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1 Introduction

The singular value decomposition (SVD) is a powerful technique in many matrix computa-
tions and analyses. Using the SVD of a matrix in computations, rather than the original
matrix, has the advantage of being more robust to numerical error. Additionally, the SVD
exposes the geometric structure of a matrix, an important aspect of many matrix calcula-
tions. A matrix can be described as a tranformation from one vector space to another. The
components of the SVD quantify the resulting change between the underlying geometry of
those vector spaces.

The SVD is employed in a variety of applications, from least-squares problems to solving
systems of linear equations. Each of these applications exploit key properties of the SVD
— 1its relation to the rank of a matrix and its ability to approximate matrices of a given
rank. Many fundamental aspects of linear algebra rely on determining the rank of a matrix,
making the SVD an important and widely-used technique.

This primer serves as a short introduction to the SVD and its applications. More com-
prehensive coverage can be found in numerous references, such as [GVL83, Dep88, Vac91].

Organization of the paper is as follows. Section 2 introduces the definition of the SVD,
followed by a discussion of the properties of the components of the SVD. Section 3 explores
further properties of the SVD and provides a geometric interpretation of the singular values.
Section 4 lists a number of interesting applications and Section 5 concludes the paper with
a discussion of the advantages and disadvantages of using the SVD.

2 Definition of the SVD

In this section, we assume a familiarity with the basic terminology of linear algebra, and refer
the reader to [And86] for a more complete coverage. We restrict our attention to matrices
of real numbers and refer the reader to [DD88] for a discussion of the SVD using complex
numbers. This presentation is largely adapted from [FMM77].

Using the superscript T' to denote the transpose of a vector or matrix, we say two vectors
z and y are orthogonal if 7y = 0. In two or three dimensional space, this simply means
that the vectors are perpendicular. Let A be a square matrix such that its columns are



Tz = 1. Then A is an orthogonal matrix

and ATA = I, the identity matrix. To simplify the notation, assume that a matrix A has at
least as many rows as columns (M > N).

A singular value decomposition of an M x N matrix A is any factorization of the
form

mutually orthogonal vectors of length 1, i.e. x

A=UxVT,

where U is an M x M orthogonal matrix, V is an N x N orthogonal matrix, and ¥ is an
M x N diagonal matrix with s;; = 0if 7 # j and s;; = s; > 0. Furthermore, it can be shown
that there exist (non-unique) matrices U and V such that s; > sy > --- > sy > 0 [GVLS3].
Henceforth we will assume the SVD has such a property. The quantities s; are called the
singular values of A, and the columns of U and V are called the left and right singular
vectors, respectively.
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We see that the columns of U and V' are unit length since (0.6)? + (0.8)? = 1, and a simple
calculation of dot products will show them to be mutually orthogonal.
From the components of the SVD, we can determine many properties of the original
matrix. The null space of a matrix A is the set of x for which Az = 0, and the range of

A is the set of b for which Az = b has a solution for . Let u; and v; be the columns of U
and V respectively. Then the decomposition of A = USV7 can be written as

For example, the matrix A = ( ) has the SVD

AUJ‘:S]‘UJ‘, j:1,2,...,N.

If s;, =0, then Av; = 0 and v; is in the null space of A, whereas if s; # 0, then u; is in
the range of A. Consequently, we can construct bases for various vector subspaces defined
by A. A set of vectors vy, vy, ..., v} in a vector space V is said to form a basis for V' if every
vector z in V' can be expressed as a linear combination of them in exactly one way. Let Vj
be the set of columns v; for which s; = 0, and let V; be the remaining columns v;. Similarly,
let Uy be the set of columns u; for which s; # 0, and let Uy be the remaining columns u;,
including those with j > n. Thus, if £ is the number of non-zero singular values, there are k
columns in V5, N — k columns in V; and Uy, and M — N + k columns in Uy. Each of these

sets forms a basis for the vector subspaces of A.

1. Vj is an orthonormal basis for Nullspace(A).

2. Vi is an orthonormal basis for the orthogonal complement of Nullspace(A).
3. U is an orthonormal basis for Range(A).

4. Uy is an orthonormal basis for the orthogonal complement of Range(A).

As we shall see in the next two sections, the singular values of A can be used in many
other ways to determine properties of A, as well as to partition the M-dimensional vector
space (of the mapping defined by A) into dominant and sub-dominant subspaces.



3 Properties of the SVD

3.1 SVD and Matrix Norms

Often when speaking about vectors and matrices, we are interested in the lengths of the
vectors and the resulting length of a vector when multiplied by a matrix. A familiar concept
of length in two dimensions is the Euclidean distance from the origin to the point specified by
the coordinates of the vector {z1,z,}. This distance is calculated by the formula (2% 4 22)=.
In the general case of N dimensions, the length (or norm) of a vector = is defined by

| ll= (@ + o4+ 2i)T = (7o),

When a vector z is multiplied by a matrix A, the length of the resulting vector Az
changes according to the matrix A. If A is orthogonal, the length is preserved. Otherwise,
the quantity H%“ measures how much A stretches . Thus, calculating the norm of a matriz
intuitively means finding the maximum stretch factor. If the SVD of a matrix is given, this
computation is simplified.

The Euclidean norm of a matrix, sometimes referred to as the L, norm, is defined as
follows. Let # be an N dimensional vector, and A be an M x N matrix, then

| Az I|}
A = max{ -
4= Hmn=1{ KXl

An alternative norm for A is the Frobenius norm, which is the Euclidean norm of a vector
constructed by stacking the columns of A in one M * N vector. The Frobenius norm is then

I Allr = (ZZ | @i |2) :
i=1 5=1
Given the SVD of a matrix A, these norms can easily be computed. Proofs of the
following facts are given in [GVLS83, DD88]. Let USVT be the SVD of M x N matrix A,

where {s1, $2,..., sk}, k < N are the non-zero singular values in ¥. Then

I AllE = s

k 5
nsz(Zi)
=1

To return to an earlier notion, we mentioned that multiplying a vector = by a matrix A
effectively stretches the vector. This geometric interpretation can be viewed more clearly in
terms of the singular values of A. The set of vectors = of length N for which || =z || = 1
defines a unit circle. Multiplication of these vectors by the M x N matrix A results in a
set of M-dimensional vectors b = Ax with varying lengths. Geometrically, this set defines a
k-dimensional ellipsoid embedded in an M-dimensional space, where k is the number of non-
zero singular values. Figure 1 depicts the situation when M = N = k£ = 2 [FMMT77]. The
lengths of the axes of the ellipsoid are the singular values of A, and in the general case, the
major and minor axes are given by S,,4, and s,,;, respectively. Intuitively, the singular values
of a matrix describe the extent to which multiplication by the matrix distorts the original
vector. The magnitude of the singular values can be used to highlight which dimensions of
the vector are most affected, and in some sense more important, as we shall see next in the
discussion of SVD applications.
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Figure 1: Mapping by A of Unit Sphere when M = N =k =2

3.2 SVD and Matrix Rank

Fundamental to linear algebra is the notion of rank. Numerous theorems begin with the
condition “If matrix A is of full rank, then the following property holds”. However, if the
matrix is rank deficient (or nearly so), then small perturbations of the matrix values (from
round-off errors or fuzzy data) will yield a matrix which is of full rank. Hence, determining
the rank of a matrix is non-trivial. The SVD lends us a practical definition of rank, as well
as allows us to quantify the notion of near rank deficiency.

The familiar definition of rank is the number of linearly independent columns of a matrix.
Let the matrix A have the SVD USVT. Since multiplication by orthogonal matrices pre-
serves linear independence, the rank of A is precisely the rank of the diagonal matrix ¥, or
equivalently, the number of non-zero singular values. If A is nearly rank deficient (singular),
then the singular values will be small. Moreover, suppose that Rank(A) = m and we wish
to approximate A by a matrix B of lower rank k. Then we can use the singular values of A
to compute a matrix with the best approximation, and to determine if the approximation is
unique. Let s; be the diagonal entries of ¥ and let u; and v; be the column vectors of U and
V respectively. Then

i | A= B g =]l A=A l5 = st

where A; = Zle S,’U,’Ul»T. The solution B = Ay will be unique when sxy; < sg. Proofs of
these facts can be found in [DD88, GVLS83].

We see then that the SVD of A produces a sequence of approximations to A of successive
ranks A; = US; VT, where ¥; is the rank i version of ¥ obtained by setting the last m — i
singular values to zero. Also, A; is the best rank ¢ approximation to A in the sense of
Euclidean distance.

The use of SVD for matrix approximation has a number of practical advantages. First,
applications which encounter round-off errors or fuzzy data typically use the effective rank of
a matrix, i.e. the number of singular values greater than some €, where € reflects the accuracy
of the data. Hence, decisions are made only about the negligibility of a few singular values,
rather than vectors or sets of vectors. Second, storing the approximation of a matrix often



results in a significant savings over storing the whole matrix. Note that we can express a

matrix A as
T

T T
A = s1uvy + S2ugvy -+ S Uy,

Each outer product u;v}

versus M # N of the original matrix. Additionally, multiplication of u;v

requires only M + N operations, instead of M « N [FMM?77]

is a simple matrix of rank 1, and can be stored in M 4+ N numbers,
T

7

with a vector z

3.3 SVD and Linear Independence

Another use of the SVD provides a measure, called a condition number, which is related to
the measure of linear independence between the column vectors of the matrix.
The condition number (with respect to the Euclidean norm) of a matrix A is

cond(A) = Smaz

Smin

where S, and $p,q, are the largest and smallest singular values of A. If A is rank deficient,
then s; = 0 and we consider cond(A) = occ.

Using the condition number, we can quantify the independence of the columns of A. Note
that cond(A) > 1. If cond(A) is close to 1, then the columns of A are very independent.
When the condition number is large, the columns of A are nearly dependent.

Returning to the geometric interpretation of singular values, we see that the condition
number is related to the axes of the hyperellipsoid associated with the matrix. Since cond(A)
is defined by the extreme singular values and these values are the lengths of the major and
minor axes, the condition number describes the eccentricity of the hyperellipsoid.

As we will see in the next section, the notion of a condition number becomes important
in solving linear systems, where cond(A) in some sense measures the sensitivity of the system
to noise in the data.

4 Applications of SVD

4.1 Solutions to Linear Equations

Numerous practical problems can be expressed in the language of linear algebra. A linear
system involves a set of equations in N variables. For example, consider the following linear
system.
21 + 2z + 3 = 8§
101171 + 181}2 + 12.1’3 = 78
20z, + 22z, + 4023 = 144

This problem can be expressed in terms of a coefficient matrix A, a vector x of variables,
and a vector b, such that a solution to the linear system Az = b is an assignment to the
values of the vector x. For the above example, A, x, and b are

1 2 1 T 8
Ar = 10 18 12 Ty | = 78 =b
20 22 40 T3 144



Using the SVD of A, we can determine if a solution exists, as well as the general form of
the possible solutions z. If USVT is the SVD of the M x N matrix A (M > N), then the
system Ax = b becomes

Usvia =b.
Substituting z = VT2 and d = UTb, we have

Yr=d.

Let Rank(A) = k = the number of non-zero singular values s,;. Studying the linear equations
of the diagonal system Yz = d, we can determine whether or not there is a solution. A
solution exists if and only if d; = 0 whenever s; = 0 or 5 > N. If £ < N, then the z;
associated with a zero s; can be set to any value and still yield a solution. A general form
of the possible solutions can then be expressed in terms of these arbitrary components of z
when transformed back to the original coordinates by x = V2.

The condition number of a matrix can also describe the sensitivity of solutions of linear
systems to inaccuracies in the data. Suppose we want to measure the maximal increase in
relative inaccuracy for the worst position of b and error db, when solving for z in the system
Az = b. The answer is precisely the condition number [VDMSS].

d max
E:cond(A):maXH JZ/’”/”1’”:5
bab || dy || /|y [l Smin

For the above reason, matrices with large condition numbers are said to be ill-conditioned.
As an extension of solving linear systems, suppose we wish to find a solution where Ax
is approximately equal to b. By this we mean the least-squares solution = to minimize

I Az — b,

or equivalently to minimize the length || Az — b ||. The advantage of using the SVD for this
problem is that it can reliably handle the rank deficient case as well as the full rank case.
Since orthogonal matrices preserve norm,

| UT(AVV Tz —b) ||=|| S22 =d ] .

Using the SVD, the least squares problem is now in terms of a diagonal matrix, where the
vector z that minimizes the length || Az — b || is given by
25 = (:—J if Sj 7é 0
J

z; = anything if s; =0

Hence, k of the equations have exact solutions and the remaining ones yield a possibly non-
zero residual vector of length (3 df)%, where the sum is over all i for which s; =0 or 7 > N.
The solution to the original problem is then = Vz [FMMT77].

4.2 Noisy Signal Filtering

Problems in signal processing often use linear models for signals. In ideal (noise-free) condi-
tions, the measurment data can be arranged in a matrix, where the matrix is known to be



rank-deficient. By this, we mean that the signal is assumed to lie in a proper subspace of
Euclidean space. However, the presence of noise, either from rounding error or instrument
error, results in a measurement matrix that is often of full rank. Usually, the models assume
that the error can be separated from the data, in that the noise component is that which
lies in a subspace orthogonal to the signal subspace. For this reason, the SVD is used to
approximate the matrix, decomposing the data into an optimal estimate of the signal and
the noise components.

Suppose A is the measurement matrix, where each column consists of a signal component
x and a noise component n.

A=(C|Caf---[Cn)

where each C; = x; + n;. The vector x representing the signal is known to lie in a rank &
subspace, though the precise subspace is not known. Therefore, let + = Hc for a coefficient
vector ¢ and a matrix H whose columns are the basis vectors of some rank k& subspace. The
(least-squared) error between A and H e is minimized by choosing H to be the optimal k rank
approximation Ay to A. Then the & columns of U, corresponding to the k largest singular
values, span the rank k subspace H. The resulting error is ¢? = Zév_H s?. Using the SVD as
above, we see that the original data matrix A is decomposed into the orthogonal components
U VT, which is the rank k subspace corresponding to the signal subspace, and UY,,_x V7,
which corresponds to the orthogonal subspace defining the noise components [Sch91].

4.3 Time Series Analysis

The technique of delay coordinate embedding, used by [Sau94] for time series analysis, also
uses the SVD. The algorithm constructs a multidimensional model of the data from a se-
quence of one dimensional observations. An M dimensional vector is constructed by sliding
a window of length M over consecutive observations in the data sequence. The vectors
are then filtered using the Discrete Fourier Transform to remove signal noise. Each vector
b = {by,by,...,by} represents a state of the underlying dynamical system. The object is
to find the best (least-squares distance) L-dimensional linear space (L < M) that passes
through the center of mass ¢ of the K nearest neighbors of b. We construct a matrix A
whose rows consist of the vectors by — ¢, by — ¢, ..., by — ¢, and calculate the SVD ULV,
Taking the first L columns of the orthogonal matrix V' gives us the desired basis for the
L-dimensional subspace.'

5 Discussion and Conclusion

By providing an approximation to rank deficient matrices, and exposing the geometric prop-
erties of the matrix, the singular value decomposition of a matrix is a powerful technique
in matrix computations. Despite its usefulness, however, there are a number of drawbacks,
as mentioned by [Vac91]. For problems that can be solved by simpler techniques, such as
the Fourier Transform, or QR decomposition, use of the SVD may be unduly expensive
computationally. Secondly, the SVD operates on a fixed matrix, hence it is not amenable to

!The first L columns of V provide a basis for NullSPace(A) = Range(AT) which is consistent with our
previous discussion since the vectors b; — ¢ constitute the rows of A, rather than the columns as in the other
examples.



problems that require adaptive algorithms. A host of active research efforts address these

problems.

Further examples of the use of SVD in the field of Signal Processing, as well as

discussions of implementation algorithms and architectures, can be found in [Vac91, Dep88].
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