
CSC320: Linear Algebra ReviewMarus Brubakert4brubak�df.toronto.edu7th February 2007Note that these notes are very rough. Please onsult a book or some other,more authoritative, soure for more detailed explanations.1 Vetors in Eulidean SpaesA vetor in an real n-dimensional spae is simply an n-tuple. That is, an orderedset of n real numbers. We denote the set of all suh vetors as R
n.

• The Eulidean inner produt (also alled the dot produt) of two vetors
u = [u1, . . . , un]T and v = [v1, . . . , vn]T is de�ned as

u · v =

n
∑

i=1

uivi

• The length or magnitude of a vetor u is
‖u‖ =

√
u · u

• The distane between two vetors u and v is
d(u, v) = ‖u − v‖

=

√

√

√

√

n
∑

i=1

(ui − vi)2

• The inner produt is losely related to the relative orientations of u and
v. Spei�ally,

u · v = ‖u‖ ‖v‖ cos θwhere θ is the angle between u and v. This useful relationship also givesus some intuition about the inner produt.� If u and v are orthogonal (perpendiular) to one another (θ = π
2 ),then u · v = 0. 1



� If u and v are pointing in similar diretions (θ < π
2 ), u · v > 0 and

u · v = ‖u‖ ‖v‖ if they are pointing in exatly the same diretion.� If u and v are pointing in opposite diretions (θ > π
2 ), u · v < 0 and

u · v = −‖u‖ ‖v‖ if they are pointing in exatly opposite diretions.
• We an write the inner produt in terms of matrix multipliation as

u · v = uT v2 MatriesLet A be an n × m matrix. One important quantity that desribes this matrixis rank(A), de�ned as the maximal number of linearly independent rows (or,equivalently, the maximal number of linearly independent olumns). Note that
rank(A) ≤ min(m,n).We are often interested in solving a linear equation of the form Ax = b,where x is a m × p matrix of unknowns, and b is a m × p matrix. Due to thenature of matrix multipliation we an view x and b as a olletion of olumnvetors that an be solved for independently, so let us assume that p = 1. Alsonote that when b = 0 there is always a trivial solution of x = 0.It is not always possible to solve suh systems exatly (in whih ase thelinear system is said to be �inonsistent�) and sometimes there may be in�nitelymany solutions. We an break the problem into di�erent ases, based on therank of A and the rank of the �augmented� matrix [A b]:

• No solution. rank(A) < rank([A b])This is a typial result for an over-determined system (a �tall� matrix,where n > m), however the lak of an exat solution may also be due tonumerial issues in representing �oating-point numbers. Under these on-ditions our new goal is to �nd an approximate solution x̂ that is losest tosatisfying all the equations in a least-squares sense (see Normal Equationssetion below).
• Unique solution. rank(A) = rank([A b]) = mIf the inverse of A is well-de�ned (a �square� matrix, with n = m, thatis also non-singular), then the unique solution is x = A−1b, where A−1 isthe inverse of A.
• In�nite number of solutions. rank(A) = rank([A b]) < mThis is a typial result for an under-determined system (a �wide� matrix,where n < m). More spei�ally, if there exists some vetor v 6= 0 forwhih Av = 0 (in the right-nullspae of A), then all vetors of the form

x + αv will satisfy the linear system, where x is any solution to Ax = band α is an arbitrary salar. In this ase, we're often interested in somepartiular solution, for example, one whose norm ||x|| is smallest.2



Pseudo-InverseA pseudo-inverse of a matrix A is a non-unique matrix whih has propertiessimilar to the inverse. The usefulness of a pseudo-inverse is that it an givereasonable solutions to matries that wouldn't normally have them. The mostommon pseudo-inverse is the Moore-Penrose pseudo-inverse whih is de�nedas:
A∗ =











(AT A)−1AT if AT A is invertible (rank(A) = m)
AT (AAT )−1 if AAT is invertible (rank(A) = n)
CT (CCT )−1(BT B)−1BT otherwisewhere A = BC, B is n by k, C is k by m and k = rank(A). When used to �nda solution to the system Ax = b, x̂ = A∗b gives the shortest length least-squaressolution. That is, it minimizes ‖x̂‖ and ‖Ax̂ − b‖.Notie that if A is a square, invertible matrix then A∗ = A−1. Beause ofthis the pseudo-inverse is also sometimes used when omputing A−1b is unstabledue to numerial onsiderations.Normal EquationsIf we have an inonsistent system of equations then there is no solution whihwill exatly satisfy eah equation. It is then reasonable to ask if we an �nd anapproximate solution whih tries to every equation as well as possible in somesense.De�ne r = Ax̂ − b to be the residual of a solution x̂. Lets say we want the

x̂ whih minimizes
‖r‖2

= (Ax̂ − b) · (Ax̂ − b)

= (Ax̂ − b)T (Ax̂ − b)

= (x̂T AT − bT )(Ax̂ − b)

= x̂T AT Ax̂ − x̂T AT b − bAx̂ + bT bWe resort to alulus to solve this
∂

∂x̂
‖r‖2

= 2AT Ax̂ − 2AT band by setting the derivative equal to zero and solving we get a new set ofequations
AT Ax̂ = AT bwhih is alled the normal equations.Notie the similarity to the psuedo-inverse. If rank(A) = m then AT A isinvertible and we an solve for̂

x = (AT A)−1AT b

= A∗b3



Orthogonal MatriesWe all a matrix A orthogonal when its rows/olumns are not just linearlyindependant but also orthogonal and unit length. That is, for the ith and jthrows/olumns ri and rj of A

ri · rj =

{

0 i 6= j

1 i = jThis gives us a partiularly nie property whih is AT A = I = AAT . By theuniqueness of inverses this means that AT = A−1.Singular Value DeompositionComputing and inverting AT A is often expensive and numerially unstable.There are other ways to solve the least-squares problem without omputing
AT A diretly. One method uses the singular value deomposition (SVD). Anymatrix an be deomposed suh that

A = USV Twhere U is a n by n orthogonal matrix, S is an n by m matrix whose diagonalentries are the singular values and V is a m by m orthogonal matrix. Stritlyspeaking this deomposition is not unique an be made unique by requiring that
S(1, 1) ≥ S(2, 2) ≥ S(3, 3) ≥ · · · .To solve the normal equations substitute USV T for A

x̂ = (AT A)−1AT b

= (V ST UT USV T )−1V ST UT b

= (V ST SV T )−1V ST UT b

= V (ST S)−1V T V ST UT b

= V (ST S)−1ST UT b

= V S−1UT bNotie that S is a non-square matrix. Sine S is diagonal we abuse notationand de�ne S−1 to be a m by n matrix with diagonal entries S−1(i, i) = 1
S(i,i) .Showing that (ST S)−1ST = S−1 is left as an exerise.SVD an also be used to alulate the Moore-Penrose pseudo-inverse withoutworrying about the rank of the matrix

A∗ = V S−1∗UTwhere S−1∗ is a m by n matrix with diagonal entries
S−1∗(i, i) =

{

1
S(i,i) S(i, i) 6= 0

0 S(i, i) = 04


