possible docu-

ment reorderings [10], or performed a search procedure through the space of orderings

to find an optimum [46].8

The objective function of Equation 2.13 depends on posterior estimates of β and θ

given the training documents. Since our collapsed Gibbs sampler integrates out these

two hidden variables, we need to back out the values of β and θ from the known

posterior samples of z. This can easily be done by computing the posterior expec-

tation of each distribution based on the word-topic and topic-document assignment

frequencies, respectively, as is done by Griffiths and Steyvers [59]. The probability

mass β̂wk of word w in the language model of topic k is given by:

β̂wk =
Nβ(k, w) + β0

Nβ(k) +Wβ0

, (2.14)

where Nβ(k, w) the total number of times word w was assigned to topic k, and Nβ(k)

8The approach we describe is not the same as finding the most probable paragraph ordering
according to data likelihood, which is how the optimal ordering is derived for the HMM-based
content model. Our proposed ordering technique essentially approximates that objective by using a
per-paragraph maximum a posteriori estimate of the topic assignments rather than the full posterior
topic assignment distribution. This approximation makes for a much faster prediction algorithm
that performs well empirically.
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Articles about large cities from Wikipedia
Corpus Language Documents Sections Paragraphs Vocabulary Tokens
CitiesEn English 100 13.2 66.7 42,000 4,920
CitiesEn500 English 500 10.5 45.9 95,400 3,150
CitiesFr French 100 10.4 40.7 31,000 2,630

Articles about chemical elements from Wikipedia
Corpus Language Documents Sections Paragraphs Vocabulary Tokens
Elements English 118 7.7 28.1 18,000 1,920

Cell phone reviews from PhoneArena.com
Corpus Language Documents Sections Paragraphs Vocabulary Tokens
Phones English 100 6.6 24.0 13,500 2,750

Table 2.1: Statistics of the datasets used to evaluate our content model. All values
except vocabulary size and document count are per-document averages.

is the total number of words assigned to topic k, according to the posterior sample

of z. We can derive a similar estimate for θ̂k, the prior likelihood of topic k:

θ̂k =
Nθ(k) + θ0

Nθ +Kθ0

, (2.15)

where Nθ(k) is the total number of paragraphs assigned to topic k according to the

sample of z, and Nθ is the total number of paragraphs in the entire corpus.

2.5 Experiments

In this section, we evaluate the performance of our model on the three tasks presented

in Section 2.4: cross-document alignment, document segmentation, and information

ordering. We first describe some preliminaries common to all three tasks, covering

the datasets, reference comparison structures, model variants, and inference algorithm

settings shared by each evaluation. We then provide a detailed examination of how

our model performs on each individual task.
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2.5.1 General Evaluation Setup

Datasets

In our experiments we use five datasets, briefly described below (for additional statis-

tics, see Table 2.1):

• CitiesEn: Articles from the English Wikipedia about the world’s 100 largest

cities by population. Common topics include History, Culture, and Demograph-

ics. These articles are typically of substantial size and share similar content

organization patterns.

• CitiesEn500 : Articles from the English Wikipedia about the world’s 500 largest

cities by population. This collection is a superset of CitiesEn. Many of the

lower-ranked cities are not well known to English Wikipedia editors — thus,

compared to CitiesEn these articles are shorter on average and exhibit greater

variability in content selection and ordering.

• CitiesFr : Articles from the French Wikipedia about the same 100 cities as in

CitiesEn.

• Elements : Articles from the English Wikipedia about chemical elements in

the periodic table,9 including topics such as Biological Role, Occurrence, and

Isotopes.

• Phones : Reviews extracted from PhoneArena.com, a popular cell phone review

website. Topics in this corpus include Design, Camera, and Interface. These

reviews are written by expert reviewers employed by the site, as opposed to lay

users.10

This heterogeneous collection of datasets allows us to examine the behavior of the

model under diverse test conditions. These sets vary in how the articles were gener-

9All 118 elements at http://en.wikipedia.org/wiki/Periodic table, including undiscovered element
117.

10In the Phones set, 35 documents are very short “express” reviews without section headings; we
include them in the input to the model, but did not evaluate on them.
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ated, the language in which the articles were written, and the subjects they discuss.

As a result, patterns in topic organization vary greatly across domains. For instance,

within the Phones corpus, the articles are very formulaic, due to the centralized ed-

itorial control of the website, which establishes consistent standards followed by the

expert reviewers. On the other hand, Wikipedia articles exhibit broader structural

variability due to the collaborative nature of Wikipedia editing, which allows articles

to evolve independently. While Wikipedia articles within the same category often

exhibit similar section orderings, many have idiosyncratic inversions. For instance, in

the CitiesEn corpus, both the Geography and History sections typically occur toward

the beginning of a document, but History can appear either before or after Geography

across different documents.

Each corpus we consider has been manually divided into sections by their au-

thors, including a short textual heading for each section. In Sections 2.5.2 and 2.5.3,

we discuss how these author-created sections with headings are used to generate ref-

erence annotations for the alignment and segmentation tasks. Note that we only

use the headings for evaluation; none of the heading information is provided to any

of the methods under consideration. For the tasks of alignment and segmentation,

evaluation is performed on the datasets presented in Table 2.1. For the ordering

task, however, this data is used for training, and evaluation is performed using a

separate held-out set of documents. The details of this held-out dataset are given in

Section 2.5.4.

Model Variants

For each evaluation, besides comparing to baselines from the literature, we also con-

sider two variants of our proposed model. In particular, we investigate the impact of

the Mallows component of the model by alternately relaxing and tightening the way

it constrains topic orderings:

• Constrained : In this variant, we require all documents to follow the exact same

canonical ordering of topics. That is, no topic permutation inversions are al-

lowed, though documents may skip topics as before. This case can be viewed
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as a special case of the general model, where the Mallows inversion prior ρ0

approaches infinity. From an implementation standpoint, we simply fix all in-

version counts v to zero during inference.11

• Uniform: This variant assumes a uniform distribution over all topic permuta-

tions, instead of biasing toward a small related set. Again, this is a special case

of the full model, with inversion prior ρ0 set to zero, and the strength of that

prior ν0 approaching infinity, thus forcing each item of ρ to always be zero.

Note that both of these variants still enforce the long-range constraint of topic

contiguity, and vary from the full model only in how they capture topic ordering

similarity.

Evaluation Procedure and Parameter Settings

For each evaluation of our model and its variants, we run the collapsed Gibbs sampler

from five random seed states, and take the 10,000th iteration of each chain as a sample.

Results presented are the average over these five samples.

Dirichlet prior hyperparameters for the bag of topics θ0 and language models β0

are set to 0.1. For the GMM, we set the prior dispersion hyperparameter ρ0 to 1, and

the effective sample size prior ν0 to be 0.1 times the number of documents. These

values are minimally tuned, and similar results are achieved for alternative settings

of θ0 and β0. Parameters ρ0 and ν0 control the strength of the bias toward structural

regularity, trading off between the Constrained and Uniform model variants. The

values we have chosen are a middle ground between those two extremes.

Our model also takes a parameter K that controls the upper bound on the number

of latent topics. Note that our algorithm can select fewer than K topics for each

document, so K does not determine the number of segments in each document. In

11At first glance, the Constrained model variant appears to be equivalent to an HMM where each
state i can transition to either i or i+ 1. However, this is not the case — some topics may appear
zero times in a document, resulting in multiple possible transitions from each state. Furthermore,
the transition probabilities would be dependent on position within the document — for example, at
earlier absolute positions within a document, transitions to high-index topics are unlikely, because
that would require all subsequent paragraphs to have a high-index topic.
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general, a higher K results in a finer-grained division of each document into different

topics, which may result in more precise topics, but may also split topics that should

be together. We report results in each evaluation using both K = 10 and 20.

2.5.2 Alignment

We first evaluate the model on the task of cross-document alignment, where the goal

is to group textual units from different documents into topically cohesive clusters. For

instance, in the Cities-related domains, one such cluster may include Transportation-

related paragraphs. Before turning to the results we first present details of the specific

evaluation setup targeted to this task.

Alignment Evaluation Setup

Reference Annotations To generate a sufficient amount of reference data for

evaluating alignments we use section headings provided by the authors. We assume

that two paragraphs are aligned if and only if their section headings are identical.

These headings constitute noisy annotations in the Wikipedia datasets: the same

topical content may be labeled with different section headings in different articles

(e.g., for CitiesEn, “Places of interest” in one article and “Landmarks” in another),

so we call this reference structure the noisy headings set.

It is not clear a priori what effect this noise in the section headings may have on

evaluation accuracy. To empirically estimate this effect, we also use some manually

annotated alignments in our experiments. Specifically, for the CitiesEn corpus, we

manually annotated each article’s paragraphs with a consistent set of section head-

ings, providing us an additional reference structure to evaluate against. In this clean

headings set, we found approximately 18 topics that were expressed in more than one

document.

Metrics To quantify our alignment output we compute a recall and precision score

of a candidate alignment against a reference alignment. Recall measures, for each

unique section heading in the reference, the maximum number of paragraphs with

64



that heading that are assigned to one particular topic.12 The final score is computed

by summing over each section heading and dividing by the total number of paragraphs.

High recall indicates that paragraphs of the same section headings are generally being

assigned to the same topic.

Conversely, precision measures, for each topic number, the maximum number of

paragraphs with that topic assignment that share the same section heading. Precision

is summed over each topic and normalized by the total number of paragraphs. High

precision means that paragraphs assigned to a single topic usually correspond to the

same section heading.

Recall and precision trade off against each other — more finely grained topics will

tend to improve precision at the cost of recall. At the extremes, perfect recall occurs

when every paragraph is assigned the same topic, and perfect precision when each

paragraph is its own topic.

We also present one summary F-score in our results, which is the harmonic mean

of recall and precision.

Statistical significance in this setup is measured with approximate randomiza-

tion [100], a nonparametric test that can be directly applied to nonlinearly computed

metrics such as F-score. This test has been used in prior evaluations for information

extraction and machine translation [37, 114].

Baselines For this task, we compare against two baselines:

• Hidden Topic Markov Model (HTMM) [63]: As explained in Section 2.1, this

model represents topic change between adjacent textual units in a Markovian

fashion. HTMM can only capture local constraints, so it would allow topics to

recur non-contiguously throughout a document. We use the publicly available

implementation,13 with priors set according to the recommendations made in

the original work.

12This greedy mapping procedure is akin to the many-to-one evaluation used for unsupervised
part-of-speech induction [71].

13http://code.google.com/p/openhtmm/
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CitiesEn CitiesEn CitiesEn500
Clean headings Noisy headings Noisy headings

Recall Prec F-score Recall Prec F-score Recall Prec F-score

K
=

1
0

Clustering 0.578 0.439 ∗ 0.499 0.611 0.331 ∗ 0.429 0.609 0.329 ∗ 0.427
HTMM 0.446 0.232 ∗ 0.305 0.480 0.183 ∗ 0.265 0.461 0.269 ∗ 0.340
Constrained 0.579 0.471 ∗ 0.520 0.667 0.382 ∗ 0.485 0.643 0.385 ∗ 0.481
Uniform 0.520 0.440 ∗ 0.477 0.599 0.343 ∗ 0.436 0.582 0.344 ∗ 0.432
Our model 0.639 0.509 0.566 0.705 0.399 0.510 0.722 0.426 0.536

K
=

2
0

Clustering 0.486 0.541 ∗ 0.512 0.527 0.414 ∗ 0.464 0.489 0.391 ∗ 0.435
HTMM 0.260 0.217 ∗ 0.237 0.304 0.187 ∗ 0.232 0.351 0.234 ∗ 0.280
Constrained 0.458 0.519 ∗ 0.486 0.553 0.415 ∗ 0.474 0.515 0.394 ∗ 0.446
Uniform 0.499 0.551 ∗ 0.524 0.571 0.423 ∗ 0.486 0.557 0.422 ∗ 0.480
Our model 0.578 0.636 0.606 0.648 0.489 0.557 0.620 0.473 0.537

CitiesFr Elements Phones
Noisy headings Noisy headings Noisy headings

Recall Prec F-score Recall Prec F-score Recall Prec F-score

K
=

1
0

Clustering 0.588 0.283 ∗ 0.382 0.524 0.361 ∗ 0.428 0.599 0.456 ∗ 0.518
HTMM 0.338 0.190 ∗ 0.244 0.430 0.190 ∗ 0.264 0.379 0.240 ∗ 0.294
Constrained 0.652 0.356 0.460 0.603 0.408 ∗ 0.487 0.745 0.506 0.602
Uniform 0.587 0.310 ∗ 0.406 0.591 0.403 ∗ 0.479 0.656 0.422 ∗ 0.513
Our model 0.657 0.360 0.464 0.685 0.460 0.551 0.738 0.493 0.591

K
=

2
0

Clustering 0.453 0.317 ∗ 0.373 0.477 0.402 ∗ 0.436 0.486 0.507 ∗ 0.496
HTMM 0.253 0.195 ∗ 0.221 0.248 0.243 ∗ 0.246 0.274 0.229 ∗ 0.249
Constrained 0.584 0.379 ∗ 0.459 0.510 0.421 ∗ 0.461 0.652 0.576 0.611
Uniform 0.571 0.373 ∗ 0.451 0.550 0.479 � 0.512 0.608 0.471 ∗ 0.538
Our model 0.633 0.431 0.513 0.569 0.498 0.531 0.683 0.546 0.607

Table 2.2: Comparison of the alignments produced by our content model and a series
of baselines and model variations, for both 10 and 20 topics, evaluated against clean
and noisy sets of section headings. Higher scores are better. Within the same K, the
methods which our model significantly outperforms are indicated with ∗ for p < 0.001
and � for p < 0.01.
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• Clustering : We use a repeated bisection algorithm to find a clustering of the

paragraphs that maximizes the sum of the pairwise cosine similarities of the

items in each cluster.14 This clustering was implemented using the CLUTO

toolkit.15 Note that this approach is completely structure-agnostic, treating

documents as bags of paragraphs rather than sequences of paragraphs. These

types of clustering techniques have been shown to deliver competitive perfor-

mance for cross-document alignment tasks [8].

Alignment Results

Table 2.2 presents the results of the alignment evaluation. On all of the datasets, the

best performance is achieved by our model or its variants, by a statistically significant

and usually substantial margin.

The comparative performance of the baseline methods is consistent across domains

– surprisingly, clustering performs better than the more complex HTMM model. This

observation is consistent with previous work on cross-document alignment and multi-

document summarization, which use clustering as their main component [12, 109].

Despite the fact that HTMM captures some dependencies between adjacent para-

graphs, it is not sufficiently constrained. Manual examination of the actual topic

assignments reveals that HTMM often assigns the same topic for disconnected para-

graphs within a document, violating the topic contiguity constraint.

In all but one domain the full GMM-based approach yields the best performance

compared to its variants. The one exception is in the Phone domain. There the

Constrained baseline achieves the best result for both K by a small margin. These

results are to be expected, given the fact that this domain exhibits a highly rigid

topic structure across all documents. A model that permits permutations of topic

ordering, such as the GMM, is too flexible for such highly formulaic domains.

We also qualitatively examine the posterior estimates of the ρ distribution for

the CitiesEn and Elements domains. We generally find across evaluations that ρ

14This particular clustering technique substantially outperforms the agglomerative and graph
partitioning-based clustering approaches for our task.

15http://glaros.dtc.umn.edu/gkhome/views/cluto/
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took on the highest values toward the first and last topics — for example, ρ1 and

ρ19 (for K = 20) would typically exceed 1, whereas ρ10 would be much smaller,

e.g., around 0.2. This implies that the model is learning lower variability toward the

beginning and end of documents, which reflects reality: a document is likely to exhibit

higher variability in its middle sections (for example, the Demographics, Economy,

and Transportation sections of Cities) than the extremes (the Introduction and Sister

Cities).

Finally, we observe that the evaluations based on manual and noisy annotations

exhibit an almost entirely consistent ranking of the methods under consideration

(see the clean and noisy headings results for CitiesEn in Table 2.2). This consistency

indicates that the noisy headings are sufficient for gaining insight into the comparative

performance of the different approaches.

2.5.3 Segmentation

Next we consider the task of text segmentation. We test whether the model is able

to identify the boundaries of topically coherent text segments.

Segmentation Evaluation Setup

Reference Segmentations As described in Section 2.5.1, all of the datasets used

in this evaluation have been manually divided into sections by their authors. These

annotations are used to create reference segmentations for evaluating our model’s

output. Recall from Section 2.5.2 that we also built a clean reference structure for

the CitiesEn set. That structure encodes a “clean” segmentation of each document

because it adjusts the granularity of section headings to be consistent across docu-

ments. Thus, we also compare against the segmentation specified by the CitiesEn

clean section headings.

Metrics Segmentation quality is evaluated using the standard penalty metrics Pk

and WindowDiff [14, 103]. Both pass a sliding window over the documents and

compute the probability of the words at the end of the windows being improperly
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segmented with respect to each other. As with previous work, window size is set

to half the average length of a segment in the reference segmentation. WindowDiff

is stricter, and requires that the number of segmentation boundaries between the

endpoints of the window be correct as well.16

Baselines We first compare to BayesSeg [44],17 a Bayesian segmentation approach

that is the current state-of-the-art for this task. Interestingly, our model reduces

to their approach when every document is considered completely in isolation, with

no topic sharing between documents. Connecting topics across documents makes

for a much more difficult inference problem than the one tackled by Eisenstein and

Barzilay. At the same time, their algorithm cannot capture structural relatedness

across documents.

Since BayesSeg is designed to be operated with a specification of a number of

segments, we provide this baseline with the benefit of knowing the correct number

of segments for each document, which is not provided to our system. We run this

baseline using the authors’ publicly available implementation;18 its priors are set using

a built-in mechanism that automatically re-estimates hyperparameters.

We also compare our method with the algorithm of [128], which is commonly

used as a point of reference in the evaluation of segmentation algorithms. This al-

gorithm computes the optimal segmentation by estimating changes in the predicted

language models of segments under different partitions. We used the publicly avail-

able implementation of the system,19 which does not require parameter tuning on a

held-out development set. In contrast to BayesSeg, this algorithm has a mechanism

for predicting the number of segments, but can also take a pre-specified number of

segments. In our comparison, we consider both versions of the algorithm – U&I de-

notes the case when the correct number of segments is provided to the model and

16Statistical significance testing is not standardized and usually not reported for the segmentation
task, so we omit these tests in our results.

17We do not evaluate on the corpora used in their work, since our model relies on content similarity
across documents in the corpus.

18http://groups.csail.mit.edu/rbg/code/bayesseg/
19http://www2.nict.go.jp/x/x161/members/mutiyama/software.html#textseg
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U&I denotes when the model estimates the optimal number of segments.

Segmentation Results

Table 2.3 presents the segmentation experiment results. On every dataset our model

outperforms the BayesSeg and U&I baselines by a substantial margin regardless of

K. This result provides strong evidence that learning connected topic models over

in-domain documents leads to improved segmentation performance.

The best performance is generally obtained by the full version of our model, with

three exceptions. In two cases (CitiesEn with K = 10 using clean headings on the

WindowDiff metric, and CitiesFr with K = 10 on the Pk metric), the variant that

performs better than the full model only does so by a minute margin. Furthermore,

in both of those instances, the corresponding evaluation with K = 20 using the full

model leads to the best overall results for the respective domains.

The only case when a variant outperforms our full model by a notable margin is

the Phones dataset. This result is not unexpected given the formulaic nature of this

dataset as discussed earlier.

As expected, using more topics leads to more segments. Between our model vari-

ants, we observe that the number of segments found by the Constrained approach

typically finds the least number of segments. This result is intuitive, since the con-

strained model requires one common ordering and thus is more likely to assign the

same topic to two adjacent sections that are swapped with respect to other docu-

ments. The uniform model, in contrast, can still learn different orderings, and thus

exhibits similar segment count across experiments. Interestingly, in the one domain

where the orderings are in fact always the same (Phones), the Constrained model

variant finds about the same number of segments as the full model.

2.5.4 Ordering

The final task on which we evaluate our model is that of finding a coherent ordering

of a set of textual units. Unlike the previous tasks, where prediction is based on
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CitiesEn CitiesEn CitiesEn500
Clean headings Noisy headings Noisy headings

Pk WD # Segs Pk WD # Segs Pk WD # Segs
BayesSeg 0.321 0.376 12.3 0.317 0.376 13.2 0.282 0.335 10.5
U&I 0.337 0.404 12.3 0.337 0.405 13.2 0.292 0.350 10.5

U&I 0.353 0.375 5.8 0.357 0.378 5.8 0.321 0.346 5.4

K
=

1
0 Constrained 0.260 0.281 7.7 0.267 0.288 7.7 0.221 0.244 6.8

Uniform 0.268 0.300 8.8 0.273 0.304 8.8 0.227 0.257 7.8
Our model 0.253 0.283 9.0 0.257 0.286 9.0 0.196 0.225 8.1

K
=

2
0 Constrained 0.274 0.314 10.9 0.274 0.313 10.9 0.226 0.261 9.1

Uniform 0.234 0.294 14.0 0.234 0.290 14.0 0.203 0.256 12.3
Our model 0.221 0.278 14.2 0.222 0.278 14.2 0.196 0.247 12.1

CitiesFr Elements Phones
Noisy headings Noisy headings Noisy headings

Pk WD # Segs Pk WD # Segs Pk WD # Segs
BayesSeg 0.274 0.332 10.4 0.279 0.316 7.7 0.392 0.457 9.6
U&I 0.282 0.336 10.4 0.248 0.286 7.7 0.412 0.463 9.6

U&I 0.321 0.342 4.4 0.294 0.312 4.8 0.423 0.435 4.7

K
=

1
0 Constrained 0.230 0.244 6.4 0.227 0.244 5.4 0.312 0.347 8.0

Uniform 0.214 0.233 7.3 0.226 0.250 6.6 0.332 0.367 7.5
Our model 0.216 0.233 7.4 0.201 0.226 6.7 0.309 0.349 8.0

K
=

2
0 Constrained 0.230 0.250 7.9 0.231 0.257 6.6 0.295 0.348 10.8

Uniform 0.203 0.234 10.4 0.209 0.248 8.7 0.327 0.381 9.4
Our model 0.201 0.230 10.8 0.203 0.243 8.6 0.302 0.357 10.4

Table 2.3: Comparison of the segmentations produced by our content model and a
series of baselines and model variations, for both 10 and 20 topics, evaluated against
clean and noisy sets of section headings. Lower scores are better. BayesSeg and U&I
are given the true number of segments, so their segments counts reflect the reference
structures’ segmentations. In contrast, U&I automatically predicts the number of
segments.
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Corpus Set Documents Sections Paragraphs Vocabulary Tokens

CitiesEn
Training 100 13.2 66.7 42,000 4,920
Testing 65 11.2 50.3 42,000 3,460

CitiesFr
Training 100 10.4 40.7 31,000 2,630
Testing 68 7.7 28.2 31,000 1,580

Phones
Training 100 6.6 24.0 13,500 2,750
Testing 64 9.6 39.3 13,500 4,540

Table 2.4: Statistics of the training and test sets used for the content model order-
ing experiments. All values except vocabulary are the average per document. The
training set statistics are reproduced from Table 2.1 for ease of reference.

hidden variable distributions, ordering is observed in a document. Moreover, the

GMM model uses this information during the inference process. Therefore, we need

to divide our datasets into training and test portions.

In the past, ordering algorithms have been applied to textual units of various

granularities, most commonly sentences and paragraphs. Our ordering experiments

operate at the level of a relatively larger unit — sections. We believe that this

granularity is suitable to the nature of our model, because it captures patterns at the

level of topic distributions rather than local discourse constraints. The ordering of

sentences and paragraphs has been studied in the past [10, 73] and these two types

of models can be effectively combined to induce a full ordering [46].

Ordering Evaluation Setup

Training and Test Datasets We use the CitiesEn, CitiesFr and Phones datasets

as training documents for parameter estimation as described in Section 2.4. We

introduce additional sets of documents from the same domains as test sets. Table 2.4

provides statistics on the training and test set splits (note that out-of-vocabulary

terms in the test sets are discarded).20

Even though we perform ordering at the section level, these collections still pose a

challenging ordering task: for example, the average number of sections in a CitiesEn

20The Elements dataset is limited to 118 articles, preventing us from splitting it into reasonably
sized training and test sets. Therefore we do not consider it for our ordering experiments. For the
Cities-related sets, the test documents are shorter because they were about cities of lesser population.
On the other hand, for Phones the test set does not include short “express” reviews and thus exhibits
higher average document length.
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test document is 11.2, comparable to the 11.5 sentences (the unit of reordering)

per document of the National Transportation Safety Board corpus used in previous

work [11, 46].

Metrics We report the Kendall’s τ rank correlation coefficient for our ordering

experiments.21 This metric measures how much an ordering differs from the reference

order — the underlying assumption is that most reasonable sentence orderings should

be fairly similar to it. Specifically, for a permutation π of the sections in an N -section

document, τ(π) is computed as

τ(π) = 1− 2
d(π, σ)(

N
2

) , (2.16)

where d(π, σ) is, as before, the Kendall τ distance, the number of swaps of adjacent

textual units necessary to rearrange π into the reference order. The metric ranges from

-1 (inverse orders) to 1 (identical orders). Note that a random ordering will yield a zero

score in expectation. This measure has been widely used for evaluating information

ordering [11, 46, 79] and has been shown to correlate with human assessments of text

quality [80].

Baselines and Model Variants Our ordering method is compared against the

original HMM-based content modeling approach of Barzilay and Lee [11]. This base-

line delivers state-of-the art performance in a number of datasets and is similar in

spirit to our model — it also aims to capture patterns at the level of topic distribu-

tion (see Section 2.1). Again, we use the publicly available implementation22 with

parameters adjusted according to the values used in their previous work. This content

modeling implementation provides an A* search procedure that we use to find the

optimal permutation.

We do not include in our comparison local coherence models [10, 46]. These

models are designed for sentence-level analysis — in particular, they use syntactic

21Observe that this is a renormalized version of the Kendall’s τ distance mentioned earlier in this
chapter.

22http://people.csail.mit.edu/regina/code.html
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CitiesEn CitiesFr Phones
HMM-based Content Model 0.245 0.305 0.256

K = 10
Constrained 0.587 0.596 0.676
Our model 0.571 0.541 0.678

K = 20
Constrained 0.583 0.575 0.711
Our model 0.575 0.571 0.678

Table 2.5: Comparison of the orderings produced by our content model and a series of
baselines and model variations, for both 10 and 20 topics, evaluated on the respective
test sets. Higher scores are better.

information and thus cannot be directly applied for section-level ordering. As we

state above, these models are orthogonal to topic-based analysis; combining the two

approaches is a promising direction for future work.

Note that the Uniform model variant is not applicable to this task, since it does not

make any claims to a preferred underlying topic ordering. In fact, from a document

likelihood perspective, for any proposed paragraph order the reverse order would

have the same probability under the Uniform model. Thus, the only model variant

we consider here is Constrained.

Ordering Results

Table 2.5 summarizes ordering results for the GMM- and HMM-based content models.

Across all datasets, our model outperforms content modeling by a very large margin.

For instance, on the CitiesEn dataset, the gap between the two models reaches 35%.

This difference is expected. In previous work, content models were applied to short

formulaic texts. In contrast, documents in our collection exhibit higher variability

than the original collections. The HMM does not provide explicit constraints on

generated global orderings. This may prevent it from effectively learning non-local

patterns in topic organization.

We also observe that the Constrained variant outperforms our full model. While

the difference between the two is small, it is fairly consistent across domains. Since it is

not possible to predict idiosyncratic variations in the test documents’ topic orderings,

a more constrained model can better capture the prevalent ordering patterns that are

consistent across the domain.
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2.5.5 Discussion

Our experiments with the three separate tasks reveal some common trends in the

results. First, we observe that our single unified model of document structure can

be readily and successfully applied to multiple discourse-level tasks, whereas previous

work has proposed separate approaches for each task. This versatility speaks to

the power of our topic-driven representation of document structure. Second, within

each task our model outperforms state-of-the-art baselines by substantial margins

across a wide variety of evaluation scenarios. These results strongly support our

hypothesis that augmenting topic models with discourse-level constraints broadens

their applicability to discourse-level analysis tasks.

Looking at the performance of our model across different tasks, we make a few

notes about the importance of the individual topic constraints. Topic contiguity is a

consistently important constraint, allowing both of our model variants to outperform

alternative baseline approaches. In most cases, introducing a bias toward similar

topic ordering, without requiring identical orderings, provides further benefits when

encoded in the model. Our more flexible models achieve superior performance in

the segmentation and alignment tasks. In the case of ordering, however, this extra

flexibility does not pay off, as the model distributes its probability mass away from

strong ordering patterns likely to occur in unseen data.

We can also identify the properties of a dataset that most strongly affect the

performance of our model. The Constrained model variant performs slightly better

than our full model on rigidly formulaic domains, achieving highest performance on

the Phones dataset. When we know a priori that a domain is formulaic in structure,

it is worthwhile to choose the model variant that suitably enforces formulaic topic

orderings. Fortunately, this adaptation can be achieved in the proposed framework

using the prior of the Generalized Mallows Model — recall that the Constrained

variant is a special case of the full model.

However, the performance of our model is invariant with respect to other dataset

characteristics. Across the two languages we considered, the model and baselines
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exhibit the same comparative performance for each task. Moreover, this consistency

also holds between the general-interest cities articles and the highly technical chem-

ical elements articles. Finally, between the smaller CitiesEn and larger CitiesEn500

datasets, we observe that our results are consistent.

2.6 Conclusions and Future Work

In this chapter, we have shown how an unsupervised topic-based approach can cap-

ture content structure. Our resulting content model constrains topic assignments in a

way that requires global modeling of entire topic sequences. We showed that the Gen-

eralized Mallows Model is a theoretically and empirically appealing way of capturing

the ordering component of this topic sequence. Our results demonstrate the impor-

tance of augmenting statistical models of text analysis with structural constraints

motivated by discourse theory. Furthermore, our success with the GMM suggests

that it could potentially be applied to the modeling of ordering constraints in other

NLP applications.

There are multiple avenues of future extensions to this work. First, our empir-

ical results demonstrated that for certain domains providing too much flexibility in

the model may in fact be detrimental to predictive accuracy. In those cases, a more

tightly constrained variant of our model yields superior performance. An interesting

extension of our current model would be to allow additional flexibility in the prior of

the GMM by drawing it from another level of hyperpriors. From a technical perspec-

tive, this form of hyperparameter re-estimation would involve defining an appropriate

hyperprior for the Generalized Mallows Model and adapting its estimation into our

present inference procedure.

Additionally, there may be cases when the assumption of one canonical topic or-

dering for an entire corpus is too limiting, e.g., if a dataset consists of topically related

articles from multiple sources, each with its own editorial standards. Our model can

be extended to allow for multiple canonical orderings by positing an additional level of

hierarchy in the probabilistic model, i.e., document structures can be generated from
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a mixture of several Generalized Mallows Models, each with its own distributional

mode. In this case, the model would take on the additional burden of learning how

topics are permuted between these multiple canonical orderings. Such a change to

the model would greatly complicate inference as re-estimating a Generalized Mallows

Model canonical ordering is in general NP-hard. However, recent advances in statis-

tics have produced efficient approximate algorithms with theoretically guaranteed

correctness bounds [2] and exact methods that are tractable for typical cases [95].

More generally, the model presented in this chapter assumes two specific global

constraints on content structure. While domains that satisfy these constraints are

plentiful, there are domains where our modeling assumptions do not hold. For ex-

ample, in dialogue it is well known that topics recur throughout a conversation [62],

thereby violating our first constraint. Nevertheless, texts in such domains still follow

certain organizational conventions, e.g. the stack structure for dialogue. Our results

suggest that explicitly incorporating domain-specific global structural constraints into

a content model would likely improve the accuracy of structure induction.

Another direction of future work is to combine the global topic structure of our

model with local coherence constraints. As previously noted, our model is agnostic

toward the relationships between sentences within a single topic. In contrast, mod-

els of local coherence take advantage of a wealth of additional knowledge, such as

syntax, to make decisions about information flow across adjoining sentences. Such

a linguistically rich model would provide a powerful representation of all levels of

textual structure, and could be used for an even greater variety of applications than

we have considered here.
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Chapter 3

Learning Domain Relations using

Posterior Regularization

The previous chapter described an unsupervised method for learning high-level topic

structure in a set of in-domain documents. In this chapter, we present a novel ap-

proach for learning finer-grained relation structure. A relation is a specific type of

information relevant to and mentioned across documents in the same domain. For ex-

ample, given a collection of news articles about earthquakes, our method discovers re-

lations such as the earthquake’s location and resulting damage. In contrast to content

modeling, relation instances are represented as extracted short phrases rather than

entire sections of documents. Automatic relation discovery allows database represen-

tations to be rapidly constructed for new domains with little or no domain-specific

expertise. This capability becomes increasingly important as clusters of similar in-

domain documents describing latent structured information become more abundant,

in forms such as Wikipedia article categories, financial reports, and biographies.

In contrast to previous work in relation extraction, our approach learns from

domain-independent meta-constraints on relation expression, rather than supervision

specific to particular relations and their instances. Specifically, we leverage the lin-

guistic intuition that documents in a single domain exhibit regularities in how they

express their relations. These regularities occur both in the relations’ lexical and syn-

tactic realizations as well as at the level of document structure. For instance, consider
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A strong earthquake rocked the Philippine island of Mindoro early Tuesday,
[destroying]ind [some homes]arg ...

A strong earthquake hit the China-Burma border early Wednesday ... The official Xinhua
News Agency said [some houses]arg were [damaged]ind ...

A strong earthquake with a preliminary magnitude of 6.6 shook northwestern Greece on
Saturday, ... [destroying]ind [hundreds of old houses]arg ...

Figure 3-1: Excerpts from newswire articles about earthquakes. The indicator and
argument words for the damage relation are highlighted.

the damage relation excerpted from earthquake articles in Figure 3-1. Lexically, we

observe similar words in the instances and their contexts, such as “destroying” and

“houses.” Syntactically, in two instances the relation instance is the dependency child

of the word “destroying.” On the discourse level, these instances appear toward the

beginning of their respective documents. In general, valid relations in many domains

are characterized by these coherence properties.

We capture these regularities using a Bayesian model where the underlying re-

lations are represented as latent variables. The model takes as input a constituent-

parsed corpus and generates them from the hidden relation structure variables. These

variables encode each relation instance as a relation-evoking indicator word (e.g., “de-

stroying”) and corresponding argument constituent (e.g., “some homes”).1 Our model

generates each indicator and argument instance of a single relation type from shared

relation-specific distributions, allowing the model’s generative process to encourage

coherence in the local features and placement of relation instances.

By itself, the generative process is unable to capture certain intuitive constraints

on relation expression. For example, a single pair of indicator word and argument

constituent should typically exhibit particular syntactic characteristics, such as the

argument being a dependency child of the indicator. These kinds of declarative con-

straints are captured by applying posterior regularization [57] during inference. This

technique provides a principled and efficient way of enforcing soft declarative con-

straints, encoded as inequalities on arbitrary functions of the model’s posterior distri-

bution, without complicating the model structure itself. We use posterior regulariza-

1We do not use the word “argument” in the syntactic sense—a relation’s argument may or may
not be the syntactic dependency argument of its indicator.
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tion to enforce three classes of declarative constraints: 1) indicators and arguments

should usually be connected in the sentence’s syntax tree via specific patterns, 2) a

single relation should be prevalent across an entire corpus, and 3) different relations’

instances should rarely overlap in the text. We also explore how constraints tailored

to individual domains can further bias learning toward relevant relations.

We evaluate our approach on two domains previously studied for high-level docu-

ment structure analysis, news articles about earthquakes and financial markets. Our

results demonstrate that we can successfully identify domain-relevant relations, out-

performing a previous state-of-the-art unsupervised semantic parser in both sentence-

and token-level accuracy by substantial margins. Compared to supervised approaches,

we find that a substantial number of annotated training examples is frequently re-

quired for comparable performance with our unsupervised model on sentence-level

accuracy.

We also study the importance and effectiveness of the declaratively-specified con-

straints. In particular, we find that 1) a small set of soft declarative constraints is

effective across domains, 2) removing any of the constraints degrades model perfor-

mance, and 3) additional domain-specific constraints can yield further benefits.

This chapter is organized as follows. Section 3.1 contrasts our approach to previous

information extraction and relation discovery setups, particularly to those that also

utilize declarative constraints. We define our problem formulation in Section 3.2.1

and present the generative model in the remainder of Section 3.2. A key technical

feature of our approach is the use of posterior regularization during variational in-

ference, which we describe in detail in Sections 3.3.1 and 3.3.2. We then derive the

variational updates specific to our model in Section 3.3.3. Section 3.4 examines the

specific declarative constraints that we apply during inference. Finally, we present

experiments and results in Section 3.5 before concluding in Section 3.6.
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3.1 Related Work

Our approach relates to a growing body of work in information extraction with re-

duced supervision. Some of this work, described in Section 3.1.1, assumes a setup

where the relation types are known, but supervision is either minimal or comes in

a form other than fully annotated relation instances. In contrast, open information

extraction setups, described in Section 3.1.2, do not assume a known set of relation

types. They instead aim to extract all possible relations in a heterogeneous corpus

by leveraging redundancies in relation expression. We also examine previous work

that learns extractions and paraphrases based primarily on syntactic context in Sec-

tion 3.1.3. Finally, in Section 3.1.4 we draw comparisons to previous work that has

explicitly utilized constraints during inference to drive extraction.

3.1.1 Extraction with Minimal and Alternative Supervision

Recent research in information extraction has taken large steps toward reducing the

need for labeled data. Many of these approaches use bootstrapping, where extractions

are built up iteratively from a small seed set of annotated example outputs [1, 29, 30,

47, 113, 116, 117, 133]. These approaches take a similar high-level iterative strategy;

we give specifics on several such methods here. Among the earliest such work was

the DIPRE system for extracting relations from the web [29]. DIPRE takes as input

a small seed set of target relation extractions, such as a list of (author, book title)

pairs. It searches the given web corpus for these particular relation instances and

builds a set of patterns that characterize the relation. Each pattern specifies the

ordering of the relation (e.g., whether author or title comes first), the URL prefix of

the page containing the relation, and the text immediately surrounding and within

the relation. These patterns are used to match other plausible book-title instances

in the corpus, which are added to the seed set. The process repeats until a full set

of extractions is obtained. Snowball [1] and StatSnowball [140] extend DIPRE by

utilizing richer linguistic context in defining patterns, such as named entity tags, and

by using confidence scores and probabilities to filter out unlikely candidate patterns.
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ExDisco [133] uses a similar overall strategy, but starts from an initial set of seed

patterns rather than example extractions. For example, for corporate management

changes a likely seed pattern would be “company verb person,” where company and

person correspond to named entity classes and verb is a specified list of verbs such

as appoint, promote, and nominate. ExDisco then learns new patterns by repeatedly

performing two steps: 1) dividing the corpus into relevant and irrelevant documents

based on the patterns, 2) adding the most prevalent patterns in the relevant docu-

ments to the pattern set. A human then reviews the final patterns and groups them

into relation types.

Another line of work has reduced the need for supervision in extraction by utilizing

various forms of database matching instead of labeled data. For example, Mintz

et al. [96] and Yao et al. [134] train extraction models using the existing Freebase

knowledge base derived from Wikipedia. In this setup, the knowledge base provides a

large set of candidate relation types that may or may not be mentioned in the textual

corpus. These systems use various alignment techniques to relate the knowledge base

and the corpus, which then allows candidate relation instances to be extracted from

the text.

Our approach is distinct from the bootstrapping and database matching ap-

proaches in both the form of supervision and the target output. First, rather than

assuming access to minimal examples or a pre-existing collection of known relation

types, we learn from meta-qualities, such as low variability in syntactic patterns, that

characterize a good relation. We hypothesize that these properties hold across rela-

tions in different domains, thus reducing the need for supervision specific to relation

types. Second, our method’s goal is to discover the underlying types that are impor-

tant to a domain. Both the bootstrapping- and database-based approaches rely on

having some knowledge of target relation types, which may be costly for a human

practitioner to collect for new complex domains.
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3.1.2 Open Information Extraction

Another class of information extraction approaches strives to learn general domain-

independent knowledge bases by exploiting redundancies in large web and news cor-

pora [5, 6, 65, 121, 135]. These approaches do not assume knowledge of target relation

types; instead, they aim to find the most prevalent relations across the corpus. For

example, Shinyama and Sekine [121] learn relation types by hierarchically clustering a

news corpus into documents about similar topics, then within each topic cluster into

documents about the same event. This clustering uses features based on the doc-

uments’ prevailing syntactic patterns. The output relations are based on the most

prevalent patterns within each cluster. Banko et al. [5] extracts relations from the

web by training an extraction classifier based on a small subset of the corpus, us-

ing heuristics rather than annotated training data to identify positive examples of

relations. This classifier is then applied to the full web corpus to derive a large set

of all possible relations; these relations are filtered to those that occur in the most

sentences.

In contrast to these heterogeneous-corpus approaches, our focus is on learning the

relations salient in a single domain. In our setup, each document expresses relations

that are relevant for that document’s subject; for example, a daily financial news re-

port describes market activity specific to that day’s trading session. Thus, we cannot

rely on cross-document redundancy to identify salient relation instances. Our setup

is more germane to specialized domains expressing information not broadly available

on the web, such as personal medical records or internal corporate documents.

3.1.3 Syntax-driven Extraction

Earlier work in unsupervised information extraction has also leveraged syntactic

meta-knowledge independent of specific relation types. Riloff [115] uses a set of

declaratively-specified syntactic templates to produce a set of candidate extractions

that a human then filters. Several approaches [36, 83, 117, 124, 139] perform auto-

matic clusterings of syntactic tree fragments and contexts to cluster entity pairs into
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relations. Our approach incorporates a broader range of constraints and balances

soft syntactic constraints with other forms of linguistic regularity learned from the

data. In particular, we incorporate arbitrary local features of relation entities and

document-level information in addition to syntax, thereby requiring more sophisti-

cated machinery for modeling and inference.

3.1.4 Constraint-based Extraction

A recent line of work has recognized the appeal of applying declarative constraints to

extraction. In a supervised setting, Roth and Yih [118] induce relations by using linear

programming to impose global constraints on the output of a set of classifiers trained

on local features. Specifically, these classifiers are independently trained for identi-

fying candidate relations and their entities; a linear program then induces the final

relation structure while imposing constraints, such as the work for relation needing

to take person and organization arguments. Chang et al. [33] takes a semi-supervised

approach that combines labeled and unlabeled data. They propose an objective func-

tion of model parameters that balances likelihood on labeled instances with constraint

violation on unlabeled instances. These constraints state, for example, that a single

relation type can only occur at most once in a document.

Recent work has also explored how certain kinds of supervision can be formulated

as constraints on model posteriors. Such constraints are not declarative in the same

way as our constraints, but instead based on annotations of words’ majority relation

labels [89] and pre-existing databases with the desired output schema [15]. In these

approaches, a framework for applying constraints is used to bias the predictions to

cohere with the provided forms of supervision.

In contrast to previous work, our approach explores a different class of constraints

that does not rely on information specific to particular relation types and their in-

stances. Moreover, our model is fully unsupervised and does not require any anno-

tated examples for training. The constraints we apply are designed with generaliz-

ability across domains in mind. In our results, we also show that combining domain-

specific constraints akin to those used by previous work with our domain-independent
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is_verb 0 1 0
earthquake 1 0 0
hit 0 1 0

       

has_proper 0 0 1
has_number 0 0 0
depth 1 3 2

Figure 3-2: As input to the relation discovery model, words w and constituents x of
syntactic parses are represented with indicator features φi and argument features φa

respectively. A single relation instance is a pair of indicator w and argument x; we
filter w to be nouns and verbs and x to be noun phrases.

constraints is beneficial for performance.

3.2 Model

Our work performs in-domain relation discovery by leveraging regularities in relation

expression at the lexical, syntactic, and discourse levels. These regularities are cap-

tured via two components: a probabilistic model that explains how documents are

generated from latent relation variables and a technique for biasing inference to adhere

to declaratively-specified constraints on relation expression. This section describes the

generative process, while Sections 3.3 and 3.4 discuss declarative constraints.
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3.2.1 Problem Formulation

Our input is a corpus of constituent-parsed documents and a number K of relation

types. In particular, each document d is comprised of an ordered sequence of sen-

tences, and each sentence is a bag of words w and constituent phrases x delineated

by the syntax tree. Note that words and constituents form two overlapping, comple-

mentary views of the corpus.

The output is K clusters of semantically related relation instances. We represent

each instance as a pair of indicator word w and argument sequence x from the same

sentence.2 The indicator’s role is to anchor a relation and identify its type. We only

allow content-bearing nouns or verbs to be indicators. For instance, in the earthquake

domain a likely indicator for damage would be “destroyed.” The argument is the

actual relation value, e.g., “some homes,” and corresponds to a noun phrase.

Along with the document parse trees, we also take as input a set of features φi(w)

and φa(x) describing each potential indicator word w and argument constituent x,

respectively. An example feature representation is shown in Figure 3-2. These features

can encode words, part-of-speech tags, context, and so on. Indicator and argument

feature definitions need not be the same (e.g., has number is important for arguments

but irrelevant for indicators).3

3.2.2 Model Overview

Our model associates each hidden relation type k with a set of feature distributions

θk and a location distribution λk. Each relation instance’s indicator and argument,

and its position within a document, are drawn from these distributions. By sharing

distributions within each relation, the model places high probability mass on clusters

of instances that are coherent in features and position. Furthermore, we allow at most

one instance per document and relation, so as to target relations that are relevant to

the entire document.

2One limitation of this formulation is that the indicator word must be explicit.
3We consider only categorical features here, though the extension to continuous or ordinal features

is straightforward.
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θi – parameters of feature distrs
over indicator words

θbi – parameters of feature distrs
over non-indicator words

θa – parameters of feature distrs
over argument constituents

θba – parameters of feature distrs
over non-argument constituents

λ – parameters of distr over
locations within document

s, z – segment/sentence containing
relation instance

i – relation indicator word

a – relation argument constituent

φi(w) – features of potential indicators

φa(x) – features of potential arguments

K – number of relations

D – number of documents in corpus

|Φi| – number of indicator features

|Φa| – number of argument features

Wd – number of words in d

Wd,z – number of words in sentence
z of d

Cd – number of constituents in d

Cd,z – number of constituents in
sentence z of d

Sd,s – number of sentences in segment
s of d

for k = 1 . . . K
λk ∼ Dirichlet(λ0)

for each indicator feature φi

θi
k,φi ∼ Dirichlet(θ0)

θbi
k,φi ∼ Dirichlet(θ0)

for each argument feature φa

θa
k,φa∼ Dirichlet(θ0)
θba
k,φa∼ Dirichlet(θ0)

for each document d
for k = 1 . . . K

sd,k ∼ Multinomial(λk)
zd,k ∼ Uniform(Sd,sd,k)
id,k ∼ Uniform(Wd,zd,k)
ad,k ∼ Uniform(Cd,zd,k)

for each word w in d
for each indicator feature φi

Aw = 1
Z

∏K
k=1 θk,φi ,

θk,φi = θi
k,φi if id,k = w,

θk,φi = θbi
k,φi otherwise

φi(w) ∼ Multinomial(Aw)

for each constituent x in d
for each argument feature φa

Bx = 1
Z

∏K
k=1 θk,φa ,

θk,φa = θa
k,φa if ad,k = x,

θk,φa = θba
k,φa otherwise

φa(x) ∼ Multinomial(Bx)

Figure 3-3: The generative process for the relation discovery model. In the above, Z
indicates a normalization factor that makes the parameters Aw and Bx sum to one.
Fixed hyperparameters are subscripted with zero.
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Figure 3-4: The plate diagram for the relation discovery model. Shaded circles in the
figure denote observed variables, and squares denote hyperparameters. See Figure 3-3
for a full description of the variables.

There are three steps to the generative process. First, we draw feature and lo-

cation distributions for each relation. Second, an instance is selected for every pair

of document d and relation k. Third, the indicator features of each word and ar-

gument features of each constituent are generated based on the relation parameters

and instances. Figure 3-3 presents a reference for the generative process, whose plate

diagram is depicted in Figure 3-4.

Generating Relation Parameters

Each relation k is associated with four feature distribution parameter vectors: θi
k for

indicator words, θbi
k for non-indicator words, θa

k for argument constituents, and θba
k

for non-argument constituents. Each of these is a set of multinomial parameters per

feature drawn from a symmetric Dirichlet prior. A likely indicator word should have

features that are highly probable according to θi
k, and likewise for arguments and θa

k.

Parameters θbi
k and θba

k represent background distributions for non-relation words and

constituents.4 By drawing each instance of a single relation from these distributions,

we encourage the relation to be coherent in local lexical and syntactic properties.

Each relation type k is also associated with a parameter vector λk over document

4We use separate background distributions for each relation to make inference more tractable.
Because the background distributions collect so many words and constituents, they will tend to be
similar despite not being shared across relations.
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segments. Documents are divided into L equal-length segments; λk states how likely

relation k is for each segment, with one null outcome for the case when the relation

does not occur in the document. Because λk is shared within a relation, its instances

will tend to occur in the same relative positions across documents. The model can

learn, for example, that a particular relation typically occurs in the first quarter of a

document (if L = 4). Parameters λk are generated by a symmetric Dirichlet prior.

Generating Relation Instantiations

For every relation type k and document d, we first choose which portion of the

document (if any) contains the instance by drawing a document segment sd,k from

λk. Our model only draws one instance per pair of k and d, so each generated instance

within a document is a separate relation. We then choose the specific sentence zd,k

uniformly from within the segment, and the indicator word position id,k and argument

constituent position ad,k uniformly from within that sentence.

Generating Text

Finally, we draw the feature values. We make a Näıve Bayes assumption between

features, drawing each independently conditioned on relation structure. For a word

w, we want all relations to be able to influence its generation. Toward this end,

we compute the element-wise product of feature parameters across relations k =

1, . . . , K, using indicator parameters θi
k if relation k selected w as an indicator word

(if id,k = w) and background parameters θbi
k otherwise. The result is then normalized

to form a valid multinomial that produces word w’s features.5 Constituents are drawn

similarly from every relations’ argument distributions. By generating features using

this element-wise product, we allow a single word to play a role in multiple relations.

5Only the word’s features are generated; the word identity itself is not explicitly generated, but
will typically be one of the features.
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3.2.3 Formal Generative Process

We now formally specify the full generative process. We take as observed a corpus

of D documents where each document d is comprised of words w, filtered to content-

bearing nouns and verbs. The corpus is also constituent-parsed into a set of candidate

constituents x, filtered to noun phrases. Each word w and constituent x is associ-

ated with an observed set of indicator features φi(w) and argument features φa(x),

respectively. The number of hidden relations K is assumed to be pre-specified. Addi-

tionally, the model is provided with a fixed hyperparameter L specifying the number

of segments each document is divided into. The model’s independence assumptions

are represented by this factorization into conditional probability distributions:

K∏
k=1

p(λk)p(θ
i
k)p(θ

bi
k )p(θa

k)p(θ
ba
k )
∏
d

p(sd,k | λk)p(zd,k | sd,k)p(ad,k | zd,k)p(id,k | zd,k)

×
∏
w∈d

∏
φi

p(φi(w) | θi, θbi, id)
∏
x∈d

∏
φa

p(φa(x) | θa, θba, ad) (3.1)

Our final desired output is the posterior distributions over the relation structure

p(s, z, i, a | w,x). In the following description, variables subscripted with 0 are fixed

prior hyperparameters.

1. For each relation type k:

(a) For each indicator feature φi draw feature distribution parameters θi
k,φi , θbi

k,φi ∼

Dir(θ0). These two parameter sets represent parameters for indicator and

non-indicator words of relation k, respectively.

(b) For each argument feature φa draw feature distributions θa
k,φa , θba

k,φa ∼

Dir(θ0). As with indicators, these two parameter sets represent feature

distributions for argument and non-argument constituents of relation k.

(c) Draw location distribution λk ∼ Dir(λ0). This distribution over L + 1

values controls where in a document relation k should occur; a peaky

λ distribution encourages similar placement (e.g., toward the beginning)

of a single relation’s instances across documents. The first L outcomes
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correspond to L equally-sized segments of each document; the last outcome

indicates that the relation does not occur in the document.

2. For each document d:

(a) For each relation type k:

i. Select a document segment sd,k ∼ Mult(λk).

ii. If sd,k is the null case (i.e., relation k does not occur in document d),

set zd,k, ad,k, and id,k all to null.

iii. Otherwise, select a sentence index zd,k uniformly from the sentences

contained in segment sd,k. Then draw indicator position id,k and ar-

gument position ad,k uniformly from the words and constituents, re-

spectively, of sentence zd,k.

(b) For each potential indicator word w in document d:

i. Draw each indicator feature φi(w) ∼ Mult
(

1
Z

∏K
k=1 θk,φi

)
, where θk,φi

is θi
k,φi if id,k = w and θbi

k,φi otherwise. The element-wise product

between different relations’ distributions allows every relation to in-

fluence the generation of each word. Here, Z is a normalization factor

that makes the multiplied parameters sum to one, which is required

for them to form valid multinomial parameters.

(c) For each potential argument constituent x in document d:

i. Draw each argument feature φa(x) ∼ Mult
(

1
Z

∏K
k=1 θk,φa

)
, where θk,φa

is θa
k,φa if ad,k = x and θba

k,φa otherwise.

3.2.4 Properties of the Model

The generative process presented above leverages relation regularities in local features

and document placement. By utilizing lexical and syntactic features in φi and φa, the

model will tend to identify relation instances that cohere lexically and syntactically

(e.g., a small set of words as the indicator). Furthermore, using a shared relation

placement distribution λ encourages relation instances to occur in similar locations
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at the document structure level.

However, the generative process is unable to specify syntactic preferences about

how indicators and arguments are related within a sentence, since they are generated

separately. For example, intuitively we expect that indicators and arguments should

usually not cross clause boundaries, a constraint that the generative process is unable

to institute. Furthermore, this generative process allows different relations to overlap

in their indicators and arguments, which would often be undesirable.6 Ideally we

would like to impose a constraint that biases against repeated overlap.

Incorporating these constraints directly in the model structure would compli-

cate the model structure and introduce new parameters, thus making inference less

tractable. Instead, we impose constraints during the posterior inference process to

bias parameter learning, as explained in the next section.

3.3 Inference with Constraints

Given our generative model and a set of documents, the goal of inference is to derive

a posterior distribution over the hidden parameters describing the relation structure:

p(s, z, a, i | w,x). (3.2)

We are interested primarily in the hidden relation structure as opposed to the relation

parameters, so our posterior objective integrates out θ and λ. For most nontrivial

models, including ours, it is not possible to find the posterior analytically due to the

complex dependencies in the model. Instead we appeal to an approximate inference

technique, specifically, variational inference [19, 72].7 In variational inference, we find

an approximate posterior distribution q(s, z, a, i) that is close in KL-divergence to the

true posterior. This is made tractable by restricting q to come from a restricted set

6In fact, a true maximum a posteriori estimate of the model parameters would find the same
most salient relation over and over again for every k, rather than finding K different relations.

7Gibbs sampling, which we use for the content structure and semantic property models presented
in the other chapters, does not admit the declarative constraint machinery that we require for this
work.
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of distributions, as explained in Section 3.3.1.

During inference, we apply various declarative constraints by imposing inequalities

on expectations of the posterior using the posterior regularization technique [57]. In

Section 3.3.2 we present the technical details of this approach for arbitrary constraints;

Section 3.4 explains the specific linguistically-motivated constraints we consider.

3.3.1 Variational Inference

We first review the general variational inference setup for graphical models, then

describe how posterior regularization is incorporated. Let θ and x denote the pa-

rameters and observed data, respectively, of an arbitrary model. We are interested

in estimating the posterior distribution p(θ | x). This is not directly tractable, so

instead we try to find a distribution q(θ) ∈ Q that is “close” to the true posterior

distribution. In this context, closeness is defined by the KL-divergence between q and

the true posterior:

arg min
q

KL(q(θ) ‖ p(θ | x)) = arg min
q

(∫
q(θ) log

q(θ)

p(θ,x)
dθ + log p(x)

)
. (3.3)

Because the term log p(x) is fixed with respect to q, we can drop it from the mini-

mization.

If we do not restrict the set of valid distributions q ∈ Q, this formulation does not

simplify our problem: the q distribution that minimizes the KL divergence is simply

the true unknown posterior p(θ | x). Instead, we make a mean-field independence

assumption stating that some partition of the model parameters θ is independent.

Specifically, let θ1, . . . , θn be a partition of the variables of θ. Then the assumption

states that Q is restricted to distributions q that factorize as follows:

q(θ) =
n∏
i=1

q(θi). (3.4)

For notational convenience, we will abbreviate q(θi) simply as qi.

Thanks to this mean-field assumption, the optimization problem of equation 3.3
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can be tractably tackled by coordinate descent: we minimize the objective with re-

spect to each factor of the partition, i.e., a single qi, at a time while holding every

other factor fixed. For factor qi, the objective of equation 3.3 yields the following

expression after rearranging terms and dropping constants [19]:

arg max
qi

Eqi [log p̃(θ,x)]− Eqi [log qi], (3.5)

where p̃(θ,x) denotes:

p̃(θ,x) ∝ exp Eqj 6=qi [log p(θ,x)]. (3.6)

Here, Eqj 6=qi [·] denotes an expectation with respect to every factor of q except qi. We

recognize that equation 3.5 is simply the negative of the KL-divergence between qi and

p̃(θ,x). Thus, equation 3.5 is maximized when qi = p̃(θ,x), where the KL-divergence

reaches its minimum of zero. Consequently the update for qi is:

qi ∝ exp Eqj 6=qi [log p(θ,x)]. (3.7)

For many common distributions, including all conjugate prior/likelihood distribution

pairs in the exponential family, equation 3.7 yields a closed form exact update for qi.

As we will see, however, this closed form update cannot be used for some updates

when posterior constraints are in effect, and when the expectation of equation 3.7

or its normalization factor is not analytically tractable. In those cases, we will use

numerical optimization techniques directly on the objective function of equation 3.5

with respect to the parameters of qi.

Each update of a factor of q decreases or leaves unchanged the value of the KL-

divergence in equation 3.3, so iteratively applying these updates is guaranteed to

converge toward a local minimum. The parameter space will typically be non-convex

for nontrivial problems, so random restarts can be used to find a better global solution.
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3.3.2 Posterior Regularization

Declarative constraints can be imposed during inference through posterior regulariza-

tion [57], which we explain here. In this section, assume an arbitrary graphical model

with observed data x and parameters divided into two groups, θ and z, the latter

of which will be constrained. Recall that variational inference makes a mean-field

assumption that restricts the set of approximating distributions Q to those satisfying

a factorization of the form in equation 3.4. Posterior regularization further restricts

Q; it requires that members of Q must satisfy declarative constraints formulated as

inequalities on expectation functions of the posterior distribution:

Eq[f(z)] ≤ b. (3.8)

Here, f(z) is a deterministic function of z and b is a user-specified threshold. Note

that inequalities in the opposite direction can be applied by negating f(z) and b, and

equality constraints can be effected by using inequality constraints in both directions.

For tractability reasons explained later in this section, we will require that function

f(z) is always linear over the variables of z.

Constraints of the form in equation 3.8 provide a flexible mechanism for specifying

a wide range of declarative knowledge. For example, one of the constraints we will

apply is of the form Eq[f(z)] ≥ b where f(z) counts the number of indicator/argument

pairs that are syntactically connected in a pre-specified manner (e.g., the indicator and

argument modify the same verb) and b is a fixed threshold. Such a constraint would

bias learning to prefer relation structures that are syntactically plausible according

to our linguistic knowledge, while still finding relation instances with other kinds of

syntactic patterns given strong enough support by the data. In general, this inequality

formulation can capture nearly any constraint expressible as a linear function of the

hidden structure that must meet some threshold.

We now derive the new form for variational updates in the presence of constraints.

Let C be the set of inequality constraints, with functions fc(z) and thresholds bc. For

notational simplicity, assume that the only mean-field factorization assumption is
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between θ and z, i.e., q(θ, z) = q(θ)q(z); the extension to finer-grained factorizations

is straightforward. First, the update for q(θ) is unchanged from equation 3.5 since its

value does not affect whether the constraints, defined only on q(z), are satisfied. For

z, we perform the optimization of equation 3.5 in the presence of C:

arg max
q(z)

Eq(z)[log p̃(θ, z,x)]− Eq(z)[log q(z)] s.t. Eq(z)[fc(z)] ≤ bc, ∀c ∈ C, (3.9)

where p̃(θ, z,x) ∝ exp Eq(θ)[log p(θ, z,x)].

Directly optimizing equation 3.9 is difficult due to the complexity of the con-

straints, but Graça et al. [57] show that the expression’s dual formulation is typically

tractable:

arg min
κ

∑
c∈C

κcbc + log
∑
z

p̃(θ, z,x) exp

(
−
∑
c∈C

κcfc(z)

)
s.t. κc ≥ 0, ∀c ∈ C.

(3.10)

Here, κ is a newly introduced |C|-dimensional vector of dual variables, one for each of

the original constraints. In equation 3.10 the sum over all configurations of the hidden

parameters z appears intractable at first, since most models have exponentially many

values of z. However, note that p̃(θ, z,x) decomposes into a product over cliques of

random variables according to the original factorization of the probabilistic model.

Furthermore, since we assume that every fc(z) is linear in the variables of z, the

term exp
(
−
∑

c∈C κcfc(z)
)

also factorizes in the same way. Therefore the sum over z

decomposes into tractable sums over independent cliques of z.

With the box constraints of equation 3.10, a numerical optimization procedure

such as L-BFGS-B [31] can be used to find optimal dual parameters κ∗. The corre-

sponding primal update then takes the following form [57]:

q(z) ∝ p̃(θ, z, x) exp

(
−
∑
c∈C

κ∗cfc(z)

)
. (3.11)
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3.3.3 Variational Updates for the Model

Now that we have developed the general variational inference with posterior regular-

ization framework, we turn to the individual updates for our model. Our full model

posterior is defined over the relation feature parameters θ, document location param-

eters λ, and relation structure variables s, z, a, i. Thus, our variational distribution is

of the form q(θ, λ, s, z, a, i); we use the following mean-field factorization:

q(θ, λ, s, z, a, i) =
K∏
k=1

q(λk; λ̂k)q(θ
i
k; θ̂

i
k)q(θ

bi
k ; θ̂bi

k )q(θa
k; θ̂

a
k)q(θ

ba
k ; θ̂ba

k )

×
∏
d

q(sd,k, zd,k, ad,k, id,k; ζ̂d,k) (3.12)

In the above, we make each q(θ) and q(λ) a Dirichlet with corresponding variational

parameters θ̂ and λ̂, and and each q(s, z, a, i; ζ̂) a multinomial with variational param-

eters ζ̂.8 Updating each factor is equivalent to updating the corresponding variational

parameters. Note that we do not factorize the distribution of s, z, i, and a for a single

document and relation, instead representing their joint distribution with a single set

of variational parameters ζ̂. This is tractable because a single relation occurs only

once per document, reducing the joint search space of these variables.

All of the declarative constraints we impose on the posterior restrict properties of

the relation structure itself, not the relation parameters (see Section 3.4 for details).

In other words, their constraint inequalities are defined on s, z, i, and a. Hence the

updates for λ̂ and θ̂ follow from equation 3.5 directly. For ζ̂, we solve the optimization

problem in equation 3.10.

8Distributions q(λ) and q(s, z, a, i) naturally form Dirichlet and multinomial distributions re-
spectively when optimized according to equation 3.5 due to the use of conjugate priors for those
variables. However, θ generates feature values through a non-conjugate pointwise product, so its
posterior q(θ) does not necessarily form a Dirichlet naturally. As with previous generative models
using product distributions [26], we restrict q(θ) to Dirichlet for tractability.
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Updating λ̂

Since λ is drawn from its conjugate prior, the update for λ̂ follows directly from the

closed form solution of equation 3.7. After dropping constants, we arrive at:

q(λk) ∝ exp

(
log p(λk) +

∑
d

Eq(sd,k,zd,k,id,k,ad,k)[log p(sd,k | λk)]

)
(3.13)

By exponentiating both sides it is straightforward to verify that the right hand side

becomes an unnormalized Dirichlet density function. The final update takes on the

following form:

λ̂k,` = λ0 +
∑
d

∑
ζd,k

ζ̂d,kI(ζd,k, `), (3.14)

where I(ζd,k, `) is a binary function returning 1 if the segment s implied by ζd,k is equal

to `. The update intuitively states that the parameters are set to the prior pseudo-

counts plus the expected count of each segment ` based on the current estimate of the

other parameters. This pseudo-count formulation is common to multinomial/Dirichlet

combinations in the variational inference setting.

Updating θ̂

Due to the Näıve Bayes assumption between features, each feature’s q(θ) distributions

can be updated separately. However, the product between feature parameters of

different relations introduces a non-conjugacy in the model, precluding a closed form

update as in equation 3.7. Instead we numerically optimize equation 3.5 for each θ̂,

as in previous work [26].

We will derive the update for a single θ̂, specifically the indicator feature distribu-

tion parameters θ̂i
k,φi ; the derivations for other θ̂’s is analogous. For notational clarity

we drop the subscript of φi on θ. Assume feature φi can take on values from 1 to

N , so θ̂i
k = (θ̂i

k,1, . . . , θ̂
i
k,N) is an N -dimensional parameter vector. The objective from

equation 3.5 becomes:

arg max
θ̂i

Eq[log p(θ, λ, s, z, i, a)]− Eq(θ)[log q(θ)]. (3.15)
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In the following, let B(·) be the Beta function,
∑

ζd,k
be a sum over every possible

valid combination of s, z, i, and a for document d and relation k, and I(ζ, w) be a

binary function that returns 1 if the indicator location i corresponding to the given

combination ζ is word w. Plugging in the decomposition of p from equation 3.1 into

equation 3.15 and dropping constant terms yields:

Eq[log p(θi
k)] +

∑
d,w

Eq[log p(φi(w) | θi
k, θ

bi
k , sd,k, zd,k, id,k, ad,k)]− Eq(θik)

[log q(θi
k)]

=− logB(θ0) +
N∑
n=1

(θ0 − 1)Eq[log θi
k,n]

+
∑
d,w

∑
ζd,1

· · ·
∑
ζd,K

K∏
k′=1

ζ̂d,k′Eq

[
log

K∏
k′=1

(
I(ζd,k′ , w)θi

k′,φi(w) + (1− I(ζd,k′ , w))θbi
k′,φi(w)

)]

−
∑
d,w

∑
ζd,1

· · ·
∑
ζd,K

K∏
k′=1

ζ̂d,k′Eq

[
log

N∑
n=1

K∏
k′=1

(
I(ζd,k′ , w)θi

k′,n + (1− I(ζd,k′ , w))θbi
k′,n

)]

+ logB(θ̂i
k)−

N∑
n=1

(θ̂i
k,n − 1)Eq[log θi

k,n].

To proceed with the derivation, we make a first-order Taylor series approximation

of the form log x ≤ x − 1 to the third term of the above expression. Because this

term is negative, approximating log x with x − 1 effectively yields a lower bound on

the true θ̂i
k update objective function, a desirable feature since we are maximizing

this objective. Additionally, note that for an N -dimensional Dirichlet distribution

q(θ; θ̂) the expectation Eq[log θi] evaluates to ψ(θ̂i) − ψ
(∑

j θ̂j

)
, where ψ(·) is the

digamma function, and the expectation Eq[θi] evaluates to θ̂i/
∑

j θ̂j. In the following,

let θ̂k,∗ =
∑N

n=1 θ̂k,n. Further simplifications and dropping constants yield the final
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objective:

− logB(θ0) +
N∑
n=1

(θ0 − 1)
(
ψ(θ̂i

k,n)− ψ
(
θ̂i
k,∗

))
+
∑
d,w

∑
ζd,k

ζ̂d,kI(ζd,k, w)
(
ψ(θ̂i

k,φi(w))− ψ(θ̂i
k,∗)
)

−
∑
d,w

N∑
n=1

K∏
k′=1

∑
ζd,k′

ζ̂d,k′

(
I(ζd,k′ , w)

θ̂i
k′,n

θ̂i
k′,∗

+ (1− I(ζd,k′ , w))
θ̂bi
k′,n

θ̂bi
k′,∗

)

+ logB(θ̂i
k)−

N∑
n=1

(θ̂i
k,n − 1)

(
ψ(θ̂i

k,n)− ψ(θ̂i
k,∗)
)
. (3.16)

The gradient of this expression with respect to θ̂i
k is straightforward to analytically

derive, so we perform this optimization by applying the quasi-Newton L-BFGS nu-

merical optimization procedure. This yields the update to θ̂i
k.

Simplifying Approximation The update for θ̂ requires numerical optimization

due to the nonconjugacy introduced by the point-wise product in feature generation.

If instead we have every relation type separately generate a copy of the corpus, the

θ̂ updates become vastly simpler closed-form expressions in the form of equation 3.7,

similar to the λ̂ update in equation 3.14. For example, θ̂k,φi ’s update becomes:

θ̂k,φi,n = θ0 +
∑
d,w

∑
ζd,k

ζ̂d,kI(ζd,k, w)φi(w). (3.17)

Note that this approximation effectively drops the third term from the θ̂ objective in

equation 3.16. Empirically, we find that this approximation yields very close param-

eter estimates to the true updates while vastly improving speed. For this reason our

experimental results are reported using this approximation.

Updating ζ̂

Because parameters ζ̂ are impacted by constraints, their update is a two step proce-

dure. First, we compute p̃(θ, λ, s, z, i, a,w,x) using equation 3.6, which is equivalent
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ζ̂ ′k,m ∝
λ̂s

SsWzCz

× exp

∑
φi

[
ψ
(
θ̂i
k,φi,φi(wi)

)
− ψ

(
θ̂i
k,φi,∗

)
+
∑
w 6=wi

(
ψ
(
θ̂bi
k,φi,φi(w)

)
− ψ

(
θ̂bi
k,φi,∗

))

−
∑
w

N
φi∑

n=1

((
I(ζk,m, w)

θ̂i
k,φi,n

θ̂i
k,φi,∗

+ (1− I(ζk,m, w))
θ̂bi
k,φi,n

θ̂bi
k,φi,∗

)

×
∏
k′ 6=k

∑
ζk′,m′

ζ̂k′,m′

(
I(ζk′,m′ , w)

θ̂i
k′,φi,n

θ̂i
k′,φi,∗

+ (1− I(ζk′,m′ , w))
θ̂bi
k′,φi,n

θ̂bi
k′,φi,∗

)
+
∑
φa

[
ψ
(
θ̂a
k,φa,φa(xa)

)
− ψ

(
θ̂a
k,φa,∗

)
+
∑
x 6=xa

(
ψ
(
θ̂ba
k,φa,φa(x)

)
− ψ

(
θ̂ba
k,φa,∗

))

−
∑
x

Nφa∑
n=1

((
I(ζk,m, x)

θ̂a
k,φa,n

θ̂a
k,φa,∗

+ (1− I(ζk,m, x))
θ̂ba
k,φa,n

θ̂ba
k,φa,∗

)

×
∏
k′ 6=k

∑
ζk′,m′

ζ̂k′,m′

(
I(ζk′,m′ , x)

θ̂a
k′,φa,n

θ̂a
k′,φa,∗

+ (1− I(ζk′,m′ , x))
θ̂ba
k′,φa,n

θ̂ba
k′,φa,∗

)
Figure 3-5: Unconstrained variational update for ζ̂.
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to the update we would have made had there been no constraints. We notate the

parameters of this distribution as ζ̂ ′d,k = (ζ̂ ′k,1, . . . , ζ̂
′
k,M), with one parameter for every

valid combination of s, z, i, and a; we will drop the subscript d below for notational

clarity. We find ζ̂ ′ using the update in equation 3.7 and the model factorization in

equation 3.1, yielding:

ζ̂ ′k,m ∝ exp

(
Eq(λ)[log p(sk | λk)] + log p(zk | sk) + log p(ik | zk) + log p(ak | zk)

+ Eq(θi)[log p(wi | θi)] +
∑
w 6=wi

Eq(θbi)[log p(w | θbi)]

+ Eq(θa)[log p(xa | θa)] +
∑
x 6=xa

Eq(θba)[log p(x | θba)]

)
, (3.18)

where s, z, i, and a are the segment, sentence, indicator, and argument selections

corresponding to case m, wi is the word selected as the indicator by i, and similarly

for xa. Let Nφ be the number of possible values for feature φ and θ̂k,φ,∗ =
∑Nφ

n=1 θ̂k,φ,n.

Plugging in the individual probability distributions and evaluating the expectations

yields the closed-form unconstrained update shown in Figure 3-5. In that expression,

Ss, Wz, and Cz are respectively the number of sentences in segment s and the number

of words and constituents in sentence z, I(ζ, w) is a binary function returning 1 if ζ

selects word w as the indicator, and I(ζ, x) returns 1 if ζ selects x as the argument.

Note that we apply the same Taylor series approximation introduced by the θ̂ update.

We then apply L-BFGS-B to the optimization program of equation 3.10 to find

the optimal dual parameters κ∗. These values are fed into equation 3.11 to produce

the final constrained update.

3.4 Declarative Constraints

The previous section provides us the machinery to incorporate a variety of declarative

constraints during inference. The classes of domain-independent constraints we study

are summarized in Table 3.1. We will later also introduce domain-specific constraints
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Quantity f(s, z, i,a) ≤ or ≥ b
Syntax ∀k Counts i, a of relation k that match a pattern ≥ 0.8D
Prevalence ∀k Counts instances of relation k ≥ 0.8D
Separation (ind) ∀w Counts times token w selected as i ≤ 2
Separation (arg) ∀w Counts times token w selected as part of a ≤ 1

Table 3.1: Summary of constraints we consider for the relation discovery model.
Each constraint takes the form Eq[f(z, a, i)] ≤ b or Eq[f(z, a, i)] ≥ b as indicated in
the table; D denotes the number of corpus documents, ∀k means one constraint per
relation type, and ∀w means one constraint per token in the corpus.

relevant to the individual experiment datasets. For the syntactic and prevalence

constraints, both of which require a proportion threshold, we arbitrarily select 80%,

foregoing specific tuning in the spirit of building a domain-independent approach.

3.4.1 Syntax

As previous work has observed, most relations are expressed using a limited number

of common syntactic patterns [6, 115]. Our syntactic constraint captures this insight

by requiring that a certain proportion of the induced instances for each relation match

one of these syntactic patterns:

• The indicator is a verb and the argument’s headword is either the child or

grandchild of the indicator word in the dependency tree.

• The indicator is a noun and the argument is a modifier or complement.

• The indicator is a noun in a verb’s subject and the argument is contained within

the corresponding object.

Note that these patterns are very generic, since they should be generally applicable

across different domains. In domains where specialist knowledge is available, they

can be refined to capture more appropriate patterns.

Encoding the syntactic bias as a threshold-based soft constraint is preferable to

using a hard constraint for two reasons. First, our patterns do not necessarily cover

all potential relation syntactic patterns, such as coordinations (“indicator and argu-

ment”). We could include those additional rarer patterns in the pattern set, but doing
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so would also likely introduce a disproportionate number of false positive instances.

Second, most domains do not come with clean human-derived parses, so we will typ-

ically need to rely on automatic parsing to produce the input to our model. Using

a soft constraint allows our model to be robust to errors induced by the automatic

parser.

The syntactic constraint is a prime example of how posterior regularization enables

the easy injection of linguistically-motivated declarative knowledge into the learning

process. This constraint allows us to directly enforce intuitive domain-independent

linguistic knowledge while still permitting predictions that do not follow the patterns

when the data evidence is strong enough.

3.4.2 Prevalence

For a relation to be domain-relevant, it should occur in numerous documents across

the corpus, so we institute a constraint on the minimum number of times a relation is

instantiated. Note that the effect of this constraint could also be achieved by tuning

the prior probability of a relation not occurring in a document. However, this prior

would need to be adjusted every time the number of documents or feature selection

changes; using a constraint is an appealing alternative that both allows for direct

control over the space of predictions and is portable across domains.

3.4.3 Separation

The separation constraint encourages diversity in the discovered relation types by

restricting the number of times a single word can serve as either an indicator or part

of the argument of a relation instance. Specifically, we require that every token of the

corpus occurs at most once as a word in a relation’s argument in expectation. This

constraint serves to discourage identifying a phrase such as “the island of Mindoro”

as three separate relation arguments “the island,” “Mindoro,” and “the island of

Mindoro.” On the other hand, a single word can sometimes be evocative of multiple

relations (e.g., “occurred” signals both date and time in “occurred on Friday at
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Corpus Documents Sentences Tokens Vocabulary Token/type ratio
Finance 100 12.1 262.9 2918 9.0
Earthquake 200 9.3 210.3 3155 13.3

Table 3.2: Corpus statistics for the datasets used for the relation model experiments.
Sentence and token counts are per-document averages.

3pm”). Thus, we allow each word to serve as an indicator more than once, arbitrarily

fixing the limit at two.

3.5 Experiments

We now present experimental results of our model. We compare against unsuper-

vised baselines in Section 3.5.2 and examine the importance of applying posterior

constraints in Section 3.5.3. We also study how labeled instances impact perfor-

mance, comparing against supervised baselines in Section 3.5.4.

3.5.1 Evaluation Setup

Datasets

We evaluate on two datasets, financial market reports and newswire articles about

earthquakes, previously used in work on high-level content analysis [11, 80]. The

finance articles chronicle daily market movements of currencies and stock indexes,

and the earthquake articles document specific earthquakes. Constituent parses are

obtained automatically using the Stanford parser [76]. Since some of our constraints

are defined in terms of dependency relationships, we also apply the PennConvertor

tool [70] to transform the constituent parses into dependency parses. Corpus statistics

are summarized in Table 3.2.

We manually annotate relations for both corpora, selecting relation types that

are relevant and prevalent in each domain. This yields 15 types for finance and

nine for earthquakes. Table 3.3 describes each relation and provides example values

from the corpora. Note that the true relations arguments do not necessarily fall on

constituent boundaries, though even in those cases there is usually high overlap with
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Finance
Bond 104.58 yen, 98.37 yen

Bond Change down 0.06 yen, unchanged

Dollar 108.42 yen, 119.76 yen

Dollar Change up 0.52 yen, down 0.01 yen

Dollar Previous 119.47 yen, 97.68 yen

Nikkei 17367.54, 19115.82

Nikkei Change rose 32.64 points or 0.19 percent, fell 19.51 points or 0.10 percent

Nikkei Previous 19284.36, 16868.36

Nikkei Previous Change up 19.51 points or 0.10 percent, gained 2.31 points or 0.013 percent

Tokyo Index 1321.22, 1508.10

Tokyo Index Change
down 5.38 points or 0.41 percent, up 0.16 points, insignificant in
percentage terms

TOPIX 1321.22, 1517.67

TOPIX Change fell 26.88 points or 1.99 percent, down 2.36 points or 0.16 percent

Yield 2.360 percent, 3.225 percent

Yield Change slipped 26.88 points or 1.99 percent, unchanged

Earthquake
Casualties eight people, at least 70 people, no reports

Damage about 10000 homes, some buildings, no information

Date Tuesday, Wednesday, Saturday

Duration about one minute, about 90 seconds, a minute and a half

Epicenter
the Tumkin Valley in Buryatia, Patuca about 185 miles (300 kilome-
ters) south of Quito, 110 kilometers (65 miles) from shore under the
surface of the Flores sea in the Indonesian archipelago

Injuries more than 500, about 1700, no immediate reports

Location
a remote area in the Altai mountains in northwestern Xinjiang, off
Russia’s eastern coast, the district of Nabire 3130 kilometers (1950
miles) northeast of Jakarta

Magnitude 5.7, 6, magnitude-4

Time 4:29 p.m., 12:44 a.m., about 6:46 am

Table 3.3: The manually annotated relation types identified in the finance and earth-
quake datasets with example instance arguments.
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a noun phrase. Restricting our model to only constituents as arguments implies that

it cannot achieve perfect extraction accuracy. However, this restriction reduces the

search space of candidate relations to phrases that are likely to closely match true

relation tokens, and hence is a beneficial tradeoff to make.

Domain-specific Constraints

On top of the cross-domain constraints from Section 3.4, we study whether impos-

ing basic domain-specific constraints can be beneficial for performance. The finance

dataset is heavily quantitative, so we consider applying a single domain-specific con-

straint stating that most relation arguments should include a number. Likewise,

earthquake articles are typically written with a majority of the relevant information

toward the beginning of the document, so its domain-specific constraint is that most

relations should occur in the first two sentences of a document. Note that these

domain-specific constraints are not specific to individual relations or instances, but

rather encode a preference across all relation types. In both cases, we again use an

80% threshold without tuning.

Given a fixed amount of resources, injecting domain-specific knowledge via con-

straints can be much more cost-effective than producing supervised examples. The

constraints we propose here are general tendencies that could be easily intuited di-

rectly or identified based on a cursory examination of the data. In contrast, using any

sort of supervised method would require at least one annotation per target relation

type. Providing such annotations necessitates a much more detailed understanding

of the important relation types in a domain, and full analysis of at least one entire

document.

Metrics

We measure the quality of the induced relations by comparing them to the manually

annotated relation sets. The obvious way to evaluate is by measuring token-level

accuracy. In our task, however, annotation conventions for desired output relations

can greatly impact token-level performance, and the model cannot learn to fit a
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particular convention by looking at example data. For example, earthquakes times are

frequently reported in both local and GMT, and depending on annotation convention

either or both may be arbitrarily chosen as correct. Moreover, several of our baselines

operate at the sentence rather than word level, so a direct token-level comparison

would be infeasible.

For these reasons, we evaluate on both the sentence level and token level. Sentence-

level evaluations are less prone to idiosyncrasies in annotation style, and are easily

comparable across disparate techniques.

The specific scores we compute are sentence- and word-level precision, recall, and

F-score. Precision is measured by mapping every induced relation cluster to the

gold relation with the highest overlap, then computing the proportion of predicted

sentences or words that are correct. Conversely, for recall we map every gold relation

to its highest-overlap predicted relation and find the proportion of gold sentences or

words that are predicted. High precision implies that our discovered relation types

are internally highly coherent, while high recall means that the relations we predict

provide broad coverage of the true relations. This mapping technique is similar at

a high level to the one we use to evaluate our content model from Chapter 2, and

is again based on the many-to-one scheme used for evaluating unsupervised part-of-

speech induction [71].

Features

For indicators, we use the word, part of speech, and word stem as features. For

arguments, we use the word, syntactic constituent label, the head word of the parent

constituent, and the dependency label of the argument to its parent. Numeric words

are mapped onto the same feature value, as are different casings of a single word type.

In general, we expect that richer domain-specific features could also improve relation

extraction performance.
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Training Regimes and Hyperparameters

For each run of our model we perform three random restarts to convergence and select

the posterior with lowest final KL-divergence objective value (equation 3.3). We fix

K to the true number of annotated relation types for each run of our model and L

(the number of document segments) to five. Dirichlet hyperparameters are set to 0.1.

These values were not tuned since we do not assume access to a separate development

set.

3.5.2 Comparison against Unsupervised Baselines

Our first set of results compare against a series of alternative unsupervised approaches:

• Clustering (CLUTO): A straightforward way of identifying candidate groups of

sentences bearing the same relation, though not exact relation text spans, is

to simply cluster the sentences. We implement a clustering baseline using the

CLUTO toolkit with word and part-of-speech features, and with configuration

settings identical to the experimental setup for the content model of Chapter 2.

As we show in those experiments, clustering delivers competitive performance

for finding topically-grouped discourse units; hence, they appear to be a promis-

ing approach for finding relation-bearing sentence clusters. As with our model,

we set the number of clusters to the true number of relation types.

• Mallows Content Model (Mallows): Another baseline is to use the sentence clus-

tering output by the Mallows-based content model of Chapter 2. The datasets

we consider here exhibit high-level regularities in content organization, so we

may expect that the globally-informed content model could identify plausible

clusters of sentence-bearing relations. We set the number of topics K to the

true number of relation types.

• Unsupervised Semantic Parsing (USP): Our final unsupervised comparison is

to USP, an unsupervised deep semantic parser proposed by Poon and Domin-

gos [104]. USP induces a hierarchical lambda calculus representation of an en-

tire corpus. It was shown to outperform previous open information extraction
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and unsupervised paraphrase discovery approaches [5, 83]. We use the publicly

available implementation of USP,9 and provide it the required Stanford depen-

dency format as input [42]. Note that this dependency format is richer than the

syntactic and dependency parses we use for our model, potentially giving USP

an advantage.

USP’s output is represented as lambda calculus formulas; to map these to rela-

tion spans, we first group lambda forms by a combination of core form, argument

form, and the parent’s core form.10 We then filter to the K relations that appear

in the most documents, where K is the true number of relation types. For token-

level evaluations, we take the dependency tree fragment corresponding to the

argument form. For example, in the sentence “a strong earthquake rocked the

Philippines island of Mindoro early Tuesday,” USP learns that the word “Tues-

day” has a core form corresponding to the cluster of words {Tuesday, Wednes-

day, Saturday}, a parent form corresponding to the cluster of words {shook,

rock, hit, jolt}, and an argument form (dependency edge label) of TMOD; all

phrases with this same combination are grouped as a relation.

Note the first two baselines above only predict the sentences of relation types, whereas

the last also predicts word spans within the sentences.

Results

Lines 1 through 5 of Table 3.4 present the results of our main evaluation. Using only

domain-independent constraints, our model substantially outperforms all baselines

on the earthquake dataset. For the market dataset, our base model is comparable

in sentence-level F-score to the CLUTO baseline and outperforms all other baselines.

Note however that this CLUTO baseline delivers the worst performance of all ap-

proaches on the earthquake dataset, and moreover does not provide any mechanism

for identifying the appropriate tokens comprising the relation instance within the sen-

tence. Thus, these results support our hypothesis that our relation discovery model

9http://alchemy.cs.washington.edu/papers/poon09/
10This grouping mechanism yields better average results than only grouping by core form.
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Finance
Sentence-level Token-level

Prec Recall F-score Prec Recall F-score
1 Model 82.1 59.7 69.2 42.2 23.9 30.5
2 Model+DSC 87.3 81.6 84.4 51.8 30.0 38.0
3 CLUTO 56.3 92.7 70.0 —– —– —–
4 Mallows 40.4 99.3 57.5 —– —– —–
5 USP 81.1 51.7 63.1 15.1 26.7 19.3
6 No-sep 97.8 35.4 52.0 86.1 8.7 15.9
7 No-syn 83.3 46.1 59.3 20.8 9.9 13.4
8 Hard-syn 47.7 39.0 42.9 11.6 7.0 8.7

Earthquake
Sentence-level Token-level

Prec Recall F-score Prec Recall F-score
1 Model 54.2 68.1 60.4 20.2 16.8 18.3
2 Model+DSC 66.4 65.6 66.0 22.6 23.1 22.8
3 CLUTO 19.8 58.0 29.5 —– —– —–
4 Mallows 18.6 74.6 29.7 —– —– —–
5 USP 42.5 34.8 38.2 8.3 25.6 12.6
6 No-sep 42.2 21.9 28.8 16.1 4.6 7.1
7 No-syn 53.8 60.9 57.1 14.0 13.8 13.9
8 Hard-syn 55.0 66.2 60.1 20.1 17.3 18.6

Table 3.4: Comparison of our relation discovery model, with and without domain-
specific constraints (DSC), to a series of unsupervised baselines and model variants
on both domains. Lines are numbered for ease of reference in the text. For all scores
higher is better.
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Figure 3-6: The F-score of the CLUTO clustering baseline as additional noise clusters
are added compared to the relation discovery model’s performance.

using a single set of constraints can be applicable across domains.

We also find that introducing simple domain-specific constraints yields a strong

additional performance benefit for both datasets and metrics. In particular, our model

with such constraints substantially outperforms the CLUTO baseline on the finance

dataset. This result supports our claim that the posterior regularization approach

provides a simple and effective framework for injecting low-cost domain knowledge

into relation discovery. For the baselines there is no simple way of leveraging these

kinds of additional constraints.

The USP baseline delivers reasonable sentence-level performance on both datasets,

but gives poor token-level performance. This result speaks to the inherent difficulty

in identifying precise token-level boundaries for relation instances, considering that

USP is provided with richer Stanford-format dependency parses as input.

The CLUTO and Mallows baselines yield very skewed precision/recall tradeoffs,

tending to favor recall greatly over precision. This is primarily because clustering

requires that every sentence, including those without relations, is assigned to a rela-

tion cluster, thus lowering precision. In an effort to ameliorate this over-prediction

effect, we experiment with a variant of the CLUTO baseline where we first cluster

sentences into K + N groups, then predict the largest K of those clusters as the re-

lation sentences. These additional N “noise” clusters should absorb the relation-less

sentences at the cost of recall. Figure 3-6 presents F-score as a function of the number
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of additional noise clusters for both domains. We find that earthquakes benefits from

noise clusters up to a certain point, though even with an optimal 22 noise clusters

its 42.2 F-score still greatly lags behind our model’s 66.0 F-score. For finance, noise

clusters are not useful, leaving the CLUTO results unchanged or making them worse.

There is a large gap in F-score between the sentence- and token-level evaluations

for our model. A qualitative error analysis of the predictions indicates that our model

often picks up on regularities that are difficult to distinguish without relation-specific

supervision. For instance, in the earthquake domain a location may be annotated

as “the Philippine island of Mindoro” while we predict just the word “Mindoro.”

Additionally, indicators and arguments are sometimes switched—in the frequently-

occurring phrase “no reports of damage,” “reports” is often chosen as the argument

and “damage” as the indicator, a distinction that is difficult to make from unlabeled

data. For finance, a Nikkei change can be annotated as “rose 32.64 points or 0.19

percent,” while our model identifies “32.64 points” and “0.9 percent” as separate

relations. In practice, these outputs are all plausible discoveries, and a practitioner

desiring specific outputs could impose additional domain-specific constraints to guide

relation discovery toward them.

Additionally, we note the difference in results between the two domains. This

gap is due to the much more formulaic nature of the finance domain. As Table 3.3

demonstrates, the relations in that domain tend to exhibit much less variability in ver-

balization than earthquakes; additionally, they tend to occur in more similar contexts.

This greater regularity for finance also benefits the unsupervised baselines, allowing

them to deliver stronger relative performance to our model than for earthquakes.

In the earthquakes case, learning from multiple layers of regularity simultaneously,

coupled with the declarative constraints, is crucial to achieving reasonable results.

3.5.3 Constraint Ablation Analysis

To understand the impact of the declarative constraints, we perform an ablation

analysis on the constraint sets. We experiment with the following model variants:
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• No-sep: Removes the separation constraints, which biases against overlapping

relations, from the constraint set.

• No-syn: Removes the syntactic constraints, which biases toward plausible syn-

tactic patterns, from the constraint set.

• Hard-syn: Makes the syntactic constraint hard, i.e., requires that every extrac-

tion match one of the syntactic patterns specified by the syntactic constraint.

We perform this ablation analysis starting from the domain-independent constraint

set. Prevalence constraints are always enforced, as otherwise the prior on not instan-

tiating a relation would need to be tuned.

Results

Lines 6 through 8 of Table 3.4 present the results of this ablation evaluation. The

model’s performance degrades when either of the two constraint sets are removed,

demonstrating that the constraints are in fact beneficial for relation discovery. In

particular, note the no-sep case for the finance domain—the near-perfect precision

but dramatically reduced recall indicates that this variant is discovering one single

correct relation over and over again for each hidden relation.

In the hard-syn case, performance drops dramatically for the finance dataset while

remaining almost unchanged for earthquakes. This suggests that formulating con-

straints as soft inequalities on posterior expectations gives our model the flexibility to

accommodate both the underlying signal in the data and the declarative constraints.

3.5.4 Comparison against Supervised Approaches

Our final set of experiments address the scenario when a small amount of train-

ing data is available. For these evaluations we study a semi-supervised version of

our model. Because our model is formalized in a generative manner, incorporating

training examples is straightforward. The provided annotated relation instances are

simply encoded as observed variables, and predictions are made transductively on the

remaining unlabeled documents. In cases when the training instance’s argument does
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not fall on constituent boundaries, we adjust the training instance to the closest valid

constituent. We modify the syntactic and prevalence constraint thresholds to 80% of

the predictions on unlabeled documents. In case the training examples violate one of

the separation (non-overlap) constraints at a given word, we increase the constraint

threshold for that single word to remove the violation. We run our model both with

and without domain-specific constraints (DSC).

We compare to two supervised baselines:

• Conditional Random Field (CRF): We train a conditional random field model [78]

using the same features as our model’s argument features.11 CRFs are a very

well-established discriminative sequence model for supervised information ex-

traction. The CRF is trained with a corpus tagged with relation instances at

the token level. During test, the CRF predicts a labeling of relation instances

over the tokens of the test document. Unlike our model, the CRF ignores syn-

tax except through the feature representation. Consequently, it is not limited to

constituent boundaries for predicting relations, but also does not benefit from

syntactic constraints or document-level regularity in relation expression.

• Sentence-level Support Vector Machine (SVM): As an analogue to the unsuper-

vised CLUTO and Mallows sentence clustering models, we explore how well an

SVM can predict which sentences contain a given relation. We train a separate

binary classifier using SVMlight [69] for each relation type using word and part-

of-speech tag features. Positive examples are the sentences in the training data

with an instance of the relation, negative examples are all other sentences. This

baseline does not predict the exact words of the relation within the sentence.

For both the baselines and our model, we experiment with using up to 10 anno-

tated documents in both domains. At each of those levels of supervision, we average

results over 10 randomly drawn training sets.

11Our model uses features defined on constituents, so the CRF uses equivalent features defined at
the token level. We also tried using additional features based on local context but found that they
do not appreciably affect performance for these datasets under the given training regimes.
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Figure 3-7: Comparison of the semi-supervised variant of our relation discovery model
to two supervised baselines, a CRF sequence model and an SVM trained on sentences,
on both datasets (top vs. bottom) and metrics (left vs. right). The x-axis measures
the number of labeled documents provided to each system. Token-level performance
for the SVM is not reported since the SVM does not predict individual relation tokens.
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Results

Figure 3-7 depicts F-score of our model and the baselines as a function of the number

of annotated documents for both domains and metrics.

At the sentence level, we find that our model, with and without domain-specific

constraints, compares very favorably to the supervised baselines. For finance, it takes

eight annotated documents (corresponding to roughly 100 individually annotated

relation instances) for the SVM to match the semi-supervised model’s performance,

and at least ten documents for the CRF. For earthquake, using even ten annotated

documents (corresponding to about 71 relation instances) is not sufficient for either

the CRF or SVM to match our model’s performance.

At the token level, the supervised CRF baseline is far more competitive. Using a

single labeled document (13 relation instances) yields superior performance to either

of our model variants for finance, while four labeled documents (29 relation instances)

does the same for earthquakes. This result is not surprising—our model is designed

first and foremost as an unsupervised model, and as such makes strong domain-

independent assumptions about how underlying patterns of regularities in the text

connect to relation expression. Without domain-specific supervision such assumptions

are necessary, but they can prevent the model from fully utilizing available labeled

instances.

For all of these evaluations we find that labeled data does not yield as great an

improvement in our model as compared to the supervised baselines. This is due to

multiple reasons. First, our model must build upon already strong unsupervised re-

sults, particularly at the sentence level, and simply has less room to improve. Second,

at the token level we make a strong assumption that relation instances align precisely

to phrase constituents; while this assumption benefits the unsupervised setting by

reducing the search space, it effectively imposes an upper bound on performance

in the presence of supervised data breaking this assumption. Third, we find that

for finance, instance supervision benefits the model with domain-specific constraints

more than the model without—in fact, just two labeled documents closes the gap
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in performance between the two variants. It appears that the domain-specific con-

straint already captures much of the information that could be gleaned from labeled

instances, thus obviating their usefulness. Finally, our model is framed generatively

with a strong Näıve Bayes independence assumption over features. While such an

assumption allows for tractable learning in the unsupervised setting, when training

data is available a discriminative model can benefit more deeply from the feature

values.

Overall, these results indicate that relatively few labeled instances are sometimes

sufficient for a supervised method to outperform its unsupervised counterpart at

the token level. As previous work has recognized for dependency parsing, however,

the bulk of the labor in constructing annotated instances is in the initial phases

of defining appropriate labeling guidelines and training annotators [43]. A similar

phenomenon holds for extraction; being able to annotate even one document requires

a broad understanding of every relation type germane to the domain, which can be

infeasible when there are many unfamiliar, complex domains to process. In light of

the supervised results, and our much stronger relative performance at the sentence-

level than the token-level, we suggest a human-assisted relation discovery application:

use our model to identify promising relation-bearing sentences in a new domain, then

have a human annotate those sentences for use by a supervised approach to achieve

optimal token-level extraction.

3.6 Conclusions and Future Work

This chapter presented a constraint-based approach to in-domain relation discovery.

We have shown that a generative model augmented with declarative constraints on

the model posterior can successfully identify domain-relevant relations and their in-

stances. Furthermore, we found that a single set of constraints can be used across

divergent domains, and that tailoring constraints specific to a domain can yield fur-

ther performance benefits.

We see multiple avenues of future work. From the modeling perspective, our gen-
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erative process could be enriched in several ways. First, it makes a strong Näıve Bayes

assumption between features. Recent work has demonstrated that many unsupervised

NLP models can instead benefit from a locally normalized log-linear feature genera-

tion process [16]. Incorporating such a representation in our model could potentially

allow for richer interdependent features to be used. Second, our document-level lo-

cation component is rather simple, and could potentially be enriched with an HMM

or Mallows content model. Previous work has shown that rich content models are

indeed beneficial for text analysis tasks such as extraction, at least in the supervised

scenario [119]. Third, indicators and arguments are treated almost symmetrically

by the generative process, distinguished only by feature selection and limitations in

kinds of word spans. This symmetry leads to occasional situations where indicators

and arguments are identified in reverse. In fact, the data typically exhibits much

stronger regularity (e.g., more limited word choice) in indicators than in arguments,

and a more intelligent model could use this to help differentiate the relation roles

more clearly.

From an application perspective, we have focused on datasets that exhibit rich

syntactic structure in the form of complete prose. A large body of previous informa-

tion extraction work focuses instead on semi-structured text, where the text already

resembles a database record, such as paper citations, classified ads listings, seminar

announcements, and contact information [15, 49, 78, 102]. The kind of syntactic con-

straints we used here would be inappropriate for such texts, but we believe a similar

constraint-based strategy could also be successful. This would require developing new

constraints targeting domain-independent properties of semi-structured text.

Finally, the semi-supervised variant of our model could likely be refined. We

found that the impact of adding more labeled documents yielded relatively minor

performance improvements. However, it is likely that such training examples could

be incorporated in a more intelligent way. For example, a few labeled instances of

a single relation are likely to cover a wide gamut of its possible indicator words.

In the spirit of the labeled features supervision setup [89], we could encode this

knowledge as a constraint on the relation’s indicator words rather than simply as
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observed variables in the model. Developing a domain-independent mechanism for

incorporating supervision using constraints is a promising area of future work.
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Chapter 4

Learning Semantic Properties

using Free-text Annotations

In this chapter, we propose a technique for inducing document-level semantic proper-

ties implied by a text. For example, given the text of a restaurant review, we desire to

extract a semantic-level characterization of the author’s reaction to specific aspects

of the restaurant, such as food and service quality (see Figure 4-1). The work in this

chapter identifies clusters of entire documents that share semantic characteristics, and

thus induce structure at a higher level than the phrases of the relation model and the

paragraphs of the content model from previous chapters. Learning-based approaches

have dramatically increased the scope and robustness of this kind of high-level seman-

tic processing, but they are typically dependent on large expert-annotated datasets,

which are costly to produce [137].

We propose to use an alternative source of annotations for learning: free-text

keyphrases produced by novice users. As an example, consider the lists of pros and

cons that often accompany reviews of products and services. Such end-user anno-

tations are increasingly prevalent online, and they naturally grow to keep pace with

subjects of interest and socio-cultural trends. Beyond such pragmatic considerations,

free-text annotations are appealing from a linguistic standpoint because they capture

the intuitive semantic judgments of non-specialist language users. In many real-world

datasets, these annotations are created by the document’s original author, providing
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pros/cons: great nutritional value
... combines it all: an amazing product, quick and friendly service, cleanliness, great
nutrition ...

pros/cons: a bit pricey, healthy
... is an awesome place to go if you are health conscious. They have some really great
low calorie dishes and they publish the calories and fat grams per serving.

Figure 4-1: Excerpts from online restaurant reviews with pros/cons phrase lists. Both
reviews assert that the restaurant serves healthy food, but use different keyphrases.
Additionally, the first review discusses the restaurant’s good service, but is not anno-
tated as such in its keyphrases.

a direct window into the semantic judgments that motivated the document text.

The major obstacle to the computational use of such free-text annotations is that

they are inherently noisy — there is no fixed vocabulary, no explicit relationship be-

tween annotation keyphrases, and no guarantee that all relevant semantic properties

of a document will be annotated. For example, in the pros/cons annotations ac-

companying the restaurant reviews in Figure 4-1, the same underlying semantic idea

is expressed in different ways through the keyphrases “great nutritional value” and

“healthy.” Additionally, the first review discusses quality of service, but is not anno-

tated as such. In contrast, expert annotations would replace synonymous keyphrases

with a single canonical label, and would fully label all semantic properties described in

the text. Such expert annotations are typically used in supervised learning methods.

As we will demonstrate with our results, traditional supervised approaches perform

poorly when free-text annotations are used instead of clean, expert annotations.

This chapter demonstrates a new approach for handling free-text annotation in

the context of a hidden-topic analysis of the document text. We show that regular-

ities in document word choice can clarify noise in the annotations, and vice versa.

For example, although “great nutritional value” and “healthy” have different surface

forms, the text in documents that are annotated by these two keyphrases will likely

be similar. Conversely, the same phrase “delicious food” annotated on two different

documents allows us to predict the same property for each, even if the document

texts are very divergent. By modeling the relationship between document text and
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annotations over a large dataset, it is possible to induce a clustering over the annota-

tion keyphrases that can help to overcome the problem of inconsistency. Our model

also addresses the problem of incompleteness — when novice annotators fail to label

relevant semantic topics — by estimating which topics are predicted by the document

text alone.

Central to this approach is the idea that both document text and the associated

annotations reflect a single underlying set of semantic properties. In the text, the

semantic properties correspond to the induced hidden topics — this is similar to

the growing body of work on latent topic models, such as latent Dirichlet allocation

(LDA) [23]. However, unlike existing work on topic modeling, we tie hidden topics in

the text with clusters of observed keyphrases. By modeling these phenomena jointly,

we ensure that the inferred hidden topics are semantically meaningful, and that the

clustering over free-text annotations is robust to noise.

Our approach takes the form of a hierarchical Bayesian framework, and includes

an LDA-style component in which each word in the text is generated from a mixture

of multinomials. In addition, we also incorporate a similarity matrix across the uni-

verse of annotation keyphrases, which is constructed based on the orthographic and

distributional features of the keyphrases. We model this matrix as being generated

from an underlying clustering over the keyphrases, such that keyphrases that are clus-

tered together are likely to produce high similarity scores. To generate the words in

each document, we model two distributions over semantic properties — one governed

by the annotation keyphrases and their clusters, and a background distribution to

cover properties not mentioned in the annotations. The latent topic for each word is

drawn from a mixture of these two distributions. After learning model parameters

from a noisily-labeled training set, we can apply the model to unlabeled data.

We build a system that extracts semantic properties from reviews of products

and services. This system uses as training corpus that includes user-created free-text

annotations of the pros and cons in each review. Training yields two outputs: a

clustering of keyphrases into semantic properties, and a topic model that is capable

of inducing the semantic properties of unlabeled text. The clustering of annotation
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keyphrases is relevant for applications such as content-based information retrieval,

allowing users to retrieve documents with semantically relevant annotations even if

their surface forms differ from the query term. The topic model can be used to infer

the semantic properties of unlabeled text.

The topic model can also be used to perform multi-document summarization, cap-

turing the key semantic properties of multiple reviews. Unlike traditional extraction-

based approaches to multi-document summarization, our induced topic model ab-

stracts the text of each review into a representation capturing the relevant semantic

properties. This enables comparison between reviews even when they use superficially

different terminology to describe the same set of semantic properties. This idea is

implemented in a review aggregation system that extracts the majority sentiment of

multiple reviewers for each product or service. An example of the output produced

by this system is shown in Figure 4-6. This system is applied to reviews in 480 prod-

uct categories, allowing users to navigate the semantic properties of 49,490 products

based on a total of 522,879 reviews. The effectiveness of our approach is confirmed

by several evaluations.

For the summarization of both single and multiple documents, we compare the

properties inferred by our model with expert annotations. Our approach yields sub-

stantially better results than alternatives from the research literature; in particular,

we find that learning a clustering of free-text annotation keyphrases is essential to

extracting meaningful semantic properties from our dataset. In addition, we compare

the induced clustering with a gold standard clustering produced by expert annotators.

The comparison shows that tying the clustering to the hidden topic model substan-

tially improves its quality, and that the clustering induced by our system coheres well

with the clustering produced by expert annotators.

The remainder of the chapter is structured as follows. Section 4.1 compares our

approach with previous work on topic modeling, semantic property extraction, and

multi-document summarization. Section 4.2 describes the properties of free-text an-

notations that motivate our approach. The model itself is described in Section 4.3,

and a method for parameter estimation is presented in Section 4.4. Section 4.5 de-
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scribes the implementation and evaluation of single-document and multi-document

summarization systems using these techniques. We summarize our contributions and

consider directions for future work in Section 4.8.

4.1 Related Work

The material presented in this section covers three lines of related work. First, we

discuss work on Bayesian topic modeling that is related to our technique for learning

from free-text annotations. Next, we discuss state-of-the-art methods for identifying

and analyzing product properties from the review text. Finally, we situate our sum-

marization work in the landscape of prior research on multi-document summarization.

4.1.1 Bayesian Topic Modeling

Recent work in the topic modeling literature has demonstrated that semantically

salient topics can be inferred in an unsupervised fashion by constructing a generative

Bayesian model of the document text. One notable example of this line of research is

Latent Dirichlet Allocation (LDA) [23]. In the LDA framework, semantic topics are

equated to latent distributions of words in a text; thus, each document is modeled as a

mixture of topics. This class of models has been used for a variety of language process-

ing tasks including topic segmentation [108], named-entity resolution [18], sentiment

ranking [126], and word sense disambiguation [25].

Our method is similar to LDA in that it assigns latent topic indicators to each

word in the dataset, and models documents as mixtures of topics. However, the LDA

model does not provide a method for linking the latent topics to external observed

representations of the properties of interest. In contrast, our model exploits the

free-text annotations in our dataset to ensure that the induced topics correspond to

semantically meaningful properties.

Combining topics induced by LDA with external supervision was first considered

by Blei and McAuliffe [21] in their supervised Latent Dirichlet Allocation (sLDA)

model. The induction of the hidden topics is driven by annotated examples provided
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during the training stage. From the perspective of supervised learning, this approach

succeeds because the hidden topics mediate between document annotations and lex-

ical features. Blei and McAuliffe describe a variational expectation-maximization

procedure for approximate maximum-likelihood estimation of the model’s parame-

ters. When tested on two polarity assessment tasks, sLDA shows improvement over

a model in which topics where induced by an unsupervised model and then added as

features to a supervised model.

The key difference between our model and sLDA is that we do not assume access

to clean supervision data during training. Since the annotations provided to our

algorithm are free-text in nature, they are incomplete and fraught with inconsistency.

This substantial difference in input structure motivates the need for a model that

simultaneously induces the hidden structure in free-text annotations and learns to

predict properties from text.

4.1.2 Property Assessment for Review Analysis

Our model is applied to the task of review analysis. Traditionally, the task of iden-

tifying the properties of a product from review texts has been cast as an extraction

problem [67, 84, 105]. For example, Hu and Liu [67] employ association mining to

identify noun phrases that express key portions of product reviews. The polarity

of the extracted phrases is determined using a seed set of adjectives expanded via

WordNet relations. A summary of a review is produced by extracting all property

phrases present verbatim in the document.

Property extraction was further refined in Opine [105], another system for review

analysis. Opine employs a novel information extraction method to identify noun

phrases that could potentially express the salient properties of reviewed products;

these candidates are then pruned using WordNet and morphological cues. Opinion

phrases are identified using a set of hand-crafted rules applied to syntactic depen-

dencies extracted from the input document. The semantic orientation of properties

is computed using a relaxation labeling method that finds the optimal assignment of

polarity labels given a set of local constraints. Empirical results demonstrate that
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Opine outperforms Hu and Liu’s system in both opinion extraction and in identifying

the polarity of opinion words.

These two feature extraction methods are informed by human knowledge about the

way opinions are typically expressed in reviews: for Hu and Liu [67], human knowledge

is encoded using WordNet and the seed adjectives; for Popescu et al. [105], opinion

phrases are extracted via hand-crafted rules. An alternative approach is to learn the

rules for feature extraction from annotated data. To this end, property identification

can be modeled in a classification framework [74]. A classifier is trained using a

corpus in which free-text pro and con keyphrases are specified by the review authors.

These keyphrases are compared against sentences in the review text; sentences that

exhibit high word overlap with previously identified phrases are marked as pros or

cons according to the phrase polarity. The rest of the sentences are marked as negative

examples.

Clearly, the accuracy of the resulting classifier depends on the quality of the

automatically induced annotations. Our analysis of free-text annotations in several

domains shows that automatically mapping from even manually-extracted annotation

keyphrases to a document text is a difficult task, due to variability in keyphrase surface

realizations (see Section 4.2). As we argue in the rest of this chapter, it is beneficial

to explicitly address the difficulties inherent in free-text annotations. To this end, our

work is distinguished in two significant ways from the property extraction methods

described above. First, we are able to predict properties beyond those that appear

verbatim in the text. Second, our approach also learns the semantic relationships

between different keyphrases, allowing us to draw direct comparisons between reviews

even when the semantic ideas are expressed using different surface forms.

Working in the related domain of web opinion mining, Lu and Zhai [85] describe

a system that generates integrated opinion summaries, which incorporate expert-

written articles (e.g., a review from an online magazine) and user-generated “ordi-

nary” opinion snippets (e.g., mentions in blogs). Specifically, the expert article is

assumed to be structured into segments, and a collection of representative ordinary

opinions is aligned to each segment. Probabilistic Latent Semantic Analysis (PLSA)
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is used to induce a clustering of opinion snippets, where each cluster is attached to one

of the expert article segments. Some clusters may also be unaligned to any segment,

indicating opinions that are entirely unexpressed in the expert article. Ultimately, the

integrated opinion summary is this combination of a single expert article with multi-

ple user-generated opinion snippets that confirm or supplement specific segments of

the review.

Our work’s final goal is different — we aim to provide a highly compact summary

of a multitude of user opinions by identifying the underlying semantic properties,

rather than supplementing a single expert article with user opinions. We specifically

leverage annotations that users already provide in their reviews, thus obviating the

need for an expert article as a template for opinion integration. Consequently, our

approach is more suitable for the goal of producing concise keyphrase summarizations

of user reviews, particularly when no review can be taken as authoritative.

The work closest in methodology to our approach is a review summarizer devel-

oped by Titov and McDonald [125]. Their method summarizes a review by selecting

a list of phrases that express writers’ opinions in a set of predefined properties (e.g.,,

food and ambiance for restaurant reviews). The system has access to numerical rat-

ings in the same set of properties, but there is no training set providing examples of

appropriate keyphrases to extract. Similar to sLDA, their method uses the numerical

ratings to bias the hidden topics towards the desired semantic properties. Phrases

that are strongly associated with properties via hidden topics are extracted as part

of a summary.

There are several important differences between our work and the summarization

method of Titov and McDonald. Their method assumes a predefined set of properties

and thus cannot capture properties outside of that set. Moreover, consistent numerical

annotations are required for training, while our method emphasizes the use of free-

text annotations. Finally, since Titov and McDonald’s algorithm is extractive, it does

not facilitate property comparison across multiple reviews.
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4.1.3 Multi-document Summarization

Our approach also relates to a large body of work in multi-document summarization.

Researchers have long noted that a central challenge of multi-document summariza-

tion is identifying redundant information over input documents [12, 32, 88, 110]. This

task is of crucial significance because multi-document summarizers operate over re-

lated documents that describe the same facts multiple times. In fact, it is common

to assume that repetition of information among related sources is an indicator of its

importance [12, 99, 109]. Many of these algorithms first cluster sentences together,

and then extract or generate sentence representatives for the clusters.

Identification of repeated information is equally central in our approach — our

multi-document summarization method only selects properties that are stated by a

plurality of users, thereby eliminating rare and/or erroneous opinions. The key dif-

ference between our algorithm and existing summarization systems is the method for

identifying repeated expressions of a single semantic property. Since most of the exist-

ing work on multi-document summarization focuses on topic-independent newspaper

articles, redundancy is identified via sentence comparison. For instance, Radev et

al. [109] compare sentences using cosine similarity between corresponding word vec-

tors. Alternatively, some methods compare sentences via alignment of their syntactic

trees [12, 90]. Both string- and tree-based comparison algorithms are augmented with

lexico-semantic knowledge using resources such as WordNet.

The approach described in this chapter does not perform comparisons at the sen-

tence level. Instead, we first abstract reviews into a set of properties and then com-

pare property overlap across different documents. This approach relates to domain-

dependent approaches for text summarization [45, 110, 131]. These methods identify

the relations between documents by comparing their abstract representations. In

these cases, the abstract representation is constructed using off-the-shelf informa-

tion extraction tools. A template specifying what types of information to select is

crafted manually for a domain of interest. Moreover, the training of information ex-

traction systems requires a corpus manually annotated with the relations of interest.
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Property
Incompleteness Inconsistency

Recall Precision F-score
Keyphrase Top Keyphrase

Count Coverage %
Good food 0.736 0.968 0.836 23 38.3
Good service 0.329 0.821 0.469 27 28.9
Good price 0.500 0.707 0.586 20 41.8
Bad food 0.516 0.762 0.615 16 23.7
Bad service 0.475 0.633 0.543 20 22.0
Bad price 0.690 0.645 0.667 15 30.6
Average 0.578 0.849 0.688 22.6 33.6

Table 4.1: Incompleteness and inconsistency in the restaurant domain for six prevalent
semantic properties. The incompleteness figures are the recall, precision, and F-
score of the author annotations (manually clustered into properties) against the gold
standard property annotations. Inconsistency is measured by the number of different
keyphrase realizations with at least five occurrences associated with each property,
and the percentage frequency with which the most commonly occurring keyphrases is
used to annotate a property. The averages in the bottom row are weighted according
to frequency of property occurrence.

In contrast, our method does not require manual template specification or corpora

annotated by experts. While the abstract representations that we induce are not

as linguistically rich as extraction templates, they nevertheless enable us to perform

in-depth comparisons across different reviews.

4.2 Analysis of Free-Text Keyphrase Annotations

In this section, we explore the characteristics of free-text annotations, aiming to

quantify the degree of noise observed in this data. The results of this analysis motivate

the development of the learning algorithm described in Section 4.3.

We perform this investigation in the domain of online restaurant reviews using

documents downloaded from the popular Epinions1 website. Users of this website

evaluate products by providing both a textual description of their opinion, as well

as concise lists of keyphrases (pros and cons) summarizing the review. Pros/cons

keyphrases are an appealing source of annotations for online review texts. However,

they are contributed independently by multiple users and are thus unlikely to be

1http://www.epinions.com/
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as clean as expert annotations. In our analysis, we focus on two features of free-

text annotations: incompleteness and inconsistency. The measure of incompleteness

quantifies the degree of label omission in free-text annotations, while inconsistency

reflects the variance of the keyphrase vocabulary used by various annotators.

To test the quality of these user-generated annotations, we compare them against

“expert” annotations produced in a more systematic fashion. This annotation effort

focused on six properties that were commonly mentioned by the review authors,

specifically those shown in Table 4.1. Given a review and a property, the task is

to assess whether the review’s text supports the property. These annotations were

produced by two judges guided by a standardized set of instructions. In contrast to

author annotations from the website, the judges conferred during a training session

to ensure consistency and completeness. The two judges collectively annotated 170

reviews, with 30 annotated by both. Cohen’s Kappa, a measure of inter-annotator

agreement that ranges from zero to one, is 0.78 on this joint set, indicating high

agreement [39]. On average, each review text was annotated with 2.56 properties.

Separately, one of the judges also standardized the free-text pros/cons annotations

for the same 170 reviews. Each review’s keyphrases were matched to the same six

properties. This standardization allows for direct comparison between the properties

judged to be supported by a review’s text and the properties described in the same

review’s free-text annotations. We find that many semantic properties that were

judged to be present in the text were not user annotated — on average, the keyphrases

expressed 1.66 relevant semantic properties per document, while the text expressed

2.56 properties. This gap demonstrates the frequency with which authors omitted

relevant semantic properties from their review annotations.

4.2.1 Incompleteness

To measure incompleteness, we compare the properties stated by review authors in

the form of pros and cons against those stated only in the review text, as judged by

expert annotators. This comparison is performed using precision, recall and F-score.

In this setting, recall is the proportion of semantic properties in the text for which
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Property: good price
relatively inexpensive, dirt cheap, relatively cheap, great price, fairly priced, well priced,
very reasonable prices, cheap prices, affordable prices, reasonable cost

Figure 4-2: Examples of the many different paraphrases related to the property good
price that appear in the pros/cons keyphrases of reviews used for our inconsistency
analysis.

the review author also provided at least one annotation keyphrase; precision is the

proportion of keyphrases that conveyed properties judged to be supported by the text;

and F-score is their harmonic mean. The results of the comparison are summarized

in the left half of Table 4.1.

These incompleteness results demonstrate the significant discrepancy between user

and expert annotations. As expected, recall is quite low; more than 40% of property

occurrences are stated in the review text without being explicitly mentioned in the

annotations. The precision scores indicate that the converse is also true, though to a

lesser extent — some keyphrases will express properties not mentioned in text.

Interestingly, precision and recall vary greatly depending on the specific property.

They are highest for good food, matching the intuitive notion that high food quality

would be a key salient property of a restaurant, and thus more likely to be mentioned

in both text and annotations. Conversely, the recall for good service is lower — for

most users, high quality of service is apparently not a key point when summarizing a

review with keyphrases.

4.2.2 Inconsistency

The lack of a unified annotation scheme in the restaurant review dataset is apparent

— across all reviewers, the annotations feature 26,801 unique keyphrase surface forms

over a set of 49,310 total keyphrase occurrences. Clearly, many unique keyphrases

express the same semantic property — in Figure 4-2, good price is expressed in ten dif-

ferent ways. To quantify this phenomenon, the judges manually clustered a subset of

the keyphrases associated with the six previously mentioned properties. Specifically,

121 keyphrases associated with the six major properties were chosen, accounting for
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Figure 4-3: Cumulative occurrence counts for the top ten keyphrases associated with
the good service property. The percentages are out of a total of 1,210 separate
keyphrase occurrences for this property.

10.8% of all keyphrase occurrences.

We use these manually clustered annotations to examine the distributional pat-

tern of keyphrases that describe the same underlying property, using two different

statistics. First, the number of different keyphrases for each property gives a lower

bound on the number of possible paraphrases. Second, we measure how often the

most common keyphrase is used to annotate each property, i.e., the coverage of that

keyphrase. This metric gives a sense of how diffuse the keyphrases within a property

are, and specifically whether one single keyphrase dominates occurrences of the prop-

erty. Note that this value is an overestimate of the true coverage, since we are only

considering a tenth of all keyphrase occurrences.

The right half of Table 4.1 summarizes the variability of property paraphrases.

Observe that each property is associated with numerous paraphrases, all of which

were found multiple times in the actual keyphrase set. Most importantly, the most

frequent keyphrase accounted for only about a third of all property occurrences,

strongly suggesting that targeting only these labels for learning is a very limited

approach. To further illustrate this last point, consider the property of good service,

whose keyphrase realizations’ distributional histogram appears in Figure 4-3. The

cumulative percentage frequencies of the most frequent keyphrases associated with
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this property are plotted. The top four keyphrases here account for only three quarters

of all property occurrences, even within the limited set of keyphrases we consider in

this analysis, motivating the need for aggregate consideration of keyphrases.

In the next section, we introduce a model that induces a clustering among keyphrases

while relating keyphrase clusters to the text, directly addressing these characteristics

of the data.

4.3 Model Description

We present a generative Bayesian model for documents annotated with free-text

keyphrases. Our model assumes that each annotated document is generated from

a set of underlying semantic topics. Semantic topics generate the document text by

indexing a language model; in our approach, they are also associated with clusters of

keyphrases. In this way, the model can be viewed as an extension of Latent Dirichlet

Allocation [23], where the latent topics are additionally biased toward the keyphrases

that appear in the training data. However, this coupling is flexible, as some words

are permitted to be drawn from topics that are not represented by the keyphrase an-

notations. This permits the model to learn effectively in the presence of incomplete

annotations, while still encouraging the keyphrase clustering to cohere with the topics

supported by the document text.

Another critical aspect of our model is that we desire the ability to use arbitrary

comparisons between keyphrases, in addition to information about their surface forms.

To accommodate this goal, we do not treat the keyphrase surface forms as generated

from the model. Rather, we acquire a real-valued similarity matrix across the uni-

verse of possible keyphrases, and treat this matrix as generated from the keyphrase

clustering. This representation permits the use of surface and distributional features

for keyphrase similarity, as described in Section 4.3.1.

An advantage of hierarchical Bayesian models is that it is easy to change which

parts of the model are observed and which parts are hidden. During training, the

keyphrase annotations are observed, so that the hidden semantic topics are coupled
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ψ – keyphrase cluster model
x – keyphrase cluster assignment
s – keyphrase similarity values
h – document keyphrases
η – document keyphrase topics
λ – probability of selecting η instead of φ
c – selects between η and φ for word topics
φ – background word topic model
z – word topic assignment
θ – language models of each topic
w – document words

ψ ∼ Dirichlet(ψ0)
x` ∼ Multinomial(ψ)

s`,`′ ∼

{
Beta(α=) if x` = x`′

Beta(α 6=) otherwise

ηd = [ηd,1 . . . ηd,K ]T

where ηd,k ∝

{
1 if x` = k for any l ∈ hd
ε otherwise

λd ∼ Beta(λ0)
cd,n ∼ Bernoulli(λd)
φd ∼ Dirichlet(φ0)

zd,n ∼

{
Multinomial(ηd) if cd,n = 1
Multinomial(φd) otherwise

θk ∼ Dirichlet(θ0)
wd,n ∼ Multinomial(θzd,n)

Figure 4-4: The plate diagram for our semantic properties model. Shaded circles
denote observed variables and squares denote hyperparameters. The dotted arrows
indicate that η is constructed deterministically from x and h. We use ε to refer to a
small constant probability mass.
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with clusters of keyphrases. To account for words not related to semantic topics,

some topics may not have any associated keyphrases. At test time, the model is

presented with documents for which the keyphrase annotations are hidden. The

model is evaluated on its ability to determine which keyphrases are applicable, based

on the hidden topics present in the document text.

The judgment of whether a topic applies to a given unannotated document is based

on the probability mass assigned to that topic in the document’s background topic

distribution. Because there are no annotations, the background topic distribution

should capture the entirety of the document’s topics. For the task involving reviews

of products and services, multiple topics may accompany each document. In this

case, each topic whose probability is above a threshold (tuned on the development

set) is predicted as being supported.

4.3.1 Keyphrase Clustering

To handle the hidden paraphrase structure of the keyphrases, one component of the

model estimates a clustering over keyphrases. The goal is to obtain clusters where each

cluster correspond to a well-defined semantic topic — e.g., both “healthy” and “good

nutrition” should be grouped into a single cluster. Because our overall joint model is

generative, a generative model for clustering could easily be integrated into the larger

framework. Such an approach would treat all of the keyphrases in each cluster as

being generated from a parametric distribution. However, this representation would

not permit many powerful features for assessing the similarity of pairs of keyphrases,

such as string overlap or keyphrase co-occurrence in a corpus [91].

For this reason, we represent each keyphrase as a real-valued vector rather than as

its surface form. The vector for a given keyphrase includes the similarity scores with

respect to every other observed keyphrase (the similarity scores are represented by s

in Figure 4-4). We model these similarity scores as generated by the cluster mem-

berships (represented by x in Figure 4-4). If two keyphrases are clustered together,

their similarity score is generated from a distribution encouraging high similarity;
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Lexical
The cosine similarity between the surface forms of two
keyphrases, represented as word frequency vectors.

Co-occurrence

Each keyphrase is represented as a vector of co-occurrence
values. This vector counts how many times other keyphrases
appear in documents annotated with this keyphrase. For
example, the similarity vector for “good food” may include
an entry for “very tasty food,” the value of which would be
the number of documents annotated with “good food” that
contain “very tasty food” in their text. The similarity be-
tween two keyphrases is then the cosine similarity of their
co-occurrence vectors.

Table 4.2: The two sources of information used to compute the similarity matrix for
our semantic properties model. The final similarity scores are linear combinations
of these two values. Note that co-occurrence similarity contains second-order co-
occurrence information.

Figure 4-5: A surface plot of the keyphrase similarity matrix from a set of restaurant
reviews, computed according to Table 4.2. Red indicates high similarity, whereas
blue indicates low similarity. In this diagram, the keyphrases have been grouped
according to an expert-created clustering, so keyphrases of similar meaning are close
together. The strong series of similarity “blocks” along the diagonal hint at how this
information could induce a reasonable clustering.
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otherwise, a distribution encouraging low similarity is used.2

The features used for producing the similarity matrix are given in Table 4.2,

encompassing lexical and distributional similarity measures. Our implemented system

takes a linear combination of these two data sources, weighting both sources equally.

The resulting similarity matrix for keyphrases from the restaurant domain is shown

in Figure 4-5.

As described in the next section, when clustering keyphrases, our model takes

advantage of the topic structure of documents annotated with those keyphrases, in

addition to information about the individual keyphrases themselves. In this sense, it

differs from traditional approaches for paraphrase identification [13, 83].

4.3.2 Document Topic Modeling

Our analysis of the document text is based on probabilistic topic models such as

LDA [23]. In the LDA framework, each word is generated from a language model

that is indexed by the word’s topic assignment. Thus, rather than identifying a single

topic for a document, LDA identifies a distribution over topics. High probability

topic assignments will identify compact, low-entropy language models, so that the

probability mass of the language model for each topic is divided among a relatively

small vocabulary.

Our model operates in a similar manner, identifying a topic for each word, de-

noted by z in Figure 4-4. However, where LDA learns a distribution over topics for

each document, we deterministically construct a document-specific topic distribution

from the clusters represented by the document’s keyphrases — this is η in the figure.

η assigns equal probability to all topics that are represented in the keyphrase annota-

tions, and very small probability to other topics. Generating the word topics in this

way ties together the clustering and language models.

As noted above, sometimes the keyphrase annotation does not represent all of the

2Note that while we model each similarity score as an independent draw; clearly this assumption
is too strong, due to symmetry and transitivity. Models making similar assumptions about the
independence of related hidden variables have previously been shown to be successful (for example,
the semi-supervised part-of-speech tagging work of Toutanova and Johnson [127]).

140



semantic topics that are expressed in the text. For this reason, we also construct

another “background” distribution φ over topics. The auxiliary variable c indicates

whether a given word’s topic is drawn from the distribution derived from annotations,

or from the background model. Representing c as a hidden variable allows us to

stochastically interpolate between the two language models φ and η. In addition,

any given document will most likely also discuss topics that are not covered by any

keyphrase. To account for this, the model is allowed to leave some of the clusters

empty, thus leaving some of the topics to be independent of all the keyphrases.

4.3.3 Generative Process

Our model assumes that all observed data is generated through a stochastic process

involving hidden parameters. In this section, we formally specify this generative pro-

cess. This specification guides inference of the hidden parameters based on observed

data, which are the following:

• For each of the L keyphrases, a vector s` of length L denoting a pairwise simi-

larity score in the interval [0, 1] to every other keyphrase.

• For each document d, its bag of words wd of length Nd. The nth word of d is

wd,n.

• For each document d, a set of keyphrase annotations hd, which includes index

` if the document was annotated with keyphrase `.

• The number of clusters K, which should be large enough to encompass topics

with actual clusters of keyphrases, as well as word-only topics.

These observed variables are generated according to the following process:

1. Draw a multinomial distribution ψ over the K keyphrase clusters from a sym-

metric Dirichlet prior with parameter ψ0.
3

2. For ` = 1 . . . L:

3Variables subscripted with zero are fixed hyperparameters.
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(a) Draw the `th keyphrase’s cluster assignment x` from Multinomial(ψ).

3. For (`, `′) = (1 . . . L, 1 . . . L):

(a) If x` = x`′ , draw s`,`′ from Beta(α=) ≡ Beta(2, 1), encouraging scores to

be biased toward values close to one.

(b) If x` 6= x`′ , draw s`,`′ from Beta(α6=) ≡ Beta(1, 2), encouraging scores to

be biased toward values close to zero.

4. For k = 1 . . . K:

(a) Draw language model θk from a symmetric Dirichlet prior with parameter

θ0.

5. For d = 1 . . . D:

(a) Draw a background topic model φd from a symmetric Dirichlet prior with

parameter φ0.

(b) Deterministically construct an annotation topic model ηd, based on keyphrase

cluster assignments x and observed document annotations hd. Specifically,

let H be the set of topics represented by phrases in hd. Distribution ηd as-

signs equal probability to each element of H, and a very small probability

mass to other topics.4

(c) Draw a weighted coin λd from Beta(λ0), which will determine the balance

between annotation ηd and background topic models φd.

(d) For n = 1 . . . Nd:

i. Draw a binary auxiliary variable cd,n from Bernoulli(λd), which deter-

mines whether the topic of the word wd,n is drawn from the annotation

topic model ηd or the background model φd.

ii. Draw a topic assignment zd,n from the appropriate multinomial as

indicated by cd,n.

4Making a hard assignment of zero probability to the other topics creates problems for parameter
estimation. A probability of 10−4 was assigned to all topics not represented by the keyphrase cluster
memberships.
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iii. Draw word wd,n from Multinomial(θzd,n), that is, the language model

indexed by the word’s topic.

4.4 Inference via Gibbs Sampling

To make predictions on unseen data, we need to estimate the parameters of the model.

In Bayesian inference, we estimate the distribution for each parameter, conditioned on

the observed data and hyperparameters. Such inference is intractable in the general

case, but sampling approaches allow us to approximately construct distributions for

each parameter of interest.

Gibbs sampling is perhaps the most generic and straightforward sampling tech-

nique. Conditional distributions are computed for each hidden variable, given all

the other variables in the model. By repeatedly sampling from these distributions in

turn, it is possible to construct a Markov chain whose stationary distribution is the

posterior of the model parameters [53]. The use of sampling techniques in natural

language processing has been previously investigated by many researchers, including

Finkel et al. [49] and Goldwater et al. [56].

We now present sampling equations for each of the hidden variables in Figure 4-

4. The prior over keyphrase clusters ψ is sampled based on the hyperprior ψ0 and

the keyphrase cluster assignments x. We write p(ψ | . . .) to mean the probability

conditioned on all the other variables.

p(ψ | . . .) ∝ p(ψ | ψ0)p(x | ψ),

= p(ψ | ψ0)
∏
`

p(x` | ψ)

= Dirichlet(ψ;ψ0)
∏
`

Multinomial(x`;ψ)

= Dirichlet(ψ;ψ′),

where ψ′i is ψ0 + count(x` = i). This conditional distribution is derived based on

the conjugacy of the multinomial to the Dirichlet distribution. The first line follows
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from Bayes’ rule, and the second line from the conditional independence of cluster

assignments x given keyphrase distribution ψ.

Resampling equations for φd and θk can be derived in a similar manner:

p(φd | . . .) ∝ Dirichlet(φd;φ
′
d),

p(θk | . . .) ∝ Dirichlet(θk; θ
′
k),

where φ′d,i = φ0+count(zn,d = i∧cn,d = 0) and θ′k,i = θ0+
∑

d count(wn,d = i ∧ zn,d = k).

In building the counts for φ′i, we consider only cases in which cn,d = 0, indicating that

the topic zn,d is indeed drawn from the background topic model φd. Similarly, when

building the counts for θ′k, we consider only cases in which the word wd,n is drawn

from topic k.

To resample λ, we employ the conjugacy of the Beta prior to the Bernoulli obser-

vation likelihoods, adding counts of c to the prior λ0.

p(λd | . . .) ∝ Beta(λd;λ
′
d),

where λ′d = λ0 +

[∑
n count(cd,n = 1)∑
n count(cd,n = 0)

]
.

The keyphrase cluster assignments are represented by x, whose sampling distri-

bution depends on ψ, s, and z, via η:

p(x` | . . .) ∝ p(x` | ψ)p(s | x`,x−`, α)p(z | η, ψ, c)

∝ p(x` | ψ)

[∏
`′ 6=`

p(s`,`′ | x`, x`′ , α)

] D∏
d

∏
cd,n=1

p(zd,n | ηd)


= Multinomial(x`;ψ)

[∏
`′ 6=`

Beta(s`,`′ ;αx`,x`′ )

] D∏
d

∏
cd,n=1

Multinomial(zd,n; ηd)

 .
The leftmost term of the above equation is the prior on x`. The next term encodes the

dependence of the similarity matrix s on the cluster assignments; with slight abuse of

notation, we write αx`,x`′ to denote α= if x` = x`′ , and α 6= otherwise. The third term
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is the dependence of the word topics zd,n on the topic distribution ηd. We compute

the final result of this probability expression for each possible setting of x`, and then

sample from the normalized multinomial.

The word topics z are sampled according to the topic distribution ηd, the back-

ground distribution φd, the observed words w, and the auxiliary variable c:

p(zd,n | . . .) ∝ p(zd,n | φ, ηd, cd,n)p(wd,n | zd,n, θ)

=

Multinomial(zd,n; ηd)Multinomial(wd,n; θzd,n) if cd,n = 1,

Multinomial(zd,n;φd)Multinomial(wd,n; θzd,n) otherwise.

As with x, each zd,n is sampled by computing the conditional likelihood of each

possible setting within a constant of proportionality, and then sampling from the

normalized multinomial.

Finally, we sample the auxiliary variable cd,n, which indicates whether the hidden

topic zd,n is drawn from ηd or φd. c depends on its prior λ and the hidden topic

assignments z:

p(cd,n | . . .) ∝ p(cd,n | λd)p(zd,n | ηd, φd, cd,n)

=

Bernoulli(cd,n;λd)Multinomial(zd,n; ηd) if cd,n = 1,

Bernoulli(cd,n;λd)Multinomial(zd,n;φd) otherwise.

Again, we compute the likelihood of cd,n = 0 and cd,n = 1 within a constant of

proportionality, and then sample from the normalized Bernoulli distribution.

Finally, our model requires values for fixed hyperparameters θ0, λ0, ψ0, and φ0,

which are tuned in the standard way based on development set performance.

One of the main applications of our model is to predict the properties supported

by documents that are not annotated with keyphrases. At test time, we would like

to compute a posterior estimate of φd for an unannotated test document d. Since

annotations are not present, property prediction is based only on the text component

of the model. For this estimate, we use the same Gibbs sampling procedure, restricted
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to zd,n and φd, with the stipulation that cd,n is fixed at zero so that zd,n is always

drawn from φd. In particular, we treat the language models as known; to more

accurately integrate over all possible language models, we use the final 1000 samples

of the language models from training as opposed to using a point estimate. For each

topic, if its probability in φd exceeds a certain threshold, that topic is predicted. This

threshold is tuned independently for each topic on a development set. The empirical

results we present in Section 4.5 are obtained in this manner.

4.5 Overview of Experiments

Our model for document analysis is implemented in Précis,5 a system that performs

single- and multi-document review summarization. The goal of Précis is to pro-

vide users with effective access to review data via mobile devices. Précis contains

information about 49,490 products and services ranging from childcare products to

restaurants and movies. For each of these products, the system contains a collection

of reviews downloaded from consumer websites such as Epinions, CNET, and Ama-

zon. Précis compresses data for each product into a short list of pros and cons that

are supported by the majority of reviews. An example of a summary of 27 reviews

for the movie Pirates of the Caribbean: At World’s End is shown in Figure 4-6. In

contrast to traditional multi-document summarizers, the output of the system is not

a sequence of sentences, but rather a list of phrases indicative of product properties.

This summarization format follows the format of pros/cons summaries that individual

reviewers provide on multiple consumer websites. Moreover, the brevity of the sum-

mary is particularly suitable for presenting on small screens such as those of mobile

devices.

To automatically generate the combined pros/cons list for a product or service,

we first apply our model to each review. The model is trained independently for each

product domain (e.g., movies) using a corresponding subset of reviews with free-text

annotations. These annotations also provide a set of keyphrases that contribute to

5Précis is accessible at http://groups.csail.mit.edu/rbg/projects/precis/.
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Figure 4-6: Summary of reviews for the movie Pirates of the Caribbean: At World’s
End on Précis. This summary is based on 27 documents. The list of pros and
cons are generated automatically using the system described in this chapter. The
generation of numerical ratings is based on the algorithm described by Snyder and
Barzilay [122].

the clusters associated with product properties. Once the model is trained, it labels

each review with a set of properties. Since the set of possible properties is the same

for all reviews of a product, the comparison among reviews is straightforward — for

each property, we count the number of reviews that support it, and select the property

as part of a summary if it is supported by the majority of the reviews. The set of

semantic properties is converted into a pros/cons list by presenting the most common

keyphrase for each property.

This aggregation technology is applicable in two scenarios. The system can be ap-

plied to unannotated reviews, inducing semantic properties from the document text;

this conforms to the traditional way in which learning-based systems are applied to

unlabeled data. However, our model is valuable even when individual reviews do

include pros/cons keyphrase annotations. Due to the high degree of paraphrasing,

direct comparison of keyphrases is challenging (see Section 4.2). By inferring a clus-

tering over keyphrases, our model permits comparison of keyphrase annotations on a
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Statistic Restaurants Cell Phones Digital Cameras
# of reviews 5735 1112 3971
avg. review length 786.3 1056.9 1014.2
avg. keyphrases / review 3.42 4.91 4.84

Table 4.3: Statistics of the datasets used to evaluate our semantic properties model.

more semantic level.

The next two sections provide a set of evaluations of our model’s ability to cap-

ture the semantic content of document text and keyphrase annotations. Section 4.6

describes an evaluation of our system’s ability to extract meaningful semantic sum-

maries from individual documents, and also assesses the quality of the paraphrase

structure induced by our model. Section 4.7 extends this evaluation to our system’s

ability to summarize multiple review documents.

4.6 Single-Document Experiments

First, we evaluate our model with respect to its ability to reproduce the annotations

present in individual documents, based on the document text. We compare against

a wide variety of baselines and variations of our model, demonstrating the appropri-

ateness of our approach to this task. In addition, we explicitly evaluate the quality of

the paraphrase structure induced by our model by comparing against a gold standard

clustering of keyphrases provided by expert annotators.

4.6.1 Evaluation Setup

In this section, we describe the datasets and evaluation techniques used for exper-

iments with our system and other automatic methods. We also comment on how

hyperparameters are tuned for our model, and how sampling is initialized.

Datasets

We evaluate our system on reviews from three domains: restaurants, cell phones, and

digital cameras. These reviews were downloaded from the Epinions website; we used
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user-authored pros and cons associated with reviews as keyphrases (see Section 4.2).

Statistics for the datasets are provided in Table 4.3. For each of the domains, we

selected 50% of the documents for training.

We consider two strategies for constructing test data. First, we consider evalu-

ating the semantic properties inferred by our system against expert annotations of

the semantic properties present in each document. To this end, we use the expert

annotations originally described in Section 4.2 as a test set; to reiterate, these were

annotations of 170 reviews in the restaurant domain, of which we now hold out 50 as

a development set. The review texts were annotated with six properties according to

standardized guidelines. This strategy enforces consistency and completeness in the

ground truth annotations, differentiating them from free-text annotations.

Unfortunately, our ability to evaluate against expert annotations is limited by the

cost of producing such annotations. To expand evaluation to other domains, we use

the author-written keyphrase annotations that are present in the original reviews.

Such annotations are noisy — while the presence of a property annotation on a

document is strong evidence that the document supports the property, the inverse is

not necessarily true. That is, the lack of an annotation does not necessarily imply that

its respective property does not hold — e.g., a review with no good service-related

keyphrase may still praise the service in the body of the document.

For experiments using free-text annotations, we overcome this pitfall by restricting

the evaluation of predictions of individual properties to only those documents that

are annotated with that property or its antonym. For instance, when evaluating the

prediction of the good service property, we will only select documents which are either

annotated with good service or bad service-related keyphrases.6 For this reason, each

semantic property is evaluated against a unique subset of documents. The details of

these development and test sets are presented in Appendix A.

To ensure that free-text annotations can be reliably used for evaluation, we com-

pare with the results produced on expert annotations whenever possible. As shown in

6This determination is made by mapping author keyphrases to properties using an expert-
generated gold standard clustering of keyphrases. It is much cheaper to produce an expert clustering
of keyphrases than to obtain expert annotations of the semantic properties in every document.
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Section 4.6.2, the free-text evaluations produce results that cohere well with those ob-

tained on expert annotations, suggesting that such labels can be used as a reasonable

proxy for expert annotation evaluations.

Evaluation Methods

Our first evaluation leverages the expert annotations described in Section 4.2. One

complication is that expert annotations are marked on the level of semantic properties,

while the model makes predictions about the appropriateness of individual keyphrases.

We address this by representing each expert annotation with the most commonly-

observed keyphrase from the manually-annotated cluster of keyphrases associated

with the semantic property. For example, an annotation of the semantic property

good food is represented with its most common keyphrase realization, “great food.”

Our evaluation then checks whether this keyphrase is within any of the clusters of

keyphrases predicted by the model.

The evaluation against author free-text annotations is similar to the evaluation

against expert annotations. In this case, the annotation takes the form of individual

keyphrases rather than semantic properties. As noted, author-generated keyphrases

suffer from inconsistency. We obtain a consistent evaluation by mapping the author-

generated keyphrase to a cluster of keyphrases as a determined by the expert annota-

tor, and then again selecting the most common keyphrase realization of the cluster.

For example, the author may use the keyphrase “tasty,” which maps to the seman-

tic cluster good food ; we then select the most common keyphrase realization, “great

food.” As in the expert evaluation, we check whether this keyphrase is within any of

the clusters predicted by the model.

Model performance is quantified using recall, precision, and F-score. These are

computed in the standard manner, based on the model’s representative keyphrase

predictions compared against the corresponding references. As with our document

structure work, approximate randomization [100, 136] is used for statistical signifi-

cance testing. To reiterate, this test repeatedly performs random swaps of individual

results from each candidate system, and checks whether the resulting performance
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Hyperparameters Restaurants Cell Phones Cameras
θ0 0.0001 0.0001 0.0001
ψ0 0.001 0.0001 0.1
φ0 0.001 0.0001 0.001

Table 4.4: Values of the hyperparameters used for each domain across all experiments
for the semantic properties model.

gap remains at least as large. We use this test because it is valid for comparing non-

linear functions of random variables, such as F-scores, unlike other common methods

such as the sign test. Previous work that used this test include evaluations at the

Message Understanding Conference [37, 38]; more recently, Riezler and Maxwell [114]

advocated for its use in evaluating machine translation systems.

Parameter Tuning and Initialization

To improve the model’s convergence rate, we perform two initialization steps for the

Gibbs sampler. First, sampling is done only on the keyphrase clustering component

of the model, ignoring document text. Second, we fix this clustering and sample the

remaining model parameters. These two steps are run for 5,000 iterations each. The

full joint model is then sampled for 100,000 iterations. Inspection of the parameter

estimates confirms model convergence. On a 2GHz dual-core desktop machine, a

multithreaded C++ implementation of model training takes about two hours for

each dataset.

Our model needs to be provided with the number of clusters K.7 We set K large

enough for the model to learn effectively on the development set. For the restaurant

data we set K to 20. For cell phones and digital cameras, K was set to 30 and 40,

respectively. These values were tuned using the development set. However, we found

that as long as K was large enough to accommodate a significant number of keyphrase

clusters, and a few additional to account for topics with no keyphrases, the specific

value of K does not affect the model’s performance.

All other hyperparameters were adjusted based on development set performance,

7This requirement could conceivably be removed by modeling the cluster indices as being drawn
from a Dirichlet process prior.
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shown in Table 4.4. In all cases, λ0 was set to (1, 1), making Beta(λ0) the uniform

distribution. The optimal hyperparameter values tend to be very low, indicating that

the model performs best when very peaked parameter estimates are preferred. This

also encourages empty clusters to be formed when K is set to a higher than necessary

value.

As previously mentioned, we obtain document properties by examining the proba-

bility mass of the topic distribution assigned to each property. A probability threshold

is set for each property via the development set, optimizing for maximum F-score.

4.6.2 Results

In this section, we report the performance of our model, comparing it with an array

of increasingly sophisticated baselines and model variations. We first demonstrate

that learning a clustering of annotation keyphrases is crucial for accurate semantic

prediction. Next, we investigate the impact of paraphrasing quality on model accuracy

by considering the expert-generated gold standard clustering of keyphrases as another

comparison point; we also consider alternative automatically computed sources of

paraphrase information.

For ease of comparison, the results of all the experiments are shown in Table 4.6

and Table 4.7, with a summary of the baselines and model variations in Table 4.5.

Comparison against Simple Baselines

Our first evaluation compares our model to four näıve baselines. All four treat

keyphrases as independent, ignoring their latent paraphrase structure.

• Random: Each keyphrase is supported by a document with probability of one

half. The results of this baseline are computed in expectation, rather than

actually run. This baseline is expected to have a recall of 0.5, because in

expectation it will select half of the correct keyphrases. Its precision is the

average proportion of annotations in the test set against the number of possible

annotations. That is, in a test set of size n with m properties, if property i
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Random Each keyphrase is supported by a document with probability of one half.

Keyphrase in text A keyphrase is supported by a document if it appears verbatim in the text.

Keyphrase classifier

A separate support vector machine classifier is trained for each keyphrase.
Positive examples are documents that are labeled by the author with the
keyphrase; all other documents are considered to be negative examples. A
keyphrase is supported by a document if that keyphrase’s classifier returns
a positive prediction.

Heuristic keyphrase
classifier

Similar to keyphrase classifier, except heuristic methods are used in an at-
tempt to reduce noise from the training documents. Specifically we wish to
remove sentences that discuss other keyphrases from the positive examples.
The heuristic removes from the positive examples all sentences that have
no word overlap with the given keyphrase.

Model cluster in
text

A keyphrase is supported by a document if it or any of its paraphrases
appear in the text. Paraphrasing is based on our model’s keyphrase clusters.

Model cluster clas-
sifier

A separate classifier is trained for each cluster of keyphrases. Positive
examples are documents that are labeled by the author with any keyphrase
from the cluster; all other documents are negative examples. All keyphrases
of a cluster are supported by a document if that cluster’s classifier returns
a positive prediction. Keyphrase clustering is based on our model.

Heuristic model
cluster classifier

Similar to model cluster classifier, except heuristic methods are used to
reduce noise from the training documents. Specifically we wish to remove
from the positive examples sentences that discuss keyphrases from other
clusters. The heuristic removes from the positive examples all sentences
that have no word overlap with any of the keyphrases from the given cluster.
Keyphrase clustering is based on our model.

Gold cluster model
A variation of our model where the clustering of keyphrases is fixed to
an expert-created gold standard. Only the text modeling parameters are
learned.

Gold cluster in text
Similar to model cluster in text, except the clustering of keyphrases is ac-
cording to the expert-produced gold standard.

Gold cluster classi-
fier

Similar to model cluster classifier, except the clustering of keyphrases is
according to the expert-produced gold standard.

Heuristic gold clus-
ter classifier

Similar to heuristic model cluster classifier, except the clustering of
keyphrases is according to the expert-produced gold standard.

Independent cluster
model

A variation of our model where the clustering of keyphrases is first learned
from keyphrase similarity information only, separately from the text. The
resulting independent clustering is then fixed while the text modeling pa-
rameters are learned. This variation’s key distinction from our full model
is the lack of joint learning of keyphrase clustering and text topics.

Independent cluster
in text

Similar to model cluster in text, except that the clustering of keyphrases is
according to the independent clustering.

Independent cluster
classifier

Similar to model cluster classifier, except that the clustering of keyphrases
is according to the independent clustering.

Heuristic indepen-
dent cluster classi-
fier

Similar to heuristic model cluster classifier, except the clustering of
keyphrases is according to the independent clustering.

Table 4.5: A summary of the baselines and variations against which our semantic
properties model is compared.
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Method
Restaurants

Recall Prec. F-score
1 Our model 0.920 0.353 0.510
2 Random 0.500 0.346 0.409 ∗
3 Keyphrase in text 0.048 0.500 0.087 ∗
4 Keyphrase classifier 0.769 0.353 0.484 ∗
5 Heuristic keyphrase classifier 0.839 0.340 0.484 ∗
6 Model cluster in text 0.227 0.385 0.286 ∗
7 Model cluster classifier 0.721 0.402 0.516
8 Heuristic model cluster classifier 0.731 0.366 0.488 ∗
9 Gold cluster model 0.936 0.344 0.502

10 Gold cluster in text 0.339 0.360 0.349 ∗
11 Gold cluster classifier 0.693 0.366 0.479 ∗
12 Heuristic gold cluster classifier 1.000 0.326 0.492 �
13 Independent cluster model 0.745 0.363 0.488 �
14 Independent cluster in text 0.220 0.340 0.266 ∗
15 Independent cluster classifier 0.586 0.384 0.464 ∗
16 Heuristic independent cluster classifier 0.592 0.386 0.468 ∗

Table 4.6: Comparison of the property predictions made by our semantic proper-
ties model and a series of baselines and model variations in the restaurant domain,
evaluated against expert semantic annotations. The results are divided according
to experiment. The methods against which our model has significantly better results
using approximate randomization are indicated with ∗ for p ≤ 0.05, and � for p ≤ 0.1.

appears ni times, then expected precision is
∑m

i=1
ni
mn

. For instance, for the

restaurants gold standard evaluation, the six tested properties appeared a total

of 249 times over 120 documents, yielding an expected precision of 0.346.

• Keyphrase in text: A keyphrase is supported by a document if it appears ver-

batim in the text. Precision should be high while recall will be low, because

the model is unable to detect paraphrases of the keyphrase in the text. For

instance, for the first review from Figure 4-1, “cleanliness” would be supported

because it appears in the text; however, “healthy” would not be supported,

even though the synonymous “great nutrition” does appear.

• Keyphrase classifier: A separate discriminative classifier is trained for each

keyphrase. Positive examples are documents that are labeled by the author

with the keyphrase; all other documents are considered to be negative exam-

ples. Consequently, for any particular keyphrase, documents labeled with syn-
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Method
Restaurants Cell Phones Digital Cameras

Recall Prec. F-score Recall Prec. F-score Recall Prec. F-score

1 Our model 0.923 0.623 0.744 0.971 0.537 0.692 0.905 0.586 0.711
2 Random 0.500 0.500 0.500 ∗ 0.500 0.489 0.494 ∗ 0.500 0.501 0.500 ∗
3 Keyphrase in text 0.077 0.906 0.142 ∗ 0.171 0.529 0.259 ∗ 0.715 0.642 0.676 ∗
4 Keyphrase classif. 0.905 0.527 0.666 ∗ 1.000 0.500 0.667 0.942 0.540 0.687 �
5 Heur. keyphr. classif. 0.997 0.497 0.664 ∗ 0.845 0.474 0.607 ∗ 0.845 0.531 0.652 ∗
6 Model cluster in text 0.416 0.613 0.496 ∗ 0.829 0.547 0.659 � 0.812 0.596 0.687 ∗
7 Model cluster classif. 0.859 0.711 0.778 † 0.876 0.561 0.684 0.927 0.568 0.704
8 Heur. model classif. 0.910 0.567 0.698 ∗ 1.000 0.464 0.634 � 0.942 0.568 0.709
9 Gold cluster model 0.992 0.500 0.665 ∗ 0.924 0.561 0.698 0.962 0.510 0.667 ∗

10 Gold cluster in text 0.541 0.604 0.571 ∗ 0.914 0.497 0.644 ∗ 0.903 0.522 0.661 ∗
11 Gold cluster classif. 0.865 0.720 0.786 † 0.810 0.559 0.661 0.874 0.674 0.761
12 Heur. gold classif. 0.997 0.499 0.665 ∗ 0.969 0.468 0.631 � 0.971 0.508 0.667 ∗
13 Indep. cluster model 0.984 0.528 0.687 ∗ 0.838 0.564 0.674 0.945 0.519 0.670 ∗
14 Indep. cluster in text 0.382 0.569 0.457 ∗ 0.724 0.481 0.578 ∗ 0.469 0.476 0.473 ∗
15 Indep. cluster classif. 0.753 0.696 0.724 0.638 0.472 0.543 ∗ 0.496 0.588 0.538 ∗
16 Heur. indep. classif. 0.881 0.478 0.619 ∗ 1.000 0.464 0.634 � 0.969 0.501 0.660 ∗

Table 4.7: Comparison of the property predictions made by our semantic properties
model and a series of baselines and model variations in three product domains, as
evaluated against author free-text annotations. The results are divided according to
experiment. The methods against which our model has significantly better results
using approximate randomization are indicated with ∗ for p ≤ 0.05, and � for p ≤
0.1. Methods which perform significantly better than our model with p ≤ 0.05 are
indicated with †.

onymous keyphrases would be among the negative examples. A keyphrase is

supported by a document if that keyphrase’s classifier returns a positive pre-

diction.

We use support vector machines, built using SVMlight [69] with the same fea-

tures as our model, i.e.,word counts.8 To partially circumvent the imbalanced

positive/negative data problem, we tuned prediction thresholds on a develop-

ment set to maximize F-score, in the same manner that we tuned thresholds for

our model.

• Heuristic keyphrase classifier: This baseline is similar to keyphrase classifier

above, but attempts to mitigate some of the noise inherent in the training data.

Specifically, any given positive example document may contain text unrelated

to the given keyphrase. We attempt to reduce this noise by removing from

the positive examples all sentences that have no word overlap with the given

keyphrase. A keyphrase is supported by a document if that keyphrase’s classifier

8In general, SVMs have the additional advantage of being able to incorporate arbitrary features,
but for the sake of comparison we restrict ourselves to using the same features across all methods.
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returns a positive prediction.9

Lines 2-5 of Tables 4.6 and 4.7 present these results, using both gold annotations

and the original authors’ annotations for testing. Our model outperforms these three

baselines in all evaluations with strong statistical significance.

The keyphrase in text baseline fares poorly: its F-score is below the random

baseline in three of the four evaluations. As expected, the recall of this baseline

is usually low because it requires keyphrases to appear verbatim in the text. The

precision is somewhat better, but the presence of a significant number of false positives

indicates that the presence of a keyphrase in the text is not necessarily a reliable

indicator of the associated semantic property.

Interestingly, one domain in which keyphrase in text does perform well is digital

cameras. We believe that this is because of the prevalence of specific technical terms in

the keyphrases used in this domain, such as “zoom” and “battery life.” Such technical

terms are also frequently used in the review text, making the recall of keyphrase in

text substantially higher in this domain than in the other evaluations.

The keyphrase classifier baseline outperforms the random and keyphrase in text

baselines, but still achieves consistently lower performance than our model in all four

evaluations. Notably, the performance of heuristic keyphrase classifier is worse than

keyphrase classifier except in one case. This alludes to the difficulty of removing the

noise inherent in the document text.

Overall, these results indicate that methods which learn and predict keyphrases

without accounting for their intrinsic hidden structure are insufficient for optimal

property prediction. This leads us toward extending the present baselines with clus-

tering information.

It is important to assess the consistency of the evaluation based on free-text an-

notations (Table 4.7) with the evaluation that uses expert annotations (Table 4.6).

While the absolute scores on the expert annotations dataset are lower than the scores

with free-text annotations, the ordering of performance between the various auto-

matic methods is the same across the two evaluation scenarios. This consistency is

9We thank a reviewer for suggesting this baseline.
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maintained in the rest of our experiments as well, indicating that for the purpose of

relative comparison between the different automatic methods, our method of evaluat-

ing with free-text annotations is a reasonable proxy for evaluation on expert-generated

annotations.

Comparison against Clustering-based Approaches

The previous section demonstrates that our model outperforms baselines that do not

account for the paraphrase structure of keyphrases. We now ask whether it is pos-

sible to enhance the baselines’ performance by augmenting them with the keyphrase

clustering induced by our model. Specifically, we introduce three more systems, none

of which are “true” baselines, since they all use information inferred by our model.

• Model cluster in text: A keyphrase is supported by a document if it or any of

its paraphrases appears in the text. Paraphrasing is based on our model’s clus-

tering of the keyphrases. The use of paraphrasing information enhances recall

at the potential cost of precision, depending on the quality of the clustering.

For example, assuming “healthy” and “great nutrition” are clustered together,

the presence of “healthy” in the text would also indicate support for “great

nutrition,” and vice versa.

• Model cluster classifier: A separate discriminative classifier is trained for each

cluster of keyphrases. Positive examples are documents that are labeled by the

author with any keyphrase from the cluster; all other documents are negative

examples. All keyphrases of a cluster are supported by a document if that

cluster’s classifier returns a positive prediction. Keyphrase clustering is based

on our model. As with keyphrase classifier, we use support vector machines

trained on word count features, and we tune the prediction thresholds for each

individual cluster on a development set.

Another perspective on model cluster classifier is that it augments the simplistic

text modeling portion of our model with a discriminative classifier. Discrimina-

tive training is often considered to be more powerful than equivalent generative
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approaches [91], leading us to expect a high level of performance from this

system.

• Heuristic model cluster classifier: This method is similar to model cluster clas-

sifier above, but with additional heuristics used to reduce the noise inherent

in the training data. Positive example documents may contain text unrelated

to the given cluster. To reduce this noise, sentences that have no word overlap

with any of the cluster’s keyphrases are removed. All keyphrases of a cluster are

supported by a document if that cluster’s classifier returns a positive prediction.

Keyphrase clustering is based on our model.

Lines 6-8 of Tables 4.6 and 4.7 present results for these methods. As expected,

using a clustering of keyphrases with the baseline methods substantially improves

their recall, with low impact on precision. Model cluster in text invariably outper-

forms keyphrase in text — the recall of keyphrase in text is improved by the addition

of clustering information, though precision is worse in some cases. This phenomenon

holds even in the cameras domain, where keyphrase in text already performs well.

However, our model still significantly outperforms model cluster in text in all evalu-

ations.

Adding clustering information to the classifier baseline results in performance that

is sometimes better than our model’s. This result is not surprising, because model

cluster classifier gains the benefit of our model’s robust clustering while learning a

more sophisticated classifier for assigning properties to texts. The resulting combined

system is more complex than our model by itself, but has the potential to yield better

performance. On the other hand, using a simple heuristic to reduce the noise present

in the training data consistently hurts the performance of the classifier, possibly due

to the reduction in the amount of training data.

Overall, the enhanced performance of these methods, in contrast to the keyphrase

baselines, is aligned with previous observations in entailment research [41], confirm-

ing that paraphrasing information contributes greatly to improved performance in

semantic inference tasks.
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The Impact of Paraphrasing Quality

The previous section demonstrates one of the central claims of our work: accounting

for paraphrase structure yields substantial improvements in semantic inference when

using noisy keyphrase annotations. A second key aspect of our research is the idea

that clustering quality benefits from tying the clusters to hidden topics in the doc-

ument text. We evaluate this claim by comparing our model’s clustering against an

independent clustering baseline. We also compare against a “gold standard” cluster-

ing produced by expert human annotators. To test the impact of these clustering

methods, we substitute the model’s inferred clustering with each alternative and ex-

amine how the resulting semantic inferences change. This comparison is performed

for the semantic inference mechanism of our model, as well as for the model cluster

in text, model cluster classifier and heuristic model cluster classifier baselines.

To add a “gold standard” clustering to our model, we replace the hidden variables

that correspond to keyphrase clusters with observed values that are set according to

the gold standard clustering.10 The only parameters that are trained are those for

modeling text. This model variation, gold cluster model, predicts properties using the

same inference mechanism as the original model. The baseline variations gold cluster

in text, gold cluster classifier and heuristic gold cluster classifier are likewise derived

by substituting the automatically computed clustering with gold standard clusters.

An additional clustering is obtained using only the keyphrase similarity informa-

tion. Specifically, we modify our original model so that it learns the keyphrase clus-

tering in isolation from the text, and only then learns the property language models.

In this framework, the keyphrase clustering is entirely independent of the review text,

because the text modeling is learned with the keyphrase clustering fixed. We refer

to this modification of the model as independent cluster model. Because our model

treats the document text as a mixture of latent topics, this is reminiscent of models

such as supervised latent Dirichlet allocation (sLDA) [21], with the labels acquired by

performing a clustering across keyphrases as a preprocessing step. As in the previous

10The gold standard clustering was created as part of the evaluation procedure described in Sec-
tion 4.6.1.
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Clustering Restaurants Cell Phones Digital Cameras
Model clusters 0.914 0.876 0.945
Independent clusters 0.892 0.759 0.921

Table 4.8: Rand Index scores of our semantic properties model’s clusters, learned from
keyphrases and text jointly, compared against clusters learned only from keyphrase
similarity. Evaluation of cluster quality is based on the gold standard clustering.

experiment, we introduce three new baseline variations — independent cluster in text,

independent cluster classifier and heuristic independent cluster classifier.

Lines 9-16 of Tables 4.6 and 4.7 present the results of these experiments. The gold

cluster model produces F-scores comparable to our original model, providing strong

evidence that the clustering induced by our model is of sufficient quality for semantic

inference. The application of the expert-generated clustering to the baselines (lines

10, 11 and 12) yields less consistent results, but overall this evaluation provides little

reason to believe that performance would be substantially improved by obtaining a

clustering that was closer to the gold standard.

The independent cluster model consistently reduces performance with respect to

the full joint model, supporting our hypothesis that joint learning gives rise to better

prediction. The independent clustering baselines, independent cluster in text, inde-

pendent cluster classifier and heuristic independent cluster classifier (lines 14 to 16),

are also worse than their counterparts that use the model clustering (lines 6 to 8).

This observation leads us to conclude that while the expert-annotated clustering does

not always improve results, the independent clustering always degrades them. This

supports our view that joint learning of clustering and text models is an important

prerequisite for better property prediction.

Another way of assessing the quality of each automatically-obtained keyphrase

clustering is to quantify its similarity to the clustering produced by the expert anno-

tators. For this purpose we use the Rand Index [111], a measure of cluster similarity.

This measure varies from zero to one, with higher scores indicating greater similarity.

Table 4.8 shows the Rand Index scores for our model’s full joint clustering, as well as

the clustering obtained from independent cluster model. In every domain, joint infer-

ence produces an overall clustering that improves upon the keyphrase-similarity-only
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approach. These scores again confirm that joint inference across keyphrases and doc-

ument text produces a better clustering than considering features of the keyphrases

alone.

4.7 Multiple-Document Experiments

Our last experiment examines the multi-document summarization capability of our

system. We study our model’s ability to aggregate properties across a set of reviews,

compared to baselines that aggregate by directly using the free-text annotations.

4.7.1 Data and Setup

We selected 50 restaurants, with five user-written reviews for each restaurant. Ten

annotators were asked to annotate the reviews for five restaurants each, comprising

25 reviews per annotator. They used the same six salient properties and the same

annotation guidelines as in the previous restaurant annotation experiment (see Sec-

tion 4.2). In constructing the ground truth, we label properties that are supported

in at least three of the five reviews.

We make property predictions on the same set of reviews with our model and the

baselines presented below. For the automatic methods, we register a prediction if the

system judges the property to be supported on at least two of the five reviews.11 The

recall, precision, and F-score are computed over these aggregate predictions, against

the six salient properties marked by annotators.

4.7.2 Aggregation Approaches

In this evaluation, we run the trained version of our model as described in Sec-

tion 4.6.1. Note that keyphrases are not provided to our model, though they are

provided to the baselines.

11When three corroborating reviews are required, the baseline systems produce very few positive
predictions, leading to poor recall. Results for this setting are presented in Appendix B.
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Method Recall Prec. F-score
Our model 0.905 0.325 0.478
Keyphrase aggregation 0.036 0.750 0.068 ∗
Model cluster aggregation 0.238 0.870 0.374 ∗
Gold cluster aggregation 0.226 0.826 0.355 ∗
Indep. cluster aggregation 0.214 0.720 0.330 ∗

Table 4.9: Comparison of the aggregated property predictions made by our seman-
tic properties model and a series of baselines that use free-text annotations. The
methods against which our model has significantly better results using approximate
randomization are indicated with ∗ for p ≤ 0.05.

The most obvious baseline for summarizing multiple reviews would be to directly

aggregate their free-text keyphrases. These annotations are presumably representa-

tive of the review’s semantic properties, and unlike the review text, keyphrases can

be matched directly with each other. Our first baseline applies this notion directly:

• Keyphrase aggregation: A keyphrase is supported for a restaurant if at least

two out of its five reviews are annotated verbatim with that keyphrase.

This simple aggregation approach has the obvious downside of requiring very strict

matching between independently authored reviews. For that reason, we consider

extensions to this aggregation approach that allow for annotation paraphrasing:

• Model cluster aggregation: A keyphrase is supported for a restaurant if at least

two out of its five reviews are annotated with that keyphrase or one of its

paraphrases. Paraphrasing is according to our model’s inferred clustering.

• Gold cluster aggregation: Same as model cluster aggregation, but using the

expert-generated clustering for paraphrasing.

• Independent cluster aggregation: Same as model cluster aggregation, but using

the clustering learned only from keyphrase similarity for paraphrasing.

4.7.3 Results

Table 4.9 compares the baselines against our model. Our model outperforms all of

the annotation-based baselines, despite not having access to the keyphrase annota-
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tions. Notably, keyphrase aggregation performs very poorly, because it makes very

few predictions, as a result of its requirement of exact keyphrase string match. As

before, the inclusion of keyphrase clusters improves the performance of the baseline

models. However, the incompleteness of the keyphrase annotations (see Section 4.2)

explains why the recall scores are still low compared to our model. By incorporating

document text, our model obtains dramatically improved recall, at the cost of reduced

precision, ultimately yielding a significantly improved F-score.

These results demonstrate that review summarization benefits greatly from our

joint model of the review text and keyphrases. Näıve approaches that consider only

keyphrases yield inferior results, even when augmented with paraphrase information.

4.8 Conclusions and Future Work

In this chapter, we have shown how free-text keyphrase annotations provided by

novice users can be leveraged as a training set for document-level semantic inference.

Free-text annotations have the potential to vastly expand the set of training data

available to developers of semantic inference systems; however, as we have shown,

they suffer from lack of consistency and completeness. We overcome these problems

by inducing a hidden structure of semantic properties, which correspond both to

clusters of keyphrases and hidden topics in the text. Our approach takes the form of

a hierarchical Bayesian model, which jointly learns from the regularities in both text

and keyphrase annotations.

Our model is implemented in a system that successfully extracts semantic proper-

ties of unannotated restaurant, cell phone, and camera reviews, empirically validating

our approach. Our experiments demonstrate the necessity of handling the paraphrase

structure of free-text keyphrase annotations; moreover, they show that a better para-

phrase structure is learned in a joint framework that also models the document text.

Our approach outperforms competitive baselines for semantic property extraction

from both single and multiple documents. It also permits aggregation across multiple

keyphrases with different surface forms for multi-document summarization.
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This work extends an actively growing literature on document topic modeling.

Both topic modeling and paraphrasing posit a hidden layer that captures the rela-

tionship between disparate surface forms: in topic modeling, there is a set of latent

distributions over lexical items, while paraphrasing is represented by a latent clus-

tering over phrases. We show these two latent structures can be linked, resulting in

increased robustness and semantic coherence.

We see several avenues of future work. First, our model draws substantial power

from features that measure keyphrase similarity. This ability to use arbitrary similar-

ity metrics is desirable; however, representing individual similarity scores as random

variables is a compromise, as they are clearly not independent. We believe that this

problem could be avoided by modeling the generation of the entire similarity matrix

jointly.

A related approach would be to treat the similarity matrix across keyphrases as an

indicator of covariance structure. In such a model, we would learn separate language

models for each keyphrase, but keyphrases that are rated as highly similar would be

constrained to induce similar language models. Such an approach might be possible

in a Gaussian process framework [112].

Currently the focus of our model is to identify the semantic properties expressed

in a given document, which allows us to produce a summary of those properties.

However, as mentioned in Section 4.2, human authors do not give equal importance

to all properties when producing a summary of pros and cons. One possible extension

of this work would be to explicitly model the likelihood of each topic being annotated

in a document. We might then avoid the current post-processing step that uses

property-specific thresholds to compute final predictions from the model output.

Finally, we have assumed that the semantic properties themselves are unstruc-

tured. In reality, properties are related in interesting ways. For example, in review

texts it would be desirable to model antonyms explicitly, e.g., no restaurant review

should be simultaneously labeled as having both good and bad food. Other relation-

ships between properties, such as hierarchical structures, could also be considered.

One possible way of modeling these relationships is through a model that explicitly
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exploits the connections between topics, such as the correlated topic model of Blei

and Lafferty [20].
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Chapter 5

Conclusions

In this thesis, we showed how multiple granularities of semantic structure can be

learned in an unsupervised fashion by intelligently exploiting regularities in in-domain

documents. Across each of our tasks, we took advantage of regularities that previous

work did not fully exploit, and found that modeling such regularities with appropriate

prior and posterior constraints results in improved performance. Here we summarize

our key contributions and experimental findings on each task.

• Content Modeling: We presented an approach to content modeling that ex-

ploits regularities in both word distributions and topic organizations of doc-

uments within a single domain. The topic assignments that we produce are

encouraged to form consistent orderings thanks to the application of the Gen-

eralized Mallows Model, a flexible yet tractable distribution over discrete per-

mutations. This stands in contrast to previous approaches that have typically

made Markovian assumptions between adjacent discourse units in a text. Infer-

ence in this model is performed via a collapsed Gibbs sampling algorithm that

uses a slice sampling subcomponent to estimate Mallows model parameters.

Empirically, we applied our content model to the tasks of aligning paragraphs

between documents, segmenting text within documents, and ordering new in-

domain documents. On each of these tasks we found that the permutation-based

approach yields improved performance compared to state-of-the-art baselines.
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Furthermore, we found that the Generalized Mallows Model in particular is an

appropriate modeling choice for the ordering component of content structure, as

using more or less strongly constrained permutation models eroded performance

on most tasks.

• Relation Discovery: The approach we proposed for relation discovery lever-

ages regularities at the lexicographic, syntactic, and document structure levels.

The relation phrases that it discovers are encouraged to cohere at each of these

layers of linguistic phenomena. For lexicography, document position, and local

syntactic properties, this coherence is a direct result of the generative process.

The model posterior is estimated with variational inference, but with a twist —

we apply declarative constraints during inference through posterior regulariza-

tion, allowing the model to institute more global biases, particularly on syntax,

that are difficult to express in the generative process itself.

Our model’s evaluation showed that our approach is better able to recover re-

lation structure, as evaluated on both the token and sentence level, compared

to several alternatives. We demonstrated that the declarative constraint ap-

proach is particularly crucial to the success of the model, as removing any of

the constraint sets degraded performance drastically. Finally, we showed that,

at the sentence level, our model’s performance is competitive even compared to

techniques that had access to supervised training data.

• Semantic Property Prediction: The model we introduced for predicting se-

mantic properties relies on a form of noisy “supervision” often available along-

side the raw text, specifically free-text annotations written by the document

authors themselves. By leveraging regularities in these annotations, as well as

the text itself, our model is able to predict multiple domain-specific properties.

To account for the inconsistency and incompleteness of the annotations, we

proposed a joint model that simultaneously finds a hidden clustering over an-

notations and distributions over text using one set of latent variables. Inference

is conducted using an efficient Gibbs sampler.
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The experiments on our semantic property model were conducted in both single-

and multi-document scenarios. Our single-document experiments showed that

the model is able to predict more precise properties and annotation clusters

compared to a series of alternative approaches and simpler model variants. Our

multi-document experiments demonstrated the applicability of this approach

to multi-document summarization. Finally, we deployed the Précis browser

online, providing an easy interface to explore hundreds of thousands of reviews

over tens of thousands of products.

5.1 Future Work

At the end of each individual chapter we alluded to natural extensions of the task-

specific models. Here, we describe directions of future work that relate generally to

the ideas for in-domain semantic analysis explored in this thesis.

• Joint Modeling of Multiple Granularities The models we presented in this

thesis operate in isolation to induce structure at different granularities of text.

An intriguing area of future work is to explore how these kinds of structures

can be learned jointly in a single framework. Such a joint model could ensure

that the induced relations, content structure, and semantic properties are all

consistent with one another. In supervised contexts, joint modeling of multiple

tasks has improved performance for extraction tasks [119] as well as syntactic

parsing [50]. In our setup, joint modeling could require, for example, that a

paragraph whose topic is about battery should discuss mostly relations specific

to properties of the battery, such as wattage and life.

These kinds of consistency requirements have the potential to produce better

analyses at each level of granularity. Conversely, however, the search space of

possible structures grows exponentially with the number of tasks to be per-

formed jointly. Being able to effectively search this space is a key technical

hurdle for successful joint learning.

• Semi-supervised Semantic Analysis As we hinted at with the relation dis-
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covery work, having a small number of annotated examples can be beneficial

for performance. Due to their generative formulations, the models we have pro-

posed can all utilize data in a semi-supervised manner by simply incorporating

them as observed variables. However, as we saw with the relation discovery

work, this does not always lead to significant performance gains compared to

discriminative supervised approaches. There are a number of reasons for this

performance discrepancy that we touched upon in Chapter 3. Finding how

to mitigate these limitations would allow us to design one unified model that

operates in a range of supervision regimes, and is a compelling area of future

work.

• Hierarchical Semantic Structures Finally, the kinds of semantic structure

we examined in this thesis are relatively shallow, i.e., the hidden structures are

flat. An interesting extension is to consider hierarchical hidden structures. For

content models, this would mean finding nested topics in text, such as rail, road,

and air within transportation in a collection of cities articles. Relation types

can also be nested to form full trees, in the vein of deep semantic parsers [104,

138]. Documents also exhibit multiple granularities of properties; within a good

service property of a restaurant review domain, there may be aspects of good

host, good bartenders, and good waitstaff. A review can certainly praise one

aspect while deriding another, but they are typically correlated, which can

serve as a strong prior for learning multi-level properties. Learning deeper

representations allow for a better understanding of the semantics of the text,

but introduces significant complexity to the inference problem. Future work

will have to address this challenge to successfully learn such deep structures.
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Appendix A

Development and Test Set

Statistics for the Semantic

Properties Experiments

Table A.1 lists the semantic properties for each domain and the number of documents

that are used for evaluating each of these properties. As noted in Section 4.6.1, the

gold standard evaluation is complete, testing every property with each document.

Conversely, the free-text evaluations for each property only use documents that are

annotated with the property or its antonym — this is why the number of documents

differs for each semantic property.
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Domain Property Development documents Test Documents
Restaurants (gold) All properties 50 120
Restaurants Good food

88 179
Bad food
Good price

31 66
Bad price
Good service

69 140
Bad service

Cell Phones Good reception
33 67

Bad reception
Good battery life

59 120
Poor battery life
Good price

28 57
Bad price

Cameras Small
84 168

Large
Good price

56 113
Bad price
Good battery life

51 102
Poor battery life
Great zoom

34 69
Limited zoom

Table A.1: Breakdown by property for the development and test sets used for the
evaluations in section 4.6.2.

172



Appendix B

Additional Multiple Review

Summarization Results for the

Semantic Properties Model

Table B.1 lists results of the multi-document experiment, with a variation on the

aggregation — we require each automatic method to predict a property for three of

five reviews to predict that property for the product, rather than two as presented

in Section 4.7. For the baseline systems, this change causes a precipitous drop in

recall, leading to F-score results that are substantially worse than those presented

in Section 4.7.3. In contrast, the F-score for our model is consistent across both

evaluations.

Method Recall Prec. F-score
Our model 0.726 0.365 0.486
Keyphrase aggregation 0.000 0.000 0.000 ∗
Model cluster aggregation 0.024 1.000 0.047 ∗
Gold cluster aggregation 0.036 1.000 0.068 ∗
Indep. cluster aggregation 0.036 1.000 0.068 ∗

Table B.1: Comparison of the aggregated property predictions made by our semantic
properties model and a series of baselines that only use free-text annotations. Ag-
gregation requires three of five reviews to predict a property, rather than two as in
Section 4.7. The methods against which our model has significantly better results
using approximate randomization are indicated with ∗ for p ≤ 0.05.
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