
CSC320 Tutorial Notes

Marcus Brubaker (t4brubak@cdf.toronto.edu)

Feb 3, 2006

Gaussian Weight Function

The Gaussian function is an extremely important function in many areas. Most
of this importance is derived from its signi�gance as the probability density
function for the normal distribution. As a weighting function it expresses the
idea that we want points close to the center to be important and points far away
to be relatively insigni�cant.

The Gaussian is of the form

Ω(x) = e(− (x−µ)2

2σ2 )

where µ is the location of the center and σ determines what close means. In
terms of a probability distribution, µ is the mean and σ is the standard deviation.
[Draw picture of a Gaussian here. Label µ and σ for reference later.]

Some properties of the Gaussian:

•
∫∞
−∞ e(− (x−µ)2

2σ2 )dx = σ
√

2π Note that in this form , Ω is not a vaild PDF.

• The maximum of e(− (x−µ)2

2σ2 ) is 1 and is located at x = µ.

• The Gaussian is said to be �light-tailed� because the area under the curve
is heavily concentrated around µ and therefore has very little weight in
the tails. For instance,∫ µ+σ

µ−σ

e(− (x−µ)2

2σ2 ) ≈ .683σ
√

2π∫ µ+2σ

µ−2σ

e(− (x−µ)2

2σ2 ) ≈ .954σ
√

2π∫ µ+3σ

µ−3σ

e(− (x−µ)2

2σ2 ) ≈ .997σ
√

2π

Sketch the areas to emphasize how much its mass is concentrated around
µ.

1



Sliding Window Algorithm

Lets take a row of pixels along which we want to estimate derivatives.

I = (47, 37, 27, 12, 6, 5, . . .)T

corresponding to pixels
p = (1, 2, 3, 4, 5, 6, . . .)T

The data is from a noised quadratic.
For simplicity we'll �t a linear model (i.e., the degree of the polynomial is 1)

and use a window of ±2 pixels. Then the �rst (symmetric) window in the row
is

Iw = (47, 37, 27, 12, 6)T

pw = (1, 2, 3, 4, 5)T

To estimate the derivatives of I(3) we set up a system like we showed last week
in tutorial

X

[
I(3)
I ′(3)

]
= Iw

where

X =


1 (pw(1)− 3)
1 (pw(2)− 3)
1 (pw(3)− 3)
1 (pw(4)− 3)
1 (pw(5)− 3)



=


1 (1− 3)
1 (2− 3)
1 (3− 3)
1 (4− 3)
1 (5− 3)


is the coe�cient matrix. Solving gives us[

I(3)
I ′(3)

]
=

[
25.8
−10.7

]
Then at the next step we move the window to compute the derivative at

I(4) so

Iw = (37, 27, 12, 6, 5)T

pw = (2, 3, 4, 5, 6)T

X =


1 (2− 4)
1 (3− 4)
1 (4− 4)
1 (5− 4)
1 (6− 4)


2



and by similarly solving

X

[
I(4)
I ′(4)

]
= Iw

we get [
I(4)
I ′(4)

]
=

[
17.4
−8.5

]
and we can repeat this over and over for every pixel in the row.

Speed This may seem like a lot of work to do for every pixel and it is! However,
notice that in both examples the X matrix worked out to be the same thing!
This means that we don't have to recompute X and, if we compute the psuedo-
inverse of X, we don't have to solve a system every time and instead just have
to do a matrix multiplication to get all the coe�cients.

However, we may not want all of the coe�cients. For instance, we may just
want the derivatives in which case the �rst coe�cient is irrelevant. In this case
we can speed things up even further,

I(−)
I ′(−)

...

I(n)(−)

 = X∗Iw

and
I(i) = x∗i · Iw

where x∗i is the ith row of X∗. This means that we can compute only the
coe�cients we need and the work required to do this is a dot product of two
vectors.

For the examples above (a centered window of width 5 and a degree 1 �t)
then

X =


1 −2
1 −1
1 0
1 1
1 2


and

X∗ =
[

.2 .2 .2 .2 .2
−.2 −.1 0 .1 .2

]
so to compute the �rst derivative of a pixel, all that is needed is to compute the
dot product between (−.2,−.1, 0, .1, .2)T and the image values Iw. For instance,

I ′(3) = (−.2,−.1, 0, .1, .2)T · (47, 37, 27, 12, 6)T

= −10.7

3


