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Note that these notes are very rough. Please consult a book or some other,
more authoritative, source for more detailed explanations.

1 Vectors in Euclidean Spaces

A vector in an real n-dimensional space is simply an n-tuple. That is, an ordered
set, of n real numbers. We denote the set of all such vectors as R™.

The Euclidean inner product (also called the dot product) of two vectors
u=[ug,...,u,]T and v = [v1,...,v,]7 is defined as

n
Uu-v= Z U;V;
i=1
The length or magnitude of a vector u is
[ull = Vu-u

The distance between two vectors v and v is

d(u,v) = |u—w]

The inner product is closely related to the relative orientations of w and
v. Specifically,
uw-v = |Jul|||v] cosé

where 6 is the angle between u and v. This useful relationship also gives
us some intuition about the inner product.

— If w and v are orthogonal (perpendicular) to one another (6 = %),
then v -v = 0.



— If w and v are pointing in similar directions (¢ < 7), u-v > 0 and
u-v = |Jul| ||v| if they are pointing in exactly the same direction.

— If w and v are pointing in opposite directions (6 > 7), u-v < 0 and
u-v = — |lul| ||v| if they are pointing in exactly opposite directions.

e We can write the inner product in terms of matrix multiplication as

U"UZUT’U

2 Matrices

Let A be an n x m matrix. One important quantity that describes this matrix
is rank(A), defined as the maximal number of linearly independent rows (or,
equivalently, the maximal number of linearly independent columns). Note that
rank(A) < min(m,n).

We are often interested in solving a linear equation of the form Az = b,
where x is a m x p matrix of unknowns, and b is a m x p matrix. Due to the
nature of matrix multiplication we can view x and b as a collection of column
vectors that can be solved for independently, so let us assume that p = 1. Also
note that when b = 0 there is always a trivial solution of x = 0.

It is not always possible to solve such systems exactly (in which case the
linear system is said to be “inconsistent”) and sometimes there may be infinitely
many solutions. We can break the problem into different cases, based on the
rank of A and the rank of the “augmented” matrix [A4 b]:

e No solution. ’rank(A) < rank([A b]) ‘

This is a typical result for an over-determined system (a “tall” matrix,
where n > m), however the lack of an exact solution may also be due to
numerical issues in representing floating-point numbers. Under these con-
ditions our new goal is to find an approzimate solution & that is closest to
satisfying all the equations in a least-squares sense (see Normal Equations
section below).

e Unique solution. ’rank(A) = rank([4 b]) = m‘

If the inverse of A is well-defined (a “square” matrix, with n = m, that
is also non-singular), then the unique solution is = A~!b, where A~! is
the inverse of A.

e Infinite number of solutions. ’rank(A) = rank([4 b]) < m‘

This is a typical result for an under-determined system (a “wide” matrix,
where n < m). More specifically, if there exists some vector v # 0 for
which Av = 0 (in the right-nullspace of A), then all vectors of the form
x4+ av will satisfy the linear system, where x is any solution to Ax = b
and « is an arbitrary scalar. In this case, we’re often interested in some
particular solution, for example, one whose norm ||z|| is smallest.



Pseudo-Inverse

A pseudo-inverse of a matrix A is a non-unique matrix which has properties
similar to the inverse. The usefulness of a pseudo-inverse is that it can give
reasonable solutions to matrices that wouldn’t normally have them. The most
common pseudo-inverse is the Moore-Penrose pseudo-inverse which is defined
as:

(AT A)~1AT if AT A is invertible (rank(A) = m)
A= AT(AATYL if AAT is invertible (rank(A) = n)
ct(cct)y"Y(BTB)~'BT otherwise

where A = BC, Bisn by k, C is k by m and k = rank(A). When used to find
a solution to the system Az = b, & = A*b gives the shortest length least-squares
solution. That is, it minimizes ||Z| and || A% — b]|.

Notice that if A is a square, invertible matrix then A* = A~!. Because of
this the pseudo-inverse is also sometimes used when computing A~1b is unstable
due to numerical considerations.

Normal Equations

If we have an inconsistent system of equations then there is no solution which
will exactly satisfy each equation. It is then reasonable to ask if we can find an
approximate solution which tries to every equation as well as possible in some
sense.

Define » = AZ — b to be the residual of a solution &. Lets say we want the
Z which minimizes

Irl* = (A2 —b)- (AZ ~b)
= (A2 -b)T(Az - )
= (@TA" —b") (A —b)

= TAT Az — 2T ATb — bAZ +bTb
We resort to calculus to solve this

0
0z

and by setting the derivative equal to zero and solving we get a new set of
equations

Ir|*> = 247Az —2Ab

AT Az = ATp

which is called the normal equations.
Notice the similarity to the psuedo-inverse. If rank(A4) = m then AT A is
invertible and we can solve for

& o= (ATA)TATY
A*b



Orthogonal Matrices

We call a matrix A orthogonal when its rows/columns are not just linearly
independant but also orthogonal and unit length. That is, for the ith and jth
rows/columns r; and r; of A

0 it
A FE

This gives us a particularly nice property which is ATA = I = AAT. By the
uniqueness of inverses this means that A7 = A~".

Singular Value Decomposition

Computing and inverting AT A is often expensive and numerically unstable.
There are other ways to solve the least-squares problem without computing
AT A directly. One method uses the singular value decomposition (SVD). Any
matrix can be decomposed such that

A=USVT

where U is a n by n orthogonal matrix, .S is an n by m matrix whose diagonal
entries are the singular values and V' is a m by m orthogonal matrix. Strictly
speaking this decomposition is not unique can be made unique by requiring that
S(1,1) > §(2,2) > S(3,3) > ---.

To solve the normal equations substitute USV7T for A

& = (ATA)™1ATh

= (vsTuTusvh)~tvsTuTy
= (VSTsvT)~tvsTuTy
= V(ST WwTvsTuTy
= V(STs)"1sTuTy
= VS'uTy

Notice that S is a non-square matrix. Since S is diagonal we abuse notation
and define S™! to be a m by n matrix with diagonal entries S™1(i,4) =

Showing that (S7S)~1S7 = S~! is left as an exercise.
SVD can also be used to calculate the Moore-Penrose pseudo-inverse without
worrying about the rank of the matrix

1
S0i) "

A = VSfl* UT
where S™!* is a m by n matrix with diagonal entries

§1e(i i) = sS4 #0
’ 0 S(i,i) =0



