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1 Vectors

1.1 Cross Product

1.1.1 Basic Properties

• The cross product is not associative

1.1.2 The �star� operator [Bara�, �Rigid Body Simulation�]:

• Let u∗ =

 0 −uz uy
uz 0 −ux
−uy ux 0

. Then
u∗v = u× v

vTu∗ = (v × u)T

• (u∗)T = −u∗

• (u∗)2 = uuT − uTuI (using u× (u× v) =
(
uuT − uTuI

)
v from 1.1.4)

• If A = (a1 | a2 | a3) then u∗A = (u× a1 | u× a2 | u× a3). We could
write u×A but I'm not sure how standard this notation is...

• In summation notation (u∗)ij = −εijkuk

1.1.3 Scalar triple product [Weisstein, Scalar triple product]:

[u,v,w] = u · (v ×w) = v · (w × u) = w · (u× v)

=

∣∣∣∣∣∣
ux uy uz
vx vy vz
wx wy wz

∣∣∣∣∣∣
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1.1.4 Vector triple product [Weisstein, Vector triple product]:

u× (v ×w) = v (u ·w)−w (u · v)

• Note that

u× (v ×w) =
(
vwT −wvT

)
u

=
(
uTwI −wuT

)
v

=
(
vuT − uTvI

)
w

• As a special case, we get

u× (v × u) = v (u · u)− u (u · v)
=

(
uTuI − uuT

)
v

• You can also look at it as decomposing v into components along orthogonal
vectors u and u× (v × u):

v =
v · u
|u|2

u +
v · (u× (v × u))
|u× (v × u)|2

u× (v × u)

=
(

uTv
uTu

)
u +

(
1

uTu

)
u× (v × u)

where we used v · (u× (v × u)) = (v × u) · (v × u) = |v × u|2 and

|u× (v × u)|2 = |u|2 |v × u|2

• Yet another way to look at it (related to above) is to note that Pu (v) =(
uuT

uT u

)
v is the linear operator projecting v onto the vector u. (Since

Pu (v) = uuT v
uT u

=
(

u·v
|u|

)(
u
|u|

)
). Then P⊥u (v) =

(
I − uuT

uT u

)
v gives the

component of v perpendicular to u. Comparing this to the triple vector
product we see that

u× (v × u) = |u|2 P⊥u (v)

• Finally, we also deduce that (u∗)2 = uuT − uTuI

1.1.5 Quadruple product

(a× b) · (c× d) = c · (d× (a× b))
= c · ((d · b)a− (d · a)b)
= (d · b) (c · a)− (d · a) (c · b)
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or in summation notation

(a× b) · (c× d) = (εijkaibjek) · (εlmncldmen)
= εijkεlmnaibjcldmδkn

= εijkεlmkaibjcldm

= (δilδjm − δimδjl) aibjcldm
= aibjcidm − aibjcjdi

1.1.6 Derivative of cross product

• If w (x) = u (x)×v (x) then ∂w
∂xi

= u× ∂v
∂xi

+ ∂u
∂xi

×v = u× ∂v
∂xi

−v× ∂u
∂xi

• The derivative Dw =
(
∂w
∂x1

| ∂w∂x2
| · · · | ∂w∂xn

)
can be expressed succinctly

using the star operator as

Dw = u∗ (Dv)− v∗ (Du)

• e.g. d
dv (u× v) = u∗ (as expected, since u× v = u∗v)

1.1.7 Misc Cross Product Properties...

• (u× a)× (u× b) = (u · (a× b))u

• If A = V u∗ with V orthonormal and u a unit vector, then letting vTi be
the ith row of V and aTi the ith row of A we can recover vi as follows:

� vi = −ai × u + (aj × u)× (ak × u) where (i, j, k) are cyclic permu-
tations of (1, 2, 3)

� Proof:

∗ AT = u∗TV T = −u∗V T so ai = −u× vi = vi × u
∗ aj×ak = (vj × u)×(vk × u) = (u× vj)×(u× vk) = (u · (vj × vk))u =

(u · vi)u
∗ (aj × u)× (ak × u) = (u× aj)× (u× ak) = (u · (aj × ak))u =

(u · (u · vi)u)u = (u · vi) (u · u)u = (u · vi)u
∗ ai × u = (vi × u)× u = u× (u× vi) = (u · vi)u− (u · u)vi =

(u · vi)u− vi
∗ So −ai×u+(aj × u)×(ak × u) = vi−(u · vi)u+(u · vi)u = vi

1.2 Norms

• A norm is a function ‖·‖ : Rn → R satisfying

� ‖x‖ ≥ 0 (‖x‖ = 0 i� x = 0)

� ‖x + y‖ ≤ ‖x‖+ ‖y‖
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� ‖αx‖ = |α| ‖x‖

• Hölder inequality: |x · y| ≤ ‖x‖p ‖y‖q where
1
p + 1

q = 1

� Cauchy-Schwartz inequality: A special case for p = q = 2:
|x · y| ≤ ‖x‖2 ‖y‖2

• All norms on Rn are equivalent. (∃c1, c2 > 0 such that c1 ‖x‖α ≤ ‖x‖β ≤
c2 ‖x‖α)

1.3 Misc

• Orthogonal =⇒ Linearly independent

2 Multivariable

Jacobian Matrix and Gradient

f : Rn → Rm with components f (x) = (f1 (x) , . . . , fm (x)), x = (x1, x2, . . . , xn)
has derivative (Jacobian) matrix

∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fm

∂x1

∂fm

∂x2
· · · ∂fm

∂xn


If m = 1 then this is simply the gradient transposed

(∇f)T =
(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)
• The derivative of f at x0 is the linear map Df(x0) which satis�es

lim
x→x0

|f (x)− f (x0)−Df (x0) (x− x0)|
|x− x0|

= 0

• The derivative (Jacobian) matrix is the matrix of Df (x) with respect to
the standard bases.

Derivatives (see [Horn, Appendix])

• ∇ (f · g) = (Dg)T f + (Df)T g (really abusing notation!)

• D (αv) = α (Dv) + v (∇α)T

• D
(
v
α

)
= 1

α (Dv) + v
(
−∇α
α2

)T
= α(Dv)−v(∇α)T

α2
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• ∇ · (αv) = α∇ · v + (∇α) · v

• d
dx f (y) =

(
df
dy

)(
dy
dx

)
• ∇ · (f (y)) = tr

((
df
dy

)(
dy
dx

))
• For a vector �eld v, ∇2v = ∇ (∇ · v)−∇× (∇× v)

• Solenoidal: divergence free ∇ · v = 0

• Irrotational: curl free ∇× v = 0

Examples

• D (Ax) = A

• ∇
(
xTAx

)
=
(
AT +A

)
x

2.1 Some useful derivatives

• ∇ |x| = x
|x|

• D
(

x
|x|

)
=

|x|I−xxT

|x|
|x|2 = 1

|x|

(
I − xxT

xT x

)
= xT xI−xxT

|x|3

• D
(

v
|v|

)
=
(
d
dv

(
v
|v|

))
(Dv) = 1

|v|

(
I − vvT

vT v

)
(Dv)

• If x is a function of t then using the vector triple product (section 1.1.4)
we get the nice expression

d

dt

x
|x|

=
(
d

dx
x
|x|

)
x′ =

x′ (x · x)− x (x · x′)
|x|3

=
x× (x′ × x)

|x|3

Derivatives

f, g : Rn → Rm multivariable functions of independent variables (x1, . . . , xn).

Want to �nd ∇ (f · g) =


∂
∂x1

(f · g)
∂
∂x2

(f · g)
...

∂
∂xn

(f · g)


2.2 Curvilinear Coordinates

• Suppose you use curvilinear coordinates u1, u2, u3.

• Let hi =
∣∣∣ ∂x∂ui

∣∣∣. i.e. the magnitude of the tangent to the ui curve at x.

• Then ∇φ =
(

1
h1

∂φ
∂u1

, 1
h2

∂φ
∂u2

, 1
h3

∂φ
∂u3

)
where these components are in the

curvilinear coordinates.
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2.2.1 Cylindrical coordinates

• We have r =
√
x2 + y2, φ = tan−1 (y/x), z

• Then h1 = 1, h2 = 1
r , h3 = 1.

2.3 Physics-related Theorems

2.3.1 Gradient

• [Schey, p140]discusses deriving the gradient for cylindrical and spherical
coordinates. See also [Weisstein, Gradient]

2.3.2 Divergence

• De�ned as

∇ · F = lim
V→0

∮
S
F · da
V

see [Schey, p37] and [Weisstein, Divergence]

2.3.3 Curl

• De�ned(?) as

(∇× F) · n̂ = lim
A→0

∮
C

F · ds
A

where C is a curve bounding area A which has normal n̂. i.e. the right
hand side is the limiting value of circulation per unit area.

• See [Schey, p80] and [Weisstein, Curl]

2.3.4 Gradient Theorem

From [Weisstein]
Looks like a generalization of the fundamental theorem of Calculus:∫ b

a

(∇f) · ds = f (b)− f (a)

• Integral is a line integral

• This is what makes scalar potential functions so useful in gravitation/electromagnetism.

• Necessary and su�cient condition that permits a vector function to be
represented by the gradient of a scalar function is that the curl of the
vector function vanishes. [Marion and Thornton, p79] (This is Poincaré's
theorem, see [Weisstein, Line Integral]).

• See also [Weisstein, Conservative Field]
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2.3.5 Divergence Theorem

• Equivalent to Green's Theorem (?)

• AKA Gauss's Theorem (in [Marion and Thornton, p43])

• Volume in space: ∫
V

(∇ · F) dV =
∫
∂V

F · da

• Region in the plane: ∫
S

(∇ · F) dA =
∫
∂S

F · nds

• Informal proof in [Schey, p45]:

� Divide volume into voxels

� Flux of vector function F through surface S roughly equals the sum
of �uxes through surfaces of voxels:

∗
∫ ∫

S
F · n̂ dS =

∑∫ ∫
Sl

F · n̂ dS

� Write
∫ ∫

S
F · n̂ dS =

∑[
1

∆Vl

∫ ∫
Sl

F · n̂ dS
]
∆Vl

� As ∆Vl → 0, quantity in [] goes to ∇ · F (by de�nition).

� At the same time the number of voxels goes to in�nity so really we
get the

∑
turning into the triple intergral:

∫ ∫ ∫
V
∇ ·F dV , which is

the divergence theorem.

• Results:

� IfA is a matrix (second-order tensor) then
∫
∂V

An da =
∫
V

(∇ ·A) dV
where ∇ ·A is row-wise divergence.

� If A is constant then we see that
∫
∂V

An da = 0

� If A = x∗ (i.e.
∫
∂V

x × n da) then since ∇ · x∗ = 0 we also get∫
∂V

x× n da = 0

2.3.6 Stokes' Theorem

• From [Schey, p96] ∮
C

F · t̂ ds =
∫ ∫

S

n̂ · (∇× F) dS

where S is a capping surface of curve C.

• Informal proof:
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� Divide capping surface into polygons (i.e. approximate it by a poly-
hedron)

� Consider sum of circulations around all of the polyhedron's faces.
The contribution by internal edges will cancel out in the circulation of
the adjacent faces, so the sum telescopes to simply be the circulation
across the boundary curve.∫

C

F · n̂ ds =
∑
l

∮
Cl

F · t̂ ds =
∑
l

[
1

∆Sl

∮
Cl

F · t̂ ds
]

∆Sl

and as you take the limit of the right expression you get
∫ ∫

S
n̂ ·

(∇× F) dS as desired.

2.3.7 Green's Theorem

From [Weisstein, Green's Theorem]
f, g functions of x, y, then∫

∂D

(f dx+ g dy) =
∫ ∫

D

(
∂g

∂x
− ∂f

∂y

)
dx dy

• So for example if f = − 1
2y, g = 1

2x, then get

1
2

∫
∂D

(x dy − y dx) = Area (D)

• Equivalent to the curl theorem in the plane

2.3.8 Curl Theorem

From [Weisstein, Curl Theorem]

• Special case of Stoke's Theorem

• F a vector �eld, ∂S the boundary of a 2-manifold in R3∫
S

(∇× F) · da =
∫
∂S

F · ds

2.3.9 Relationship between these things

From [Schey, p118] (also see [Weisstein, Poincare's Theorem])

• Assume F is smooth. The following are almost equivalent:

1.
∫
C

F · t̂ ds independent of path
2. F = ∇ψ
3. ∇× F = 0
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• The �almost� is because 3 =⇒ 2 and 3 =⇒ 1 only in a simply connected
region.

• 1 =⇒ 2 because you can de�ne ψ for all (x, y, z) by picking some �xed
(x0, y0, z0), taking a curve C that goes from (x0, y0, z0) to (x, y, z), and
de�ning ψ (x, y, z) =

∫
C

F · t̂ ds. Then to prove e.g. ∂ψ
∂x = Fx you consider

a particular curve C that goes from (x0, y0, z0) to (x, y, z) in a special
way: it �rst goes from (x0, y0, z0) to (x0, y, z) and then to (x, y, z): the
�rst part of this curve has path integral independent of x, and when you
di�erentiate the second with respect to x you get Fx as required...

• 2 =⇒ 1 because F · t̂ = ∂ψ
∂x

dx
ds + ∂ψ

∂y
dy
ds + ∂ψ

∂z
dz
ds = dψ

ds so
∫
C

F · t̂ ds =∫
C
dψ = ψ (x, y, z)−ψ (x0, y0, z0) which is independent of the path taken.

• 1 =⇒ 3 by de�nition of curl because the path integral is zero for closed
paths

• 3 =⇒ 1 in a simply connected region using Stokes theorem.

2.4 Divergence and Gradient are �adjoints� of each other

This is often referred to with regards to the Hodge decomposition.
From [Colella and Puckett] I gathered the following:
De�ne the following two inner products:

〈f, g〉s =
∫
D

f (x) g (x) dV

〈u,v〉v =
∫
D

u (x) · v (x) dV

Then 〈φ,∇ · u〉s =
∫
D
φ∇·u dV =

∫
D
∇· (φu) dV −

∫
D
∇φ ·u dV =

∫
∂D

φu ·
n̂ dA−

∫
D
∇φ · u dV

If u · n̂ = 0 on ∂D then this gives

〈φ,∇ · u〉s = −〈∇φ,u〉v
so more precisely ∇· is the negative adjoint of ∇ (in this case of no-�ow

boundary condition).
In the context of the Hodge decomposition , given the vector �eld u on a sim-

ply connected domain D satisfying u · n̂ =0 on ∂D, we can uniquely decompose
uas

u = v +∇φ
with ∇ · v = 0. Now, this is an orthogonal decomposition in the sense of 〈·, ·〉v
since

〈∇φ,v〉v = −〈φ,∇ · v〉s = 0

(which presumebly requires assuming v · n̂ = 0)
Note that 〈∇φ,v〉v = 0 says that divergence free �elds are orthogonal to

gradients of scalars. Also,
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• Orthogonality is used to guarantee that the projection is well de�ned

• We also �nd 〈u,u〉v = 〈v,v〉v + 〈∇φ,∇φ〉v ≥ 〈v,v〉v which shows that
the projection is norm reducing (which according to [Minion, 1996] was
used by Chorin to prove that the overall projection method is stable)

2.5 Continuity Equation

2.5.1 Derivation in [Schey, p50]

• Fix a volume V . The amount of stu� in V at time t is∫ ∫ ∫
V

ρ (x, y, z, t) dV

• The rate at which this mass is changing is

d

dt

∫ ∫ ∫
V

ρdV =
∫ ∫ ∫

V

∂ρ

∂t
dV

where we can take the derivative inside because ∂ρ
∂t is continuous

• The rate at which stu� �ows outside V through its surface S is∫ ∫
S

ρv · n̂ dS

(v is velocity; stu� �ows past cross-sectional area ∆S at the rate ρv∆S if
the cross-sectional area is perpendicular to �ow � the v · n̂ adds a cosine
term in case the cross section is not perpendicular).

• Using the divergence theorem∫ ∫
S

(ρv) · n̂ dS =
∫ ∫ ∫

V

∇ · (ρv) dV

• We end up with ∫ ∫ ∫
V

∂ρ

∂t
+∇ · (ρv) dV = 0

and since this holds for all V we get

∂ρ

∂t
+∇ · (ρv) = 0

as required.
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2.5.2 Derivation in [Schaum, 5.1]

• Here they also look at
∫ ∫ ∫

V
ρdV but the volume V is not �xed, but

moves together with the underlying mass. So they write

d

dt

∫ ∫ ∫
V

ρdV = 0

the trick is that when they take the derivative inside they get
∫ ∫ ∫

V
d
dt (ρdV ) =

0 and they write
d

dt
(ρdV ) =

dρ

dt
dV + ρ

d

dt
(dV )

with
d

dt
(dV ) = (∇ · v) dV

and
dρ

dt
=
∂ρ

∂t
+ v · ∇ρ

and d
dt (ρdV ) becomes

(
∂ρ
∂t +∇ (v · ρ)

)
dV , and we get the same result as

earlier.

3 Calculus

3.1 Di�erentiation and Integration [Marsden and Ho�-
man, sec. 9.7]

• If f, f ′ ∈ C [a, b] and a < x < b then

d

dx

∫ x

a

f (t) dt = f (x) = f (a) +
∫ x

a

f ′ (t) dt

• f : [a, b] × [c, d] → R continuous, ∂f/∂y exists for c < y < d and extends
to be continuous on [a, b]× [c, d]. Let

F (y) =
∫ b

a

f (x, y) dx

Then F is di�erentiable and

F ′ (y) =
∫ b

a

∂f

∂y
(x, y) dx

3.2 Theorems

3.2.1 Inverse Function Theorem

• Suppose f : A ⊂ Rn → Rn is Cp, p ≥ 1, A is an open set, x0 ∈ A,
det (Df (x0)) 6= 0.
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• Then there are open neighbourhoods x0 ∈ U, f (x0) ∈ W such that
f (U) = W and the restriction of f to U has a Cp inverse f−1 : W → U .

And Df−1 (y) = [Df (x)]−1
where x = f−1 (y).

3.2.2 Implicit Function Theorem

• F : A ⊂ Rn×Rm → Rm is Cp, p ≥ 1, F (x0, y0) = 0. ∆ =
∣∣∣∂Fi

∂yj
(x0, y0)

∣∣∣ 6=
0. Then there are open neighbourhoods x0 ∈ U ⊂ Rn and y0 ∈ V ⊂ Rm
and a unique function f : U → V such that F (x, f (x)) = 0 and f is Cp.

• Proof using the inverse function theorem applied to the map G (x, y) =
(x, F (x, y)). Then take f (x) determined by (x, f (x)) = G−1 (x, 0)

• Di�erentiating F (x, f (x)) = 0 using the chain rule gives 0 = dFi

dxj
= ∂Fi

∂xj
+

∂Fi

∂yk

∂fk

∂xj
so that 0 = DxF+(DyF ) (Df) and we getDf = − (DyF )−1 (DxF ).

4 Calculus of Variations

Want to �nd extreme points of

J =
∫ x2

x1

f (y, y′;x) dx

where y is a function of x, and y′ = dy
dx . f is known as a functional because it

depends on the functional form of dependent variable y.
Suppose y (α, x) = y (x) + αη (x) where η (x1) = η (x2) = 0 (so y (α, x)

matches y (x) at the endpoints). To �nd the extreme/critical/stationary points
we want

∂J

∂α

∣∣∣∣
α=0

= 0

for all functions η (x). This is only a necessary condition; it is not su�cient.
So

∂J

∂α
=

∂

∂α

∫ x2

x1

f (y, y′;x)

=
∫ x2

x1

(
∂f

∂y

∂y

∂α
+
∂f

∂y′
∂y′

∂α

)
dx

=
∫ x2

x1

(
∂f

∂y
η +

∂f

∂y′
η′
)
dx

using integration by parts∫ x2

x1

∂f

∂y′
η′dx =

∂f

∂y′
η

∣∣∣∣x2

x1︸ ︷︷ ︸
0 (η(x1)=η(x2)=0)

−
∫ x2

x1

d

dx

(
∂f

∂y′

)
ηdx
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so
∂J

∂α
=
∫ x2

x1

(
∂f

∂y
− d

dx

∂f

∂y′

)
η (x) dx

Note that here the y and y′ are functions of α as well as x. We want ∂J
∂α

∣∣
α=0

= 0
for arbitrary η (x), hence the integrand itself must vanish for α = 0. That is,
we get Euler's equation

∂f

∂y
− d

dx

∂f

∂y′
= 0

where since α = 0, y and y′ are now the original functions independent of α.

• When applied to mechanical sysytems, this is known as theEuler-Lagrange
equation.

• We can also derive the equation

∂f

∂x
− d

dx

(
f − y′

∂f

∂y′

)
= 0

so that, when f does not depend on x (∂f∂x = 0) we get

f − y′
∂f

∂y′
= constant

• More generally, for independent functions y1, . . . , yn, the extreme values
of

J =
∫ x2

x1

f (y1, y′1, . . . , yn, y
′
n;x) dx

occur when y1, . . . , yn satisfy the independent equations

∂f

∂yi
− d

dx

∂f

∂y′i
= 0

• [Horn, Robot Vision, p284] And for J =
∫ ∫

F (u, ux, uy;x, y) dxdy get
Fu − ∂

∂xFux − ∂
∂yFuy = 0.

Lagrange Multiplier

If have y1, . . . , ym dependent functions, with a functional f
(
y1, y

′
1, . . . , ym, y

′

m;x
)
,

and n constraint equations gj (y1, . . . , ym;x) = 0 1 ≤ j ≤ n, then you solve the
following set of equations

∂f

∂yi
− d

dx

∂f

∂y′i
+
∑
j

λj (x)
∂gj
∂yi

= 0

gj (yi;x) = 0
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5 Eikonal Equation

|φ (x)| = f (x)

Method of characteristics (my derivation):

Let p = ∇φ, and let H (p,x) = |p|2 − f2, then H ≡ 0. Now suppose we're
following a ray x (t) parameterized by t. Then (using df

dt = ∇f · dxdt )
dH
dt =

2p · dpdt − 2f∇f · dxdt = 0. Letting dp
dt = αf∇f and dx

dt = αp satis�es this

equation. If we additionally desire 1 = dφ
dt = ∇φ · dxdt = αp · p = αf2 then

α = 1
f2 .

Hence the curve is de�ned by:

• dx
dt = p

f2 (note
∣∣dx
dt

∣∣ = 1
f hence the speed of the curve is 1

f )

• The change in p as we follow the curve is dp
dt = ∇f

f

• Since the change in φ as we follow the curve is dφ
dt = 1, if the ray starts at

φ0 = 0 then φ (x (t)) = t. i.e. φ is the time of arrival

Hamiltonian (see Cheng et al. �Level set based Eulerian methods for
multivalued...�)

• They call H (x,p) = 1
2

(
|p|2
f2 − 1

)
a Hamiltonian, and then we get the

same equation as above using the method of characteristics (which I think
is related to Hamilton's canonical equations) which are dx

dt = ∂H
∂p and

dp
dt = −∂H

∂x .

6 Matrices

6.1 De�nitions

6.1.1 Matrix Norms[Golub and van Loan, 2.3]

• De�nition of norm analogous to vector norm

• Frobenius norm: ‖A‖F =
√∑

ij |aij |
2

• p-norms: ‖A‖p = supx6=0

‖Ax‖p

‖x‖p
= max‖x‖p=1 ‖Ax‖p

� ‖Ax‖p ≤ ‖A‖p ‖x‖p
� Submultiplicative property: ‖AB‖p ≤ ‖A‖p ‖B‖p A,B arbitrary shapes
(but not all norms have this property)

� ‖A‖1 = maxj
∑
i |aij |

� ‖A‖∞ = maxi
∑
j |aij |
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� [Golub and van Loan, p57]A ∈ Rm×n, then ∃z ∈ Rn with ‖z‖2 = 1
such that ATAz = ‖A‖22 z

∗ ‖A‖22 is the largest eigenvalue of ATA

� [Golub and van Loan, p57]A ∈ Rm×n, then ‖A‖2 ≤
√
‖A‖1 ‖A‖∞

• All norms on Rm×n are equivalent

6.1.2 Special Matrices

• Symmetric: AT = A

• Self-adjoint (Hermitian): A∗ = A

• Skew-symmetric: AT = −A

• Normal matrix: AA∗ = A∗A

• Unitary (over C) or Orthogonal (over R): AA∗ = A∗A = I.

� In �nite dimensions, equivalent to being an isometry ‖Ax‖ = ‖x‖.

• Diagonally dominant:

|aii| ≥
n∑
j 6=i

|aij | for 1 ≤ i ≤ n

� Strictly diagonally dominant if ≥ replaced by >.

6.1.3 Other De�nitions

• Similar matrices: B = Q−1AQ

• Unitarily equivalent (or Orthogonally equivalent in R): B =
Q∗AQ

• Condition number: κ (A) = ‖A‖
∥∥A−1

∥∥ (for some �xed norm; κ (A)
de�ned as ∞ for singular A).

� Measures sensitivity of solution of Ax = b to perturbations of A or
b.

� Ill-conditioned: κ large

� Perfectly conditioned: κ = 1

6.2 Determinant

The determinant of a 3x3 matrix has a nice form (as seen in 1.1.3):

If A = (c1 | c2 | c3) =

 rT1
rT2
rT3

 then |A| = c1 · (c2 × c3) = r1 · (r2 × r3).
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6.3 Misc. Properties

• trace (AB) = trace (BA)

6.4 Diagonalization

6.4.1 De�nitions

• Diagonalizable: similar to a diagonal matrix

6.4.2 Properties / Theorems

• If λ1, . . . , λk distinct eigenvalues and v1, . . . , vk associated eigenvectors
then {v1, . . . , vk} are linearly independent. [Friedberg et al., Thm. 5.10]

� Proof: By induction. Base case: {v1} is linearly independent. Inductive

step: Assuming {v1, . . . , vk−1} linearly independent, suppose a1v1 + · · · +
akvk = 0. Multiply both sides by (A − λkI) to get a1 (λ1 − λk) + · · · +
ak−1 (λk−1 − λk) = 0 which gives a1 = · · · = ak−1 = 0 by inductive hy-

pothesis, and we must also then have ak = 0 proving linear independence.

• Dimension of eigenspace is ≤ multiplicity of corresponding eigenvalue

• Diagonalizable i� multiplicity of λi equals dimension of eigenspace for all
i. Then take a basis for each Eλ and combine to get basis for whole space
consisting of eigenvectors.

• Diagonalizable i� space is the direct sum of the eigenspaces.

• dim (Eλ) = nullity (A− λI) = n− rank (A− λI)

• If λ is an eigenvalue of A with associated eigenvector x, and f is a polyno-
mial (with coe�cients in the same �eld as A), then f (λ) is an eigenvalue
of f (A) with associated eigenvector x. [Friedberg et al., p250#22]

6.4.3 Diagonalization of special matrices

• From [Friedberg et al., p351-353,p360]

� A complex matrix is normal i� it is unitarily equivalent to a diagonal
matrix

� A real matrix is symmetric i� it is orthogonally equivalent to a diag-
onal matrix

• Schur's Theorem [Friedberg et al., p363]: A a matrix whose character-
istic polynomial splits over F . If F = C then A is unitarily equivalent
to a complex upper triangular matrix. If F = R then A is orthogonally
equivalent to a real upper triangular matrix
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• Spectral Theorem [Friedberg et al., p377]: T a linear operator on
�n.dim. i.p.s. V over F with distinct eigenvalues. Assume T normal
(if C) or self-adjoint (if R). Then T =

∑
λiTi where Ti is the orthogonal

projection onto the eigenspace corresponding to λi.

� On a sort of related note, if A is a unitarily/orthogonally diagonaliz-
able with eigenvalues λi and eigenvectors vi, then A = V DV ∗ where
V = (v1 | v2 | · · · | vn) and you can write

A =
∑

λiviv
∗
i =

∑
λivi ⊗ vi

• |A| =
∏
λi, trace (A) =

∑
Aii =

∑
λi

� Proof : Compare the characteristic polynomial CA (λ) = |A− λI| to∏
(λi − λ). In particular compare the constant terms and the λn−1

terms.

• A symmetric then ρ (A) = ‖A‖2

6.5 Adjoint, etc.

• [Friedberg et al., 6.3]

• V �nite dimensional inner product space over F , g : V → F linear trans-
formation. Then ∃y ∈ V such that g (x) = 〈x, y〉.

• V �nite dimensional i.p.s., T a linear operator on V . Then there exists a
unique linear operator T ∗ such that 〈T (x) , y〉 = 〈x, T ∗ (y)〉.

� In the in�nite dimensional i.p.s. case, T ∗ may not exist, but when it
does it is unique and linear.

• If A ∈Mm×n (F ) then rank (A∗A) = rank (A). In particular if A has rank
n then A∗A is invertible.

6.5.1 Signi�cance of self-adjoint matrices:

• Just like all eigenvalues of a real matrix are real (by de�nition), all eigen-
values of a self-adjoint complex matrix are real

• Just like the characteristic polynomial of a complex matrix splits (by fun-
damental theorem of algebra), it also splits for a real self-adjoint matrix
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6.6 Canonical Forms

• Alternative matrix representations for nondiagonalizable operators

• Jordan Canonical Form

� Requires that the characteristic polynomial splits

� Get matrix 
A1 O · · · O
O A2 · · · O
...

...
. . .

...
O O · · · Ak


where each block is of the form

λ 1 · · · 0 0
0 λ · · · 0 0
...

...
. . .

...
...

0 0 · · · λ 1
0 0 · · · 0 λ


• Basically if the characteristic polynomial ofA looks like (λ1 − λ)k1 · · · (λm − λ)km

then we look at the generalized eigenspaces Eλi
= null

(
(A− λiI)

ki

)
. The

claim is that a generalized eigenspace has a basis consisting of a union of
cycles. e.g. if you �nd an element v in Eλi

for which (A− λiI)
ki−1 v 6= 0

then we can look at the cycle
{
v, (A− λiI)v, . . . , (A− λiI)

ki−1 v
}
which

would be all distinct and so would give you a Jordan block... [Friedberg
et al., ch.7]

6.7 Symmetric Positive De�nite

• De�nition in [Friedberg et al., p355] (for a linear operator)

� Linear operator T on �n.dim. i.p.s. is positive de�nite if T is
self-adjoint and 〈T (x) , x〉 > 0 for all x 6= 0.

• If A is symmetric, diagonally dominant, with positive diagonal elements,
then A is positive de�nite. (mentioned in Multigrid tutorial book)

• T is positive de�nite (semide�nite) i� all its eigenvalues are positive (non-
negative)

• T is positive semide�nite i� A = B∗B (A = [T ]β where β an orthonormal
basis of V )

• If T 2 = U2 where both are positive semide�nite operators then T = U
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• L. Adams (1985). �m-step Preconditioned Conjugate Gradient Methods,�
SIAM J. Sci. and Stat. Comp. 6, 452-463. (Lemma 1)

� If A = BC is symmetric, B is symmetric positive de�nite and C has
positive eigenvalues then A is positive de�nite

6.8 Factorization

6.8.1 Polar Decomposition [Golub and van Loan, p149]

A ∈ Rm×n with m ≥ n. Then we can write A = ZP where Z ∈ Rm×n has
orthonormal columns and P is symmetric positive semide�nite.

6.8.2 Cholesky [Golub and van Loan, p143]

A ∈ Rn×n is symmetric positive de�nite. Then can write A = GGT with G
lower triangular.

6.8.3 Square Root [Golub and van Loan, p149]

A ∈ Rn×n is symmetric positive semide�nite. Then there exists a unique sym-
metric positive semide�nite matrix X such that A = X2.

6.9 Misc

6.9.1 Cramer's Rule [Friedberg et al., p213]

Given the system Ax = b, with |A| 6= 0. The solution is xi = |Mi|
|A| where Mi is

the matrix Awith column i replaced by b.
Proof: Mi = AXi where Xi is the identity with column i replaced by x. One

can show that |Xi| = xi. Hence |Mi| = |A| |Xi| = |A|xi.

6.9.2 Cofactor Matrix (?)

A is an n × n invertible matrix. The minor matrix Mij is the submatrix of
Awith row i and column j deleted. The cofactor cij corresponding to element

aij is cij = (−1)i+j |Mij |. Then we have the property

A−1 =
1
|A|

CT

where (C)ij = cij .

This is related to Cramer's rule in that CT b =


|M1|
|M2|
...

|Mn|

 and Ax = b ⇐⇒

x = A−1b ⇐⇒ x = CT b
|A| .
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Special case for 3x3 matrix

If A is a 3x3 matrix of the form A =

 rT1
rT2
rT3

 then the cofactor matrix is

C =

 (r2 × r3)
T

(r3 × r1)
T

(r1 × r2)
T

. Indeed, one can see that

ACT =

 rT1
rT2
rT3

 ((r2 × r3) | (r3 × r1) | (r1 × r2)) = |A| I

(e.g.
(
ACT

)
1,1

= r1 · (r2 × r3) = |A|,
(
ACT

)
2,1

= r2 · (r2 × r3) = 0)

6.9.3 Matrix multiplication in outer product form

• If A = (a1 | a2 | · · · | an) and B = (b1 | b2 | · · · | bn)T . i.e. ai is the ith
column of A, and bj is the jth row of B. Then C = AB can be written
as

C =
n∑
k=1

akbTk

6.10 Extra cross product properties

Claim

If A is a 3x3 matrix with cofactor matrix C (i.e. ACT = |A| I), then we claim:

(Au)× (Av) = C (u× v)

If A is invertible then this becomes

(Au)× (Av) = |A|A−T (u× v)

In fact, if A is invertible then the following also holds

(Au)× v = C
(
u×

(
A−1v

))
Proof

Well, here's a proof that works if A is invertible: Let r1, r2, r3 be the rows of C.
Then ACT = A (r1 | r2 | r3) = |A| I so in particular

A (ri | u | v) = (|A| ei | Au | Av)

for i = 1, 2, 3. Taking determinants of both sides we see that

|A (ri | u | v)| = |A| ri · (u× v)
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and
|(|A| ei | Au | Av)| = |A| ei · ((Au)× (Av))

Dividing by the factor of |A| we get

ri · (u× v) = ei · ((Au)× (Av))

which can be written compactly as

C (u× v) = (Au)× (Av)

Note that we could have started with

A
(
ri | u | A−1v

)
= (|A| ei | Au | v)

and gotten
(Au)× v = C

(
u×

(
A−1v

))
Proof using summation notation that works for singular A:

Using

C =
1
2
εmniεpqjAmpAnqei ⊗ ej

(see summation notation section), and u× v = εrsturvset, we get

C (u× v) =
(

1
2
εmniεpqjAmpAnqei ⊗ ej

)
(εrsturvset)

=
1
2
εmniεpqjεrstAmpAnqurvsδjtei

=
1
2
εmniεpqjεrsjAmpAnqurvsei

=
1
2
εmni (δprδqs − δpsδqr)AmpAnqurvsei

=
1
2
εmniδprδqsAmpAnqurvsei −

1
2
εmniδpsδqrAmpAnqurvsei

=
1
2
εmniAmpAnqupvqei −

1
2
εmniAmpAnquqvpei

Now renaming m↔ n and p↔ q in the second term

1
2
εmniAmpAnquqvpei =

1
2
εnmiAnqAmpupvqei

= −1
2
εmniAnqAmpupvqei

so we get

C (u× v) = εmniAmpAnqupvqei
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Now we perform the easier task of writing out(Au)× (Av):

(Au)× (Av) = (Ampupem)× (Anqvqen)
= AmpAnqupvqem × en
= εmniAmpAnqupvqei

which is identical to the expression for C (u× v).

6.10.1 Consequence

Suppose A is (3x3) invertible. Then we want to �nd an expression for (Au)∗.
Well,

(Au)∗Av = (Au)× (Av) = C (u× v) = Cu∗v

Since this holds for all v we get (Au)∗A = Cu∗, or

(Au)∗ = Cu∗A−1 =
1
|A|

Cu∗CT

6.11 Misc Matrix Properties

• trace (AB) = trace (BA)

7 Least Squares

Given A ∈ Rm×n, b ∈ Rm. Want to �nd x ∈ Rn that minimizes

‖Ax− b‖2
x is found by solving the associated Normal Equations

ATAx = AT b

7.1 Deriving the normal equations

7.1.1 Calculus method

We can seek to minimize ‖Ax− b‖22 instead. Let

f (x) = ‖Ax− b‖22 = (Ax− b)T (Ax− b)
= xTATAx− xTAT b− bTAx+ bT b

= xTATAx− 2bTAx+ bT b

where xTAT b = bTAx because, in general, x · y = xT y = yTx.
Now, the derivative of f is

∇f (x) = 2ATAx− 2bTA = 2ATAx− 2AT b

so a solution x0 to our least squares problem would satisfy ∇f (x0) = 0.
That is

ATAx0 = AT b
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7.1.2 Linear Algebra method

In [Friedberg et al., p343].
Let W = {Ax | x ∈ Rn}. Then W is a closed subspace of Rm, so we can

uniquely write b = u + v with u ∈ W, v ∈ W⊥. Say u = Ax0. Then we're
looking for x0 because ‖Ax0 − b‖2 is minimized. We have b − Ax0 ∈ W⊥ so
〈Ax, b−Ax0〉 = 0. But 〈Ax, b−Ax0〉 =

〈
x,AT (b−Ax0)

〉
= 0. Since this

holds for all x we get AT (b−Ax0) = 0 =⇒ ATAx0 = AT b.

8 Curves and Surfaces

8.1 Curvature

8.1.1 Arclength parameterization

For a curve x : [a, b] → R3 which is parameterized by arclength, curvature is

κ (s) = |x′′ (s)|

• The curvature measures the rate of change of curve direction (unit tangent
vector) with respect to arclength.

8.1.2 Arbitrary parameterization

If we're given a curve y : [c, d] → R3with arbitrary parameterization, we can
derive an expression for curvature as follows:

• [Notation: x′,x′′ are derivatives with respect to s, y′,y′′ are derivatives
with respect to t]

• De�ne curve x implicitly by x (s (t)) = y (t)where s (t) = Arclengthy (t) =∫ t
c
|y′ (u)| du.

� x (t) is a reparameterization of y (s) by arclength.

� Think of t as being time, and s as being distance. So y (t) tells
you your position along the path at time t, and x (s) tells you your
position along the path after you have travelled a distance s.

• ds
dt = |y′ (t)|by the fundamental theorem of calculus.

� This makes sense because ds
dt = d(distance)

d(time) = speed

• dx
ds = dy

dt
dt
ds = y′

|y′| (as expected, x has constant speed)

• d2x
ds2 = d

ds
y′

|y′| =
(

d
dy′

y′

|y′|

)(
dy′

dt

) (
dt
ds

)
=

y′×(y′′×y′)
|y′|4 (using the formula

from 2.1)
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• We therefore get

κ =
|y′ × (y′′ × y′)|

|y′|4
=
|y′ × y′′|
|y′|3

• Note that if y has constant speed around some parameter then since y′ ·
y′ = |y′|2 = constant we get 0 = d

dty
′ · y′ = 2y′ · y′′ hence y′ ⊥ y′′ and

we get κ = |y′′|
|y′|2 .

8.1.3 Alternative formulation

Have a curve x (t). Let s (t) be the arclength up to x (t).
x′ (t) is the velocity at time t, s′ (t) = |x′ (t)| is the speed.
De�ne T (t) = x′(t)

s′(t) . T is the (unit) tangent vector at time t.

Then �rst note that |T |2 = T ·T = 1 so di�erentiating w.r.t s gives 2dTds ·T =
0. Hence dT

ds is perpendicular to T . De�ne

N =
dT/ds

|dT/ds|

and verify that κ = |dT/ds|. (This holds because T (s) is an arclength parame-
terized velocity curve, so dT

ds is the arclength parameterized acceleration). Hence
dT
ds = κN

Then

x′ (t) = T (t) s′ (t)
x′′ (t) = T ′ (t) s′ (t) + T (t) s′′ (t)

and T ′ = dT
dt = dT

ds
ds
dt = s′ (t)κN so that the �nal result is

x′′ (t) = s′′ (t)T + (s′ (t))2 κN

That is, the acceleration has a tangential component of s′′ (t) (the rate of change
of speed), and a normal component of s′ (t)2 κ.

For example, if we had uniform circular motion along a circle of radius r and
uniform speed v then the centripetal acceleration (pointing towards the center

of the circle) would have magnitude s′ (t)2 κ which (since κ = 1
r ) is

v2

r .

8.2 Principal Curvatures of an implicit surface

• Suppose φ (x) = 0 de�nes the implicit surface.

• Pick a point x0 on the surface (φ (x0) = 0).

• Let y (t) = x0+tT+a (t)N be a curve on surface withN = ∇φ (x0) / |∇φ (x0)|
the unit normal, T ⊥ N a unit tangent direction. (This is the general form
of the intersection curve you'd get if you intersected a plane through x0

with normal T×N with the implicit surface).
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• Note y′ (t) = T + a′ (t)N, y′ (0) = T (by construction, so a′ (0) = 0),
y′′ (t) = a′′ (t)N. One can check that using our de�nition of curvature

(of a curve) as κ = |y′×y′′|
|y′|3 we get the curvature of y at the point x0 is

κ = a′′ (0).

• Now φ (y (t)) = 0 since y lies on the surface.

� Di�erentiate once: ∇φ (y (t)) ·y′ (t) = 0. With t = 0 we get ∇φ (x0) ·
T = 0. (We already know this)

� Di�erentiate again:
[
D2φ (y (t))y′ (t)

]
·y′ (t)+∇φ (y (t)) ·y′′ (t) = 0.

With t = 0 we get

TTHT + a′′ (0) |∇φ (x0)| = 0

where H = D2φ (x0), which gives κ = − TTHT
|∇φ(x0)| . [Not sure what's

up with the negative sign...]

• We subsequently drop the x0 and assume quantities are evaluated there...

• Let P = I − (∇φ)(∇φ)T

|∇φ|2 . P is the projection onto the tangent plane at x0.

• See [http://www.magic-software.com/Documentation/PrincipalCurvature.pdf]
for proof that the maximum of κ occurs at the max eigenvalue of −P H

|∇φ| ...

• Mean curvature: divergence of normal: ∇ ·
(
∇φ
|∇φ|

)
• The eigenvalues of PHP|∇φ| are 0 and the two principal curvatures.

• Suppose you have φ (x), not necessarily signed distance.

• Claim: ∇ ·
(
∇φ
|∇φ|

)
= tr

(
PHP
|∇φ|

)
, P = I − (∇φ)(∇φ)T

|∇φ|T is projection onto

tangent plane, H = D2φ Hessian

� Note D
(
∇φ
|∇φ|

)
= 1

|∇φ|

(
I − (∇φ)(∇φ)T

|∇φ|2

)
D (∇φ) = PH

|∇φ| .

� And ∇ · (f) = tr (Df)
� And tr (PHP ) = tr

(
P 2H

)
= tr (PH) since P is a projection.

9 Miscellaneous

9.1 Derivative of triangle area

xx

yy zz
alpha beta

bb aa

cc
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• Given triangleA with vertices x,y, z (in ccw order), Area (A) = 1
2 |(x− y)× (x− z)|,

and

dArea (A)
dx

=
1
2

((x− y)× (x− z))T

|(x− y)− (x− z)|
d

dx
((x− y)× (x− z))

=
1
2

(n̂)T
(
(x− y)∗ I − (x− z)∗ I

)
=

1
2

(n̂)T (z− y)∗

=
1
2

(n̂× (z− y))T

where n̂ is the triangle normal, and we've used the cross product derivative
formula from section 1.1.6.

• Note that the change in triangle area is zero if x is moved in the direction
of the normal or edge c.

• Note that n̂×(z− y) = n̂×cis edge c rotated ccw 90 degrees on the plane
of the triangle (i.e. in the direction of the altitude of the triangle). This
is the direction along which x must be moved to maximize the change in
triangle area.

• Claim: n̂× c = − (cotα)a− (cotβ)b

� Proof : Using n̂ = b×a
|b×a| and using the fact that b×a = b×c = a×c

n̂× c =
(b× a)× c
|b× a|

=
a (c · b)− b (c · a)

|b× a|

=
a (b · c)
|b× c|

− b (a · c)
|a× c|

=
cos (180◦ − α)
sin (180◦ − α)

a− cosβ
sinβ

b

= − (cotα)a− (cotβ)b

9.2 Circle through three points

AA

BB

CCtheta

• Radius of a circle going through A,B,C is

r =
‖AC‖
2 sin θ
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9.3 Vector Triangle Area

• Given triangle ABC (vertices listed in counterclockwise order), and given
any point P , we have

AB ×BC = PA× PB + PB × PC + PC × PA

(since PB×PC = PB×BC = (PA+AB)×BC = PA×BC+AB×BC)

• I consider 1
2 (AB ×AC) to be the �vector triangle area� because it's a

vector in the direction of the triangle normal and has magnitude equal to
the triangle's area.

9.3.1 Vector area of a triangulated surface

• The vector area of a triangulated surface is the sum of the vector areas
of the triangles. To make notation easier, I will avoid the factor of 1

2
by cheating and looking at two times the vector area instead. Using the
formula above, we get the total vector area to be:∑

(A,B)∈all directed edges

PA× PB

Now, every interior edge will show up twice (in two di�erent orientations).
e.g. interior edge AB has two directions: (A,B)and (B,A). The cross
products for the two orientations cancel each other out (PA×PB+PB×
PA = 0). Hence the result of the sum is∑

(A,B)∈directed boundary edges

PA× PB

• In particular if the surface is closed, there is no boundary and the sum
equals 0.

• So the sum of the vector areas of a closed triangulated surface.

• This can also be derived from the Divergence Theorem (or other such
theorem) because really what we're doing is taking the surface integral of
the surface normal. (The vector area of a triangle equals the normal of
that triangle integrated over the triangle's surface).

9.4 Factorial

• Integral de�nition:

n! =
∫ ∞

0

e−xxn dx
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9.5 Area of spherical triangle

• From http://www.math.niu.edu/~rusin/known-math/99/spher_area

• Does anyone know of a (simple) proof for the formula for the surface area
of a spherical triangle Area = R^2 * (A + B + C - Pi).

• The proof that the area of a spherical triangle is the "spherical excess":
Extend the sides and note that the sphere is divided into three sets of
"orange slice" pairs with area 4*(A+B+C), where A,B, and C are the
angles of the triangle. These cover the sphere, but overlap in the triangle
and in its inverse image, so the triangle's area is counted four extra times.
Hence 4*pi + 4*Area = 4*(A+B+C) and Area = A+B+C - pi.

10 Summation Notation

Matrix/Second-order tensor representation

If A has rows ri and columns cj then

A = Aijei ⊗ ej
= ei ⊗ (Aijej) = ei ⊗ ri
= (Aijei)⊗ ej = cj ⊗ ej

Epsilon-Delta

εijkεlmk = δilδjm − δimδjl

εijkεljk = 2δil

ei × ej = εijkek

(a⊗ b) (c⊗ d) = (b · c) (a⊗ d)

To prove this just observe how (a⊗ b) (c⊗ d) acts on a vector: (a⊗ b) (c⊗ d)v =
(a⊗ b) (d · v) c = (d · v) (b · c)a = (b · c) (d · v)a = (b · c) (a⊗ d)v

Cofactor:

cof (A)ij =
1
2
εmniεpqjAmpAnq
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One way to derive this is to recall that ifA has rows ri then C =

 (r2 × r3)
T

(r3 × r1)
T

(r1 × r2)
T

.
That is

C = e1 ⊗ (r2 × r3) + e2 ⊗ (r3 × r1) + e3 ⊗ (r1 × r2)
= (e2 × e3)⊗ (r2 × r3) + (e3 × e1)⊗ (r3 × r1) + (e1 × e2)⊗ (r1 × r2)

=
1
2

(ei × ej)⊗ (ri × rj)

where the factor of 1
2 is introduced because the summation will count (ei × ej)⊗

(ri × rj) also as (ej × ei)⊗ (rj × ri). With ri = Aikek, rj = Ajlel we get

C =
1
2
AikAjl (ei × ej)⊗ (ek × el)

=
1
2
AikAjlεijmεklnem ⊗ en

as required to show.

Determinant:

det(A) =
1
6
εijkεpqrAipAjqAkr

11 Optimization

11.1 Linear Complementary Problem (LCP)

From Bara�'s �Issues in Computing Contact Forces for Non-Penetrating Rigid
Bodies�

Find x satisfying

y = Ax− b ≥ 0, x ≥ 0, xTy = 0

where A,y,b are given.

11.2 Quadratic Programming (QP)

From Bara�'s �Issues in Computing Contact Forces for Non-Penetrating Rigid
Bodies�

Minimize xTAx + bTx subject to Ax ≥ c and x ≥ 0.

11.3 A note about LCP and QP

Determining whether an LCP has a solution or whether a QP can achieve a
certain minimum are NP-complete problems.

However, if A is positive semi-de�nite, then the problem are known as convex
problems and they have polynomial time solutions.
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12 Quaternions

12.1 Properties

• Quaternion: (s,u) = s+ uxI + uyJ + uzK

• Multiplication: (s,u) (t,v) = (st− u · v, sv + tu + u× v)

� Equivalent to multiplying (s+ uxI + uyJ + uzK) (t+ vxI + vyJ + vzK)
with the rules I2 = J2 = K2 = −1, IJ = K,JK = I,KI = J ,
JI = −K,KJ = −I, IK = −J .

� (p+ q) r = pr + qr

• Analog to Euler's formula:

� Note that if |u| = 1 then (0,u) (0,u) = (−1,0) = −1 so writing the
quaternion as q = cos Θ + u sinΘ with u2 = −1 (using quaternion
multiplication) is analogous to eiΘ = cos Θ + i sinΘ with i2 = −1

• Magnitude: |q|2 = s2 + u2

� |pq| = |p| |q|

• Conjugate: q̄ = (s,−u)

• Inverse: q−1 = q̄
|q|2

• Derivative: dq
dt = 1

2ωq

• Conjugate scaling(?): (derivation 13.1.1)

qpq−1 =
1
|q|2

(
t |q|2 , s2v + 2s (u× v) + (v · u)u + u× (u× v)

)
=

(
t,

1
|q|2

(
|q|2 I − 2

(
uTuI − uuT

)
+ 2su∗

)
v

)

• Matrix corresponding to linear transformation p 7→ qpq−1:

1
|q|2


|q|2 0 0 0
0 |q|2 − 2

(
u2
y + u2

z

)
2 (uxuy − suz) 2 (uxuz + suy)

0 2 (uxuy + suz) |q|2 − 2
(
u2
x + u2

z

)
2 (uyuz − sux)

0 2 (uxuz − suy) 2 (uyuz + sux) |q|2 − 2
(
u2
x + u2

y

)


• Rotation: Let s = cos (θ/2) and |u| = sin (θ/2).
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12.2 Derivatives

• Let q =
(

s
u

)
be a quaternion viewed as an element of R4

• Given a rotation vector ω, let θ = |ω|
2 , ω̂ = ω

|ω| . Then s = cos θ,u = sin θ ω̂.

dq

d (θ, ω̂)
=
(
− sin θ 0
cos θ ω̂ sin θ I

)
d (θ, ω̂)
dω

=
( 1

2 ω̂
T

1
|ω|
(
I − ω̂ω̂T

) )
dq

dω
=

dq

d (θ, ω̂)
d (θ, ω̂)
dω

=
(

− 1
2 sin θ ω̂T

1
2 cos θ ω̂ω̂T + sin θ

|ω|
(
I − ω̂ω̂T

) )
• Note that this is only valid when the derivative is evaluated away from

ω = 0. For dq
dω

∣∣∣
ω=0

, note that s = cos θ = 1 − (|ω|/2)2
2! + . . . and u =

sin θ ω
|ω| =

(
|ω|
2 − (|ω|/2)3

3! + . . .
)

ω
|ω| =

(
1
2I −O

(
|ω|2

))
ω. Hence at ω =

0, ds
dω = 0T and du

dω = 1
2I. Thus

dq

dω

∣∣∣∣
ω=0

=
(

0T
1
2I

)

13 Derivations

13.1 Quaternions

13.1.1 Conjugate scaling

We have
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qpq−1 =
1
|q|2

(s,u) (t,v) (s,−u)

=
1
|q|2

(s,u) (ts+ v · u,−tu + sv + u× v)

=
1
|q|2

(
s (ts+ v · u)− u · (−tu + sv + u× v) ,

s (−tu + sv + u× v) + (ts+ v · u)u + u× (−tu + sv + u× v)
)

=
1
|q|2

(
ts2 + s (v · u) + t |u|2 − s (u · v)− u · (u× v) ,

−stu + s2v + s (u× v) + stu + (v · u)u + s (u× v) + u× (u× v)
)

=
1
|q|2

(
t |q|2 , s2v + 2s (u× v) + (v · u)u + u× (u× v)

)
=

1
|q|2

(
t |q|2 ,

(
s2 − |u|2

)
v + 2s (u× v) + 2 (v · u)u

)
=

(
t,

1
|q|2

((
s2 − |u|2

)
I + 2uuT + 2su∗

)
v

)

=

(
t,

1
|q|2

(
|q|2 I − 2

(
uTuI − uuT

)
+ 2su∗

)
v

)

where we used u × (u× v) = (v · u)u − |u|2 v and in the last step we added

and subtracted 2 |u|2.

13.1.2 3x3 matrix corresponding to quaternion rotation

• Using qpq−1 =
(
t, 1
|q|2

(
|q|2 I − 2

(
uTuI − uuT

)
+ 2su∗

)
v
)
we have

• uTuI − uuT =

 uy + u2
z −uxuy −uxuz

−uyux u2
x + u2

z −uyuz
−uzux −uzuy u2

x + u2
y


• u∗ =

 0 −uz uy
uz 0 −ux
−uy ux 0


• So

1
|q|2

(
|q|2 I − 2

(
uTuI − uuT

)
+ 2su∗

)

=
1
|q|2

 |q|2 − 2
(
u2
y + u2

z

)
2uxuy − 2suz 2uxuz + 2suy

2uxuy + 2suz |q|2 − 2
(
u2
x + u2

z

)
2uyuz − 2sux

2uxuz − 2suy 2uyuz + 2sux |q|2 − 2
(
u2
x + u2

y

)
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• Note that when q is normalized this becomes

I−2
(
uTuI − uuT

)
+2su∗ =

 1− 2
(
u2
y + u2

z

)
2uxuy − 2suz 2uxuz + 2suy

2uxuy + 2suz 1− 2
(
u2
x + u2

z

)
2uyuz − 2sux

2uxuz − 2suy 2uyuz + 2sux 1− 2
(
u2
x + u2

y

)


13.1.3 Rotation of a vector

• (Assuming a right handed system): Suppose you have a quaternion q =
(s,u) which represents a rotation θ about axis u with s = cos (θ/2), and
you want to apply this rotation to vector v. Then you compute

qvq−1 =
(
0, s2v + 2s (u× v) + (v · u)u + u× (u× v)

)
Consider the frame created by u,u× v,u× (u× v).

� Normalizing, let î =
(

u
|u|

)
, ĵ =

(
u×v
|u×v|

)
, k̂ =

(
u×(u×v)
|u×(u×v)|

)
.

� So our resultant vector is v′ = s2v + (v · u) |u| î + 2s |u× v| ĵ +
|u× (u× v)| k̂

� v only has components in the î and k̂ directions:

v =
v · u
|u|

(
u
|u|

)
+

v · (u× (u× v))
|u× (u× v)|

(
u× (u× v)
|u× (u× v)|

)
=

v · u
|u|

î− |u× v|2

|u| |u× v|
k̂

=
v · u
|u|

î− |u× v|
|u|

k̂

where we used a · (b× c) = c · (a× b)

� So

v′ = s2
(

v · u
|u|

î− |u× v|
|u|

k̂
)

+ (v · u) |u| î + 2s |u× v| ĵ + |u× (u× v)| k̂

=
(v · u)
|u|

(
s2 + |u|2

)
î + 2s |u| |u× v|

|u|
ĵ +
(
|u|2 − s2

) |u× v|
|u|

k̂

and substituting s = cos (θ/2), |u| = sin (θ/2), we get

v′ =
v · u
|u|

î + sin (θ)
|u× v|
|u|

ĵ− cos (θ)
|u× v|
|u|

k̂

� Notice that v′ has the same î component as v, and has rotated v's
k̂ component about î in a right-handed fashion
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13.1.4 Derivative of a quaternion

Suppose the unit quaternion q = (s,u) represents the orientation of an object.
Suppose the object is rotating with angular velocity ω. That is, it is rotating
at |ω| rad/s about the axis ω/ |ω|. After a time interval ∆t, the object has
rotated θ = |ω|∆t radians about ω̂ = ω/ |ω|. This rotation is represented
by the quaternion (cos (θ/2) , sin (θ/2) ω̂). The resulting orientation is q′ =
(cos (θ/2) , sin (θ/2) ω̂) q and we get

q′ − q

∆t
=

(cos (θ/2)− 1, sin (θ/2) ω̂)
∆t

q =
(

cos (θ/2)− 1
∆t

,
sin (θ/2)

∆t
ω̂

)
q

Now lim∆t→0
cos(|ω|∆t/2)−1

∆t = d(cos(|ω|t/2)−1)
dt (t = 0) = 0 and lim∆t→0

sin(|ω|∆t/2)
∆t =

d(sin(|ω|t/2))
dt (t = 0) = |ω|

2 so

dq

dt
= lim

∆t→0

q′ − q

∆t
=

(
0,
|ω|
2
ω̂

)
q

=
1
2

(0, ω) q

14 Integration Schemes

According to [http://discuss.foresight.org/~pcm/nanocad/0146.html]:

• original Verlet integrator eliminated velocities completely. Leap-frog put
them back in, but in between steps. Velocity-Verlet gives them at the
�right� time.

• Original Verlet more succeptible to roundo� errors, but hardly any di�er-
ence between velocity Verlet and leapfrog.

• These three methods are common in Molecular Dynamics

14.1 Verlet [http://www.ch.embnet.org/MD_tutorial/pages/MD.Part1.html]

x (t+ ∆t) = 2x (t)− x (t−∆t) + a (t) ∆t2 +O
(
∆t4

)
• You can get the velocity using v (t) = x(t+∆t)−x(t−∆t)

2∆t +O
(
∆t2

)
(but with

only second order accuracy, this might be undesirable)

• Derived by taking sum of Taylor expansions of x (t+ ∆t) and x (t−∆t)

• Time reversible (due to symmetry in expression)
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14.2 Velocity Verlet [http://www.ch.embnet.org/MD_tutorial/pages/MD.Part1.html]

x (t+ ∆t) = x (t) + v (t) ∆t+
1
2
a (t) ∆t2

v (t+ ∆t) = v (t) +
1
2

(a (t) + a (t+ ∆t))∆t

• Apparently better �precision� than regular Verlet because in regular Verlet
you might get roundo�/precision issues due to taking di�erence between
the two x values

14.3 Leap-Frog

x (t+ ∆t) = x (t) + v
(
t+

1
2
∆t
)

∆t

v
(
t+

1
2
∆t
)

= v
(
t− 1

2
∆t
)

+ a (t) ∆t

• Disadvantage is you don't have v at same time points as x.

15 Second Order Linear ODEs

• Say

(
x
y

)
t

= A

(
x
y

)
.

A diagonalizable

• Suppose A = QΛQ−1 is the eigenvalue decomposition, with Q containing

the eigenvectors and Λ the eigenvalues. Then

(
x
y

)
t

= QΛQ−1

(
x
y

)
.

Let

(
u
v

)
= Q−1

(
x
y

)
.

Analytic solution

• So

(
u
v

)
t

= Λ
(
u
v

)
which has solution

(
u
v

)
(t) = etΛ

(
c1
c2

)
. Note

that

(
c1
c2

)
=
(
u0

v0

)
, so we have(

u
v

)
(t) = etΛ

(
u0

v0

)

• Using

(
u0

v0

)
= Q−1

(
x0

y0

)
we get(

x
y

)
(t) = QetΛQ−1

(
x0

y0

)
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Forward Euler

• Forward Euler is

0@ x
y

1An+1

−

0@ x
y

1An

∆t = A

(
x
y

)n
which gives

(
x
y

)n+1

=

(I + ∆tA)
(
x
y

)n
. Hence

(
x
y

)n
= (I + ∆tA)n

(
x0

y0

)
. Now I +

∆tA = Q (I + ∆tΛ)Q−1. So(
x
y

)n
= Q (I + ∆tΛ)nQ−1

(
x0

y0

)
Backward Euler

• Get

(
x
y

)n
= (I −∆tA)−n

(
x0

y0

)
= Q (I −∆tΛ)−nQ−1

(
x0

y0

)
with

(I −∆tΛ)−n = diag
{

(1−∆tλ1)
−n

, (1−∆tλ2)
−n
}
.

Comparing solutions

• For a general analysis, let D =
(
d11 d12

d21 d22

)
, and suppose we have(

x
y

)
= QDQ−1

(
x0

y0

)
. Then

(
x
y

)
=

1
|Q|

(
q11d11 + q12d21 q11d12 + q12d22

q21d11 + q22d21 q21d12 + q22d22

)(
q22x0 − q12y0
−q21x0 + q11y0

)
so

x =
1
|Q|
(
q11 (q22x0 − q12y0) d11 + q11 (−q21x0 + q11y0) d12 +

q12 (q22x0 − q12y0) d21 + q12 (−q21x0 + q11y0) d22

)
• Let a = q11(q22x0−q12y0)

|Q| , b = q12(−q21x0+q11y0)
|Q| . Note that a+ b = x0.

• In both cases we have d12 = d21 = 0. Both the analytic and numerical
solutions are of the form

x = ad11 + bd22

• In particular,

� Analytic: x (t) = aetλ1 + betλ2

� Forward Euler: xn = a (1 + ∆tλ1)
n + b (1 + ∆tλ2)

n

� Backward Euler: xn = a (1−∆tλ1)
−n + b (1−∆tλ2)

−n
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A not diagonalizable

• Suppose A = QJQ−1 is the Jordan decomposition, with J =
(
λ 1
0 λ

)
.

Analytic solution

• End up with

(
u
v

)
t

= J

(
u
v

)
. That is, ut = λu + v and vt = λv.

Clearly v (t) = v0e
tλ. Then u (t) = u0e

tλ + tv (t) = u0e
tλ + v0te

tλ. That
is (

u
v

)
(t) =

(
etλ tetλ

0 etλ

)(
u0

v0

)

• Now

(
x
y

)
(t) = Q

(
etλ tetλ

0 etλ

)
Q−1

(
x0

y0

)
.

• This has the solution
x (t) = x0e

tλ + ctetλ

where c = q11(−q21x0+q11y0)
|Q| .

Forward Euler

•
(
x
y

)n
= (I + ∆tA)n

(
x0

y0

)
= Q (I + ∆tJ)nQ−1

(
x0

y0

)

• Now, (I + ∆tJ)n =
(

1 + ∆tλ ∆t
0 1 + ∆tλ

)n
=
(

(1 + ∆tλ)n n∆t (1 + ∆tλ)n−1

(1 + ∆tλ)n

)
(can prove by induction), so in the forward Euler case we get

xn = a (1 + ∆tλ)n + b (1 + ∆tλ)n + cn∆t (1 + ∆tλ)n−1

= x0 (1 + ∆tλ)n + cn∆t (1 + ∆tλ)n−1

Backward Euler

•
(
x
y

)n
= (I −∆tA)−n

(
x0

y0

)
= Q (I −∆tJ)−nQ−1

(
x0

y0

)

• Now (I −∆tJ)−1 =
(

(1−∆tλ)−1 ∆t (1−∆tλ)−2

0 (1−∆tλ)−1

)
and (I −∆tJ)−n =(

(1−∆tλ)−n n∆t (1−∆tλ)−(n+1)

0 (1−∆tλ)−n

)
• So we get

xn = x0 (1−∆tλ)−n + cn∆t (1−∆tλ)−(n+1)
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Summary

• Let a = q11(q22x0−q12y0)
|Q| , b = q12(−q21x0+q11y0)

|Q| , c = q11(−q21x0+q11y0)
|Q| .

� Note a+ b = x0.

• A diagonalizable:

� Analytic: x (t) = aetλ1 + betλ2

� Forward Euler: xn = a (1 + ∆tλ1)
n + b (1 + ∆tλ2)

n

• A not diagonalizable:

� Analytic: x (t) = x0e
tλ + ctetλ

� Forward Euler: xn = x0 (1 + ∆tλ)n + cn∆t (1 + ∆tλ)n−1

Damped Harmonic Oscillator

• Suppose A =
(

0 1
−k −b

)
. This represents the second order ODE ẍ +

bẋ+ kx = 0.

• λ = −b±
√
b2−4k
2 =

(
− b

2

)
±
√(

− b
2

)2 − k. Let β = − b
2 and γ =

√
β2 − k.

Then λ = β ± γ.

Critically damped

• γ = 0 (i.e. 4k = b2, or k = β2). Then the eigenvalue is λ = β.

• To �nd Q in A = QJQ−1 we want to �nd a generator for cycle correspond-
ing to the Jordan block. To do this we �nd a v such that (A− βI)2 v =

0 but (A− βI)v 6= 0. Note that A =
(

0 1
−β2 2β

)
, so A − βI =(

−β 1
−β2 β

)
. Let v =

(
0
1

)
. Then (A− βI)v =

(
1
β

)
≡ u, and

(A− βI)2 v = (A− βI)u = 0. So A (u | v) = (u | v)
(
β 1
0 β

)
.

• i.e. Q = (u | v) =
(

1 0
β 1

)
, |Q| = 1 and J =

(
β 1
0 β

)
.

• c = −βx0 + v0

• Analytic: x (t) = x0e
tβ + (−βx0 + v0) tetβ

� Note that we need β ≤ 0 to get a solution that doesn't blow up (a
physically meaningful solution). (Hence b ≥ 0)
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• Forward Euler: xn = x0 (1 + ∆tβ)n + (−βx0 + v0)n∆t (1 + ∆tβ)n−1

� Note that we need |1 + ∆tβ| ≤ 1 to ensure stability. (Combined with
the β ≤ 0 requirement, we get 1 + ∆tβ ≥ −1 which gives ∆t ≤ − 2

β )

Under/Overdamped

• We have λ = β ± γ

• Note that A =
(

0 1
γ2 − β2 2β

)
. You can verify that u =

(
1

β + γ

)
is the eigenvector corresponding to λ1 = β + γ, and v =

(
1

β − γ

)
corresponds to λ2 = β − γ. Hence Q =

(
1 1
λ1 λ2

)
and |Q| = −2γ.

• So a = −λ2x0+v0
2γ , b = λ1x0−v0

2γ and we get

• Analytic: x (t) = 1
2γ

(
(−λ2x0 + v0) etλ1 + (λ1x0 − v0) etλ2

)
� x (t) = etβ

2γ ((−λ2x0 + v0) etγ + (λ1x0 − v0) e−tγ)

� In order not to blow up, in general we want λ1, λ2 ≤ 0. This implies
β ≤ 0 (b ≥ 0). It also implies β + γ ≤ 0 ⇒

√
β2 − k = γ ≤ −β =

|β| ⇒ β2 − k ≤ β2 and therefore k ≥ 0.

� If −λ2x0 + v0 = 0 then we have (2γ − λ1)x0 + v0 = 0. Then λ1x0 −
v0 = 2γx0 and we get x (t) = x0e

tλ2 . If λ2 ≤ 0 then this gives us a
stable solution (even though λ1 might be > 0).

� Similarly if λ1x0−v0 = 0 then (λ2 + 2γ)x0−v0 = 0 so −λ2x0 +v0 =
2γx0 and we get x (t) = x0e

tλ1 . If λ1 ≤ 0 then this gives us a stable
solution (even though λ2 might be > 0).

• Forward Euler: xn = 1
2γ ((−λ2x0 + v0) (1 + ∆tλ1)

n + (λ1x0 − v0) (1 + ∆tλ2)
n)

� Need |1 + ∆tλ1| , |1 + ∆tλ2| ≤ 1 for stability.

• Underdamped case:

� Say γ = δi.

� Note that for |1 + ∆t (β + δi)| ≤ 1 (with δ 6= 0) we de�nitely need
β < 0. SO WE CANNOT USE FORWARD EULER FOR AN OS-
CILLATOR WITHOUT DAMPING!!!

� Then a = −βx0+δx0i+v0
2δi = x0

2 + βx0−v0
2δ i and b = βx0+δx0i−v0

2δi =
x0
2 − βx0−v0

2 i. So that b = a. Also λ2 = λ1

� So x (t) = aetλ1+āetλ1 = 2Re
(
aetλ1

)
= 2etβRe

(
aetδi

)
= 2etβ

(
x0
2 cos tδ + (v0−βx0)

2δ sin tδ
)

=

etβ
(
x0 cos tδ + v0−βx0

δ sin tδ
)
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∗ This equals x (t) = etβ
√
x2

0 +
(
v0−βx0

δ

)2

sin
(
tδ + tan−1

(
x0δ

v0−βx0

))
∗ The frequency is δ

2π

� Forward Euler: Following a similar analysis we get 1 + ∆tλ2 =
1 + ∆tλ1 and so xn = 2Re (a (1 + ∆tλ1)

n).

∗ In polar form, 1 + ∆tλ1 = (1 + ∆tβ) + ∆tδi = reθi where r =√
(1 + ∆tβ)2 + (∆tδ)2 and θ = tan−1

(
∆tδ

1+∆tβ

)
.

∗ Then (1 + ∆tλ1)
n = rnenθi.

∗ The period of oscillation is the amount of time it takes for nθ =
2π. Letting n = T/∆t we get T = 2π∆t

θ .

∗ Compare this to the actual period T = 2π
δ .

∗ Note that for small ∆t, ∆tδ
1+∆tβ is small and θ = tan−1

(
∆tδ

1+∆tβ

)
≈

∆tδ
1+∆tβ . Then T ≈

2π
δ (1 + ∆tβ)...

� Backward Euler: Similar to above we get (1−∆tλ2)
−1 = (1−∆tλ1)

−1

and so xn = 2Re
(
a (1−∆tλ1)

−n
)

∗ In polar form we have (1−∆tλ1)
−1 =

(
reθi

)−1
where r =√

(1−∆tβ)2 + (∆tδ)2 and θ = tan−1
(
−∆tδ
1−∆tβ

)
.

∗ Then (1−∆tλ1)
−n = r−ne−nθi

∗ The period of oscillation is T = 2π∆t
−θ .

16 Trigonometry

A cos θ +B sin θ =
√
A2 +B2 sin

(
θ + tan−1 (A/B)

)
• Proof: Assume A cos θ + B sin θ = C sin (θ + φ). Setting θ = 0 gives
A = C sinφ, and setting θ = π/2 gives B = C cosφ. So C2 = A2 + B2

and tanφ = A/B.

17 Interpolation

17.1 Divided Di�erences

• De�ne recursively [x0, x1, . . . , xn] = [x1,x2,...,xn]−[x0,x1,...,xn−1]
xn−x0

with [xi] =
f (xi).

• Then

P (x) = [x0] + (x− x0) [x0, x1] + (x− x0) (x− x1) [x0, x1, x2] + · · ·+ (x− x0) (x− x1) · · · (x− xn−1) [x0, x1, . . . , xn]

=
n∑
i=0

πi (x) [x0, x1, . . . , xi]
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with πi (x) =
∏i−1
k=0 (x− xk) interpolates f at the points x0, x1, . . . , xn

18 Fourier Transform

18.1 From [Marsden and Ho�man, ch.10]

• Basic idea:

� An orthonormal family ϕk

� A complete i.p.s. V: every f ∈ V can be written as a Fourier
series f =

∑∞
k=0 〈f, ϕk〉ϕk

• e.g. Let ϕn = 1√
2π
einx for n = 0,±1,±2, . . .,x ∈ [−π, π] and 〈f, g〉 =∫ π

−π fḡ

• Fourier Series for f periodic on [−π, π]: f (x) =
∑∞
n=−∞ cne

inx with

cn = 1
2π

∫ π
−π f (x) e−inxdx

• Fourier Series for f periodic on [−L,L]: f (x) =
∑∞
n=−∞ cne

inxπ/Lwith

cn = 1
2L

∫ L
−L f (x) e−inxπ/Ldx

� Let g (x) = f (Lx/π). Then g is periodic on [−π, π] and f (x) =
g (πx/L) =

∑∞
n=−∞ cne

iπnx/L

� and cn = 1
2π

∫ π
−π f (Lx/π) e−inxdx

� Let x′ = Lx/π then dx = πdx′/L and cn = 1
2L

∫ L
−L f (x′) e−iπnx

′/Ldx′

• Get a0
2 +
∑∞
n=1

(
an cos nπxL + bn sin nπx

L

)
with an = 1

L

∫ L
−L f (x) cos nπxL dx,bn =

1
L

∫ L
−L f (x) sin nπx

L dx

18.2 From [Weisstein]

• Dirichlet condition: Piecewise regular function with (1) �nite number
of �nite discontinuities and (2) �nite number of extrema.

� Under these conditions the Fourier series converges (where there's a
discontinuity, it converges to average of left and right values)

• Fourier transform:

� In the limit as L→∞ (replace cnwith F (k) dk and n/L→ k)

� Start with f periodic on [−L/2, L/2] so that f (x) =
∑∞
n=−∞ cne

2πinx/Lwith

cn = 1
L

∫ L/2
−L/2 f (x) e−2πinx/Ldx

� Let k = n/L, so ∆k = 1
L and replace cnwith ∆kF (k) = 1

L

∫ L
−L f (x) e−2πikxdx
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� Then f (x) =
∑∞
n=−∞ F (k) e2πikx∆k

� As L → ∞, F (k) →
∫∞
−∞ f (x) e−2πikxdx and the sum approaches

the integral
∫∞
−∞ F (k) e2πikxdk.

� Fourier transform recovers original function assuming (1)
∫∞
−∞ |f (x)| dx

exists, (2) �nite number of discontinuities, (3) f is of bounded vari-
ation

� F (k) =
∫∞
−∞ f (x) e−2πikxdx

� f (x) =
∫∞
−∞ F (k) e2πikxdk

• Discrete Fourier transform:

� Fn =
∑N−1
k=0 fke

−2πikn/N

� fk = 1
N

∑N−1
n=0 Fne

2πikn/N

19 Terminology

• Hilbert space: A vector space with an inner product s.t. the norm
induced by the inner product turns it into a complete metric space. (An
instance of a Banach space)

� e.g. Rn or Cn with standard inner products; L2 with 〈f, g〉 =∫∞
−∞ f g dx

• Banach space: Complete vector space with a norm (not necc. induced
by an inner product).

� e.g. Continuous functions with ‖f‖ = sup |f |

• Sobolev space: Banach space where norm involves derivatives (or at
least something other than just function value)

� e.g. H1 (a, b) is space of functions
{
f | f ∈ L2 (a, b) , f ′ ∈ L2 (a, b)

}
with |f |2H1 = |f |2L2 + |f ′|2L2

• Complete metric space: Every Cauchy sequence converges.

• Cauchy sequence: {xn} s.t. |xn+m − xn| are uniformly small in m and
→ 0 as n→∞.

• Functional: Map from function space to scalars.

• Operator: Map between two function spaces.
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Cauchy-Schwartz inequality, 4
complete space, 42
condition number, 15
continuity equation, 10
cross product, 1
cross product, derivative, 3
curl, 6
curl theorem, 8
curvature, 23

diagonally dominant, 15
divergence theorem, 7

Euler's equation, 13
Euler-Lagrange equation, 13
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Inverse Function Theorem, 11

Jordan canonical form, 17

Lagrange multiplier, 13
least squares, 22

normal (matrix), 15
normal equations, 22

operator, 42
orthogonal (matrix), 15
orthogonally equivalent, 15

positive de�nite, 18

Scalar triple product, 1
Schur's theorem, 16
self-adjoint, 15
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skew-symmetric, 15
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spectral theorem, 16
Stokes' theorem, 7
Symmetric, 15
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unitary, 15
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