
CSC320: Linear Algebra ReviewMar
us Brubakert4brubak�
df.toronto.edu7th February 2007Note that these notes are very rough. Please 
onsult a book or some other,more authoritative, sour
e for more detailed explanations.1 Ve
tors in Eu
lidean Spa
esA ve
tor in an real n-dimensional spa
e is simply an n-tuple. That is, an orderedset of n real numbers. We denote the set of all su
h ve
tors as R
n.

• The Eu
lidean inner produ
t (also 
alled the dot produ
t) of two ve
tors
u = [u1, . . . , un]T and v = [v1, . . . , vn]T is de�ned as

u · v =

n
∑

i=1

uivi

• The length or magnitude of a ve
tor u is
‖u‖ =

√
u · u

• The distan
e between two ve
tors u and v is
d(u, v) = ‖u − v‖

=

√

√

√

√

n
∑

i=1

(ui − vi)2

• The inner produ
t is 
losely related to the relative orientations of u and
v. Spe
i�
ally,

u · v = ‖u‖ ‖v‖ cos θwhere θ is the angle between u and v. This useful relationship also givesus some intuition about the inner produ
t.� If u and v are orthogonal (perpendi
ular) to one another (θ = π
2 ),then u · v = 0. 1



� If u and v are pointing in similar dire
tions (θ < π
2 ), u · v > 0 and

u · v = ‖u‖ ‖v‖ if they are pointing in exa
tly the same dire
tion.� If u and v are pointing in opposite dire
tions (θ > π
2 ), u · v < 0 and

u · v = −‖u‖ ‖v‖ if they are pointing in exa
tly opposite dire
tions.
• We 
an write the inner produ
t in terms of matrix multipli
ation as

u · v = uT v2 Matri
esLet A be an n × m matrix. One important quantity that des
ribes this matrixis rank(A), de�ned as the maximal number of linearly independent rows (or,equivalently, the maximal number of linearly independent 
olumns). Note that
rank(A) ≤ min(m,n).We are often interested in solving a linear equation of the form Ax = b,where x is a m × p matrix of unknowns, and b is a m × p matrix. Due to thenature of matrix multipli
ation we 
an view x and b as a 
olle
tion of 
olumnve
tors that 
an be solved for independently, so let us assume that p = 1. Alsonote that when b = 0 there is always a trivial solution of x = 0.It is not always possible to solve su
h systems exa
tly (in whi
h 
ase thelinear system is said to be �in
onsistent�) and sometimes there may be in�nitelymany solutions. We 
an break the problem into di�erent 
ases, based on therank of A and the rank of the �augmented� matrix [A b]:

• No solution. rank(A) < rank([A b])This is a typi
al result for an over-determined system (a �tall� matrix,where n > m), however the la
k of an exa
t solution may also be due tonumeri
al issues in representing �oating-point numbers. Under these 
on-ditions our new goal is to �nd an approximate solution x̂ that is 
losest tosatisfying all the equations in a least-squares sense (see Normal Equationsse
tion below).
• Unique solution. rank(A) = rank([A b]) = mIf the inverse of A is well-de�ned (a �square� matrix, with n = m, thatis also non-singular), then the unique solution is x = A−1b, where A−1 isthe inverse of A.
• In�nite number of solutions. rank(A) = rank([A b]) < mThis is a typi
al result for an under-determined system (a �wide� matrix,where n < m). More spe
i�
ally, if there exists some ve
tor v 6= 0 forwhi
h Av = 0 (in the right-nullspa
e of A), then all ve
tors of the form

x + αv will satisfy the linear system, where x is any solution to Ax = band α is an arbitrary s
alar. In this 
ase, we're often interested in someparti
ular solution, for example, one whose norm ||x|| is smallest.2



Pseudo-InverseA pseudo-inverse of a matrix A is a non-unique matrix whi
h has propertiessimilar to the inverse. The usefulness of a pseudo-inverse is that it 
an givereasonable solutions to matri
es that wouldn't normally have them. The most
ommon pseudo-inverse is the Moore-Penrose pseudo-inverse whi
h is de�nedas:
A∗ =











(AT A)−1AT if AT A is invertible (rank(A) = m)
AT (AAT )−1 if AAT is invertible (rank(A) = n)
CT (CCT )−1(BT B)−1BT otherwisewhere A = BC, B is n by k, C is k by m and k = rank(A). When used to �nda solution to the system Ax = b, x̂ = A∗b gives the shortest length least-squaressolution. That is, it minimizes ‖x̂‖ and ‖Ax̂ − b‖.Noti
e that if A is a square, invertible matrix then A∗ = A−1. Be
ause ofthis the pseudo-inverse is also sometimes used when 
omputing A−1b is unstabledue to numeri
al 
onsiderations.Normal EquationsIf we have an in
onsistent system of equations then there is no solution whi
hwill exa
tly satisfy ea
h equation. It is then reasonable to ask if we 
an �nd anapproximate solution whi
h tries to every equation as well as possible in somesense.De�ne r = Ax̂ − b to be the residual of a solution x̂. Lets say we want the

x̂ whi
h minimizes
‖r‖2

= (Ax̂ − b) · (Ax̂ − b)

= (Ax̂ − b)T (Ax̂ − b)

= (x̂T AT − bT )(Ax̂ − b)

= x̂T AT Ax̂ − x̂T AT b − bAx̂ + bT bWe resort to 
al
ulus to solve this
∂

∂x̂
‖r‖2

= 2AT Ax̂ − 2AT band by setting the derivative equal to zero and solving we get a new set ofequations
AT Ax̂ = AT bwhi
h is 
alled the normal equations.Noti
e the similarity to the psuedo-inverse. If rank(A) = m then AT A isinvertible and we 
an solve for̂

x = (AT A)−1AT b

= A∗b3



Orthogonal Matri
esWe 
all a matrix A orthogonal when its rows/
olumns are not just linearlyindependant but also orthogonal and unit length. That is, for the ith and jthrows/
olumns ri and rj of A

ri · rj =

{

0 i 6= j

1 i = jThis gives us a parti
ularly ni
e property whi
h is AT A = I = AAT . By theuniqueness of inverses this means that AT = A−1.Singular Value De
ompositionComputing and inverting AT A is often expensive and numeri
ally unstable.There are other ways to solve the least-squares problem without 
omputing
AT A dire
tly. One method uses the singular value de
omposition (SVD). Anymatrix 
an be de
omposed su
h that

A = USV Twhere U is a n by n orthogonal matrix, S is an n by m matrix whose diagonalentries are the singular values and V is a m by m orthogonal matrix. Stri
tlyspeaking this de
omposition is not unique 
an be made unique by requiring that
S(1, 1) ≥ S(2, 2) ≥ S(3, 3) ≥ · · · .To solve the normal equations substitute USV T for A

x̂ = (AT A)−1AT b

= (V ST UT USV T )−1V ST UT b

= (V ST SV T )−1V ST UT b

= V (ST S)−1V T V ST UT b

= V (ST S)−1ST UT b

= V S−1UT bNoti
e that S is a non-square matrix. Sin
e S is diagonal we abuse notationand de�ne S−1 to be a m by n matrix with diagonal entries S−1(i, i) = 1
S(i,i) .Showing that (ST S)−1ST = S−1 is left as an exer
ise.SVD 
an also be used to 
al
ulate the Moore-Penrose pseudo-inverse withoutworrying about the rank of the matrix

A∗ = V S−1∗UTwhere S−1∗ is a m by n matrix with diagonal entries
S−1∗(i, i) =

{

1
S(i,i) S(i, i) 6= 0

0 S(i, i) = 04


