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Completeness of the Basis

In lecture on Wednesday it was mentioned that wavelet coefficients could be

viewed as the coordinates of the image in R
2N

where φ0
0, ψ

0
0 , ψ

1
0 , . . . were the

basis. In other words, every image can be represented as a linear combina-
tion of the images in the wavelet basis. To see this we need simply show that
φ0

0, ψ
0
0 , ψ

1
0 , . . . are linearly independant or, alternately, that W has full rank.

This was already effectively done in class when it was shown that WWT is
diagonal with non-zero entries. (Why?)

But to get a better sense of this we will compute the coefficients for an
arbitrary 1D image. Let
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where the basis vectors are the rows of W . We want to be able to compute
coefficients I0, D0

0, D
1
0 , D

1
1 such that

I = I0φ0
0 +D0

0ψ
0
0 +D1

0ψ
1
0 +D1

1ψ
1
1

To compute the coordinates, you compute the dot-product between each row
and the image. Thus the wavelet coefficients for our example image are:

I0 = I · φ0
0

= 6

D0
0 = I · ψ0

0

= 2

D1
0 = I · ψ1

0

= 1

D1
1 = I · ψ1

1

= −1

1



Optimality of Wavelet Compression

The compression algorithm presented in class boiled down to sorting the wavelet
coefficients by magnitude and keeping the k largest. We will show that, in terms
of squared error, this is the best that can be done for a given compression level
k.

Let u1, . . . , um be an orthonormal basis for R
m and c1, . . . , cm be the coor-

dinates of image I such that

I =

m
∑

i=1

ciui

Now let σ(i) be some ordering of the numbers 1, . . . ,m of which we will keep
the first m̃ to compress the image. The reconstructed image is then

Ĩ =
m̃

∑

i=1

cσ(i)uσ(i)

Finally the reconstruction error when using these m̃ coefficients is
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=

m
∑

i=m̃+1

m
∑

j=m̃+1

cσ(i)cσ(j)

(

uσ(i) · uσ(j)

)

=

m
∑

i=m̃+1

(

cσ(i)

)2

where the last step is because the ui’s are orthonormal and thus ui · uj =
{

0 i 6= j

1 i = j
. Thus, the sigma which minimizes the squared error is the one which

minimizes the sum of the squares of the excluded coefficients.
Notice that the ui’s could be any orthonormal basis and thus picking the

largest coefficients is the optimal thing to do for any orthonormal basis.

2D Wavelet Transforms

The 2D Haar wavelet basis can be computed in two ways. In one way it can be
computed directly by applying the 2D Haar wavelet to the image. Alternately
it can be computed as a sequence of 1D Haar wavelet transforms. For reference,
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a basis for a 2x1 (1D) image

b1 =

[

1
1

]

b2 =

[

1
−1

]

To see that these are equivalent lets look at a 2D basis for a 2x2 image.

φ0
0 =

[

1 1
1 1

]

ψ0
0 =

[

1 −1
1 −1

]

ψ0
1 =

[

1 1
−1 −1

]

ψ0
2 =

[

1 −1
−1 1

]

Notice though that

φ0
0 =

[

1 1
1 1

]

= b1b
T
1

ψ0
0 =

[

1 −1
1 −1

]

= b1b
T
2

ψ0
1 =

[

1 1
−1 −1

]

= b2b
T
1

ψ0
2 =

[

1 −1
−1 1

]

= b2b
T
2

In other words, the Haar wavelet transform can be viewed as a seperable con-
volution.
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