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Multi-scale manipulations are central to image editing but they are also
prone to halos. Achieving artifact-free results requires sophisticated edge-
aware techniques and careful parameter tuning. These shortcomings were
recently addressed by the local Laplacian filters, which can achieve a broad
range of effects using standard Laplacian pyramids. However, these filters
are slow to evaluate and their relationship to other approaches is unclear.
In this paper, we show that they are closely related to anisotropic diffusion
and to bilateral filtering. Our study also leads to a variant of the bilateral
filter that produces cleaner edges while retaining its speed. Building upon
this result, we describe an acceleration scheme for local Laplacian filters on
gray-scale images that yields speed-ups on the order of 50×. Finally, we
demonstrate how to use local Laplacian filters to alter the distribution of
gradients in an image. We illustrate this property with a robust algorithm
for photographic style transfer.
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1. INTRODUCTION

Manipulating images at multiple scales is a challenging task. Di-
rect linear manipulation of the frequency bands yields unsightly ha-
los. This issue has been addressed by many nonlinear approaches.
While these techniques produce halo-free images, they also come
with their own shortcomings such as limited scalability due to the
need of solving a global optimization problem, e.g. [Fattal et al.
2002; Farbman et al. 2008; Subr et al. 2009; Xu et al. 2011], or
edge defects that require corrections in post-process [Durand and
Dorsey 2002; Bae et al. 2006; Kass and Solomon 2010]. Recently,

Paris et al. [2011] described the local Laplacian filters that address
these shortcomings and produce high-quality results over a wide
range of parameters. However, while these filters achieve similar
effects to existing edge-aware filters, their relationship to other ap-
proaches is unclear. Further, these filters are prohibitively slow in
their original form. Paris and colleagues [2011] mitigate this issue
with a heuristic approximation but its properties and accuracy are
unknown, and even so, it remains slow.

In this paper, we study these filters to gain a better understand-
ing of their behavior. First, we rewrite them as the averaging at each
scale of the signal variations in the local neighborhood around each
pixel. From this formulation, we show that local Laplacian filters
can be interpreted as a multi-scale version of anisotropic diffusion,
and that they are closely related to bilateral filtering, the main dif-
ference being their multi-scale nature and how they are normalized.
While the difference is minor in uniform regions, it becomes large
in configurations such as edges, corners, and isolated pixels where
the bilateral filter is known not to perform well [Durand and Dorsey
2002; Buades et al. 2006]. We use this insight to design a variant
of the bilateral filter, which we name unnormalized bilateral fil-
tering, and we show that it yields significantly cleaner edges. We
also propose a signal-processing interpretation of local Laplacian
filtering applied to gray-scale images and derive a new accelera-
tion scheme grounded on sampling theory. Our analysis shows that
we can quantize the intensity scale while introducing only negli-
gible differences with the original scheme. Our tests show that, on
gray-scale images, our algorithm is about 50 times faster than the
heuristics of Paris et al. and that it runs at interactive rates on CPUs
without resorting to parallelism. Further, our GPU implementation
processes one-megapixel images at 20 Hz. Finally, we show how to
use these filters to alter the gradient distribution of an image with-
out introducing halos. We illustrate this approach in the context of
photographic style transfer (Fig. 1). Our experiments show that our
method achieves satisfying transfers on a larger set of photos than
previous work.
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Fig. 1. In this paper, we show that the local Laplacian filter [Paris et al. 2011] is related to anisotropic diffusion and that it can be also understood as a
multiscale variant of bilateral filtering. This enables us to derive an efficient algorithm that is 50× faster, processing a one-megapixel grayscale image in
350 ms on a single core and achieving, for instance, interactive tone-mapping (left) and detail reduction (second left). Our analysis also leads to a better
understanding of local Laplacian filtering, which allows us to modify gradient distributions without artifacts, yielding robust and efficient style transfer (two
examples on right, models inset at the bottom).

We make the following contributions.

—We formally characterize the similarities between local Lapla-
cian filters, anisotropic diffusion, and bilateral filtering. In con-
trast, Paris et al. presented those filters independently of other
existing methods.

—Based on this understanding, we build a new single-scale filter,
the unnormalized bilateral filter, that behaves similarly to the bi-
lateral filter in smooth areas while producing cleaner edges.

—We describe a fast algorithm for Laplacian filtering on gray-scale
images that is about 50 times faster than the heuristic of Paris et
al. and that is guaranteed to approximate the original scheme.

—We explain how to transfer the gradient histogram from one im-
age to another using Laplacian filtering and demonstrate its ap-
plication to photographic style transfer.

1.1 Related work

Local Laplacian filters are part of the edge-preserving filter cate-
gory. While some of these filters were initially proposed for denois-
ing [Aubert and Kornprobst 2002], they have now been superseded
by texture-preserving filters such as non-local means [Buades et al.
2005b] and BM3D [Dabov et al. 2006]. In this paper, we focus
on photo editing applications for which local Laplacian filters and
other edge-preserving filters are most useful.

Relationship between nonlinear filters. A dense net of stud-
ies relate methods as diverse as bilateral filtering, anisotropic diffu-
sion, mean shift, neighborhood filtering, mode filtering, and robust
statistics, e.g. [Black et al. 1998; Durand and Dorsey 2002; Elad
2002; van de Weijer and van den Boomgaard 2002; Barash and Co-
maniciu 2004; Buades et al. 2005a; Mrzek et al. 2006; Paris et al.
2009]. However, the recently proposed local Laplacian filters are
not yet part of this mesh and little is known about their relation-
ship to the existing body of work on nonlinear image filtering. A
contribution of our paper is to show that they are closely related to
anisotropic diffusion and to the bilateral filter.

Bilateral filtering. The bilateral filter [Tomasi and Manduchi
1998] is a popular edge-aware smoothing filter for computational
photography applications, e.g. [Durand and Dorsey 2002; Bae et al.
2006; Paris et al. 2009], because it achieves satisfying results while
being fast [Chen et al. 2007; Paris and Durand 2009; Adams et al.
2009; Adams et al. 2010; Gastal and Oliveira 2012]. However, it
is also known to suffer from over-sharpening, which introduces un-
sightly edge defects [Buades et al. 2006] and requires applying a fix
in post-processing, e.g. [Durand and Dorsey 2002; Bae et al. 2006;
Kass and Solomon 2010]. This additional step requires more com-
putation and introduces new parameters to set. In comparison, our
variant modifies the original bilateral filter in minor ways that pre-
serve its speed and ease of use, while significantly reducing over-
sharpening.
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Local Laplacian filtering. Paris et al. [2011] introduced local
Laplacian filtering as an alternative to existing edge-aware filters.
They demonstrated that these filters generate high-quality results
for detail manipulation and tone mapping for a wide range of pa-
rameters. In particular, they showed that these filters produce strong
detail enhancement whereas existing techniques suffer from ha-
los [Li et al. 2005; Farbman et al. 2008] or aliasing artifacts [Fattal
2009]. Figure 3 shows that, for such large detail enhancement, the
local Laplacian filters also compare favorably to recent filters such
as the Guided Filter [He et al. 2010] and Domain Transform [Gastal
and Oliveira 2011] in terms of visual quality. However, the run-
ning times of the local Laplacian filters are slow, on the order of a
minute per megapixel with a single thread, which requires a parallel
implementation and an approximation scheme to reach interactive
rates. Whereas the effects of this approximation are unclear, we
propose an acceleration technique firmly grounded on signal pro-
cessing analysis [Chen et al. 2007; Paris and Durand 2009], which
allows us to control the trade-off between speed and accuracy. And
as previously discussed, we also describe a theoretical relationship
between local Laplacian filters, anisotropic diffusion, and bilateral
filtering. Since local Laplacian filters are at the core of our work,
we describe them in more detail in Section 1.2.

Photographic style transfer. Bae et al. [2006] transfer the
“look” of one photographer’s masterpiece onto another photo by
matching statistics such as the intensity and texture histograms of
the two pictures. While they demonstrate convincing results, the
method consists of many steps, including solving the Poisson equa-
tion several times, which limits the ability of the approach to pro-
cess high-resolution images and makes the technique difficult to
implement and tune. Sunkavalli et al. [2010] propose a simpler al-
ternative based on image pyramids but their results do not match the
look of the model photograph as well. In this paper, we demonstrate
that Laplacian filtering can be used for manipulating the gradient
histogram of an image. Our approach generates visual matches in
the same spirit as Bae’s technique. For strongly stylized examples,
it often performs better, because the robustness of local Laplacian
filters allows for larger image modifications.

1.2 Background on local Laplacian filters

We now summarize how local Laplacian filters are defined and
computed. We use the notation shown in Table 1.2.

Local Laplacian filters are edge-aware operators that define the
output image O by constructing its Laplacian pyramid {L[O]} coef-
ficient by coefficient. The computation of each coefficient is inde-

ggg

Fig. 2. Effect of a detail enhancement (0 ≤ α < 1) remapping function
r with several reference values g near an edge. Details are enhanced for
values similar to the reference value, but not for values far from it.

Variable Description Variable Description
p = (x,y) spatial location L`[I] level ` of pyramid

` level in pyramid {L[I]} Laplacian pyramid
I input image g Gaussian coefficient
O output image Gσ Gaussian kernel

r(i) remapping func.

Table 1.2: Common notation used in this paper.

pendent of the others. To estimate L`[O](x,y), the Laplacian coeffi-
cient at level ` and position (x,y), one first applies a simple pixel-
wise filter to the input image, then computes a Laplacian pyramid
of this transformed image, and finally uses the (`,x,y) coefficient
in that pyramid as the value of the output coefficient L`[O](x,y).
We now detail each of these three steps. First, the input image I
is processed with a point-wise nonlinearity r(·) that depends on
g = G`[I](x,y), the coefficient of the Gaussian pyramid at level `
and position (x,y). Intuitively, r(I) is an image that looks like the
desired result where the intensity I is close to g. For instance, to
increase the amount of detail, we apply a local S-shaped tone curve
centered on g which makes I values close to g farther away from it,
and leaves more distant values unchanged (Fig. 2). By combining
the results from various g values, we affect the entire intensity range
and obtain the final output. We will discuss the formal definition of
r later. Then, given r(I) for a particular g value corresponding to the
position (x,y) and scale `, one builds the Laplacian pyramid of that
transformed image, that is {L[r(I)]}. Finally, we use the coefficient
L`[r(I)](x,y) in that pyramid as the value of the output coefficient
L`[O](x,y). We repeat this process for all the coefficients of the out-
put pyramid.

A direct application of this approach yields an O(N2) algorithm
where N is the number of image pixels, but since only a portion
of the image needs to be processed to obtain L`[r(I)](x,y) at a
given (x,y), this complexity can be reduced to O(N logN). Paris
et al. [2011] further accelerate the process and obtain an O(N)
method by using heuristic that amounts to applying r to a downsam-
pled version of I when processing coarse pyramid levels. While sat-
isfying results are obtained in practice, there is no clear understand-
ing of the speed-versus-accuracy trade-off inherent in this heuristic
and a multi-core implementation is still required to achieve interac-
tive running times. A contribution of our work is to propose a novel
acceleration scheme that is faster and grounded on signal process-
ing theory. For the nonlinearity r, the original article focuses only
on a small set of options defined by three parameters. While these
are sufficient for detail manipulation and tone mapping, in this pa-
per, we reinterpret r in terms of first-order image statistics and ex-
plore more general designs in the context of style transfer.

Design of the remapping function. Paris and colleagues
demonstrated the local Laplacian filters for tone mapping and detail
manipulation. In this context, they proposed the following remap-
ping functions to compute the coefficient (`,x,y):

r̃(i) =

{
g+ sign(i−g)σr (|i−g|/σr)

α if i≤ σr

g+ sign(i−g)
(
β (|i−g|−σr)+σr

)
if i > σr

(1)

where g is the coefficient of the Gaussian pyramid at (`,x,y), which
acts as a reference value, α controls the amount of detail increase
(0 ≤ α < 1) or decrease (α > 1), β controls the dynamic range
compression (0 ≤ β < 1) or expansion (β > 1), and σr defines the
intensity threshold the separates details from edges. For the sake of
clarity, we omit these parameters in the notation and use the concise
form r̃(i). Sample functions are plotted in Figure 4.
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2. BILATERAL FILTERING, ANISOTROPIC
DIFFUSION, AND LOCAL LAPLACIAN FILTERS

We now study the local Laplacian filter and relate it to anisotropic
diffusion and bilateral filtering. We start by formalizing this rela-
tionship and then define a new variant of the bilateral filter inspired
by this result.

Background. With our notation, anisotropic diffusion as intro-
duced by Perona and Malik [1990] is defined by a partial differen-
tial equation:

∂ I
∂ t

= div
(
w(∇I) ∇I

)
(2)

where t represents the diffusion time, i.e., how long the process has
been run, and w is a weighting function that is equal to 1 for ∇I = 0
and decreases for larger gradients. This equation is discretized as
an iterative process:

It+1(p) = It(p) + ∑
q∈N4(p)

w
(
It(q)− It(p)

) [
It(q)− It(p)

]
(3)

where t now counts how many iterations have been performed, and
N4 is the 4-neighborhood of p. The process is initialized at t = 0
with I being the input image.

Using Ip as a shorthand for I(p), the bilateral filter is defined
as [Tomasi and Manduchi 1998]:

BFp =
1

Wp
∑
q

Gσs(q−p) Gσr(Iq− Ip) Iq (4a)

Wp = ∑
q

Gσs(q−p) Gσr(Iq− Ip) , (4b)

r(i)
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Fig. 4. Remapping functions proposed by Paris et al. [2011] (reproduced
from [Paris et al. 2011]). Our paper considers a wider class of functions that
includes all these as well as others, a few of which are shown at the bottom
of the figure.

where Gσr and Gσs are Gaussian kernels of variance σ2
r and σ2

s
defined by Gσ (x) = exp(−x2/2σ2) that are called the range weight
and space weight respectively. Formally, the sums ∑q cover the
entire image but in practice are limited to local windows of radius
3σs since Gσs becomes almost zero for distant pixels. Using the
symmetry of the Gaussian kernel and the fact that the weights sum
up to 1, Equation 4a can be rewritten to make bilateral filtering
appear as a multi-scale version of anisotropic diffusion as described
in Equation 2 with w = Gσr [Elad 2002; Barash and Comaniciu
2004]:

BFp = Ip +
1

Wp
∑

d>0
Gσs(d) ∑

q s.t.
‖q−p‖=d

Gσr(Iq− Ip) (Iq− Ip) (5)

As we shall see later, it is also convenient to rewrite Equation 4a as:

BFp = Ip +
1

Wp
∑
q

Gσs(q−p) Gσr(Iq− Ip) (Iq− Ip) . (6)

2.1 Analysis of local Laplacian filters

In this section, we relate local Laplacian filtering to anisotropic dif-
fusion and bilateral filtering. We show that the Gaussian kernel used
to build the image pyramids acts as a spatial weight and that the
remapping function r as a range weight, thereby resembling bilat-
eral filtering. The main differences with standard bilateral filtering
are the absence of normalization factor and the multiscale aspect.
We then further decompose the spatial kernel into rings of fixed
radius to make appear a link with anisotropic diffusion akin to the
studies by Elad [2002] and Barash and Comaniciu [2004]. We show
that local Laplacian filters can be interpreted as a multi-scale diffu-
sion process controlled by a specific set of parameters.

For this study, we consider the space of remapping functions
with the form

r(i) = i− (i−g) f (i−g) , (7)

where f is a continuous function. This space includes the functions
of Paris et al. as a special case when f (i) = (i− r̃(i))/(i−g) where
r̃ is the remapping function defined in Equation 1.

2.1.1 Single-scale filter. We first consider a two-level pyra-
mid, that is, we seek to compute the levels L0[O] and L1[O] of the
Laplacian pyramid of the output image O. We assume for now that
the residual remains unprocessed, that is L1[O] = L1[I]. For a pixel
p = (x,y) on the 0th level we have:

L0[O](p) = r(Ip)−
[
Ḡσp ∗ r(I)

]
(p) , (8)

where Ḡσp =
1√

2πσ 2
p

Gσp is a normalized Gaussian kernel of vari-

ance σ2
p used to build the pyramids, and ∗ is the convolution oper-

ator. Expanding r and using L0[I] = I− Ḡσp ∗ I and g = Ip since we
are at the finest level of the pyramid, we obtain:

L0[O](p) = L0[I](p)+
[
Ḡσp ∗ (I− Ip) f (I− Ip)

]
(p) . (9)

Then, by upsampling the unmodified residual, adding it to both
sides, and expanding the convolution, we get the formula that we
seek:

Op = Ip +∑
q

Ḡσp(q−p) f (Iq− Ip) (Iq− Ip) (10)

This equation shows that the two-level local Laplacian filter com-
putes a local average in the same spirit as the bilateral filter (Eq. 6)
using Ḡσp as the spatial weight and f as the range weight. If we
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Fig. 5. We compare how the standard bilateral filter (red) and our unnor-
malized variant (green) process simple features. The top row shows a soft
edge (left). The standard filter over-sharpens the edge (center) and intro-
duces non-negligible content in the detail layer (right). These spurious vari-
ations are a source of halos and gradient reversals in applications such as
tone mapping. In comparison, the unnormalized filter produces a cleaner
edge with almost no spurious content in the detail layer. The bottom row
shows an isolated small detail (left), with a different vertical scale, whose
height is 10% of the edge amplitude. The standard bilateral filter smooths
such details more aggressively than the unnormalized version. This explains
why the tone-mapping results of the unnormalized version tend to be softer,
but this is a minor side effect compared to the creation of edge artifacts.
Both filters were set with σr equal to 10% of the edge amplitude.

choose f = Gσr , then the two-level local Laplacian filter becomes
almost the same as the bilateral filter—the only difference is that
the weights are not normalized by 1

Wp
. This simple modification

defines a new filter we call the unnormalized bilateral filter which
we examine in Section 2.2.

This parallel with the bilateral filter also suggests that one may
achieve cross filtering akin to Eiseman et al. [2004] and Petschnigg
et al. [2004] by replacing the input image i by a guiding image ı̂ in
the f function in Equation 7, that is, r(i, ı̂) = i− (i−g) f (ı̂−g). We
leave the exploration of this option as future work.

Equation 10 can also be written as follows using the symmetry
of the Gaussian kernel [Elad 2002; Barash and Comaniciu 2004]:

Op = Ip + ∑
d>0

Ḡσp(d) ∑
q s.t.

‖q−p‖=d

f (Iq− Ip) (Iq− Ip) (11)

This formulation shows that, similar to the bilateral filter (Eq. 6),
a two-scale local Laplacian filter can be seen as a multiscale ver-
sion of anisotropic diffusion as described in Equation 2 [Perona
and Malik 1990]. The main difference between bilateral filtering
and Laplacian filtering is how each scale is weighted. The bilateral
filter uses weights that sum to 1 because of the 1/Wp normaliza-
tion factor whereas the local Laplacian filters apply unnormalized
weights that do not sum to 1.

2.1.2 Multi-scale filter. In the case of more than two levels, g
is not equal to Ip, and we cannot collapse the pyramid as above.
Nonetheless, we can write:

L`[O] = D` ∗ (I−g) f (I−g) , (12)

where D` = Ḡ2`−1σp
− Ḡ2`σp

is the difference-of-Gaussians filter
defining the pyramid coefficients at level `. This expression can be
rewritten as

L`[O](p) = ∑
q

D`(q−p) f (Iq−g) (Iq−g) . (13)

This shows that each level of the output pyramid is a local average
of differences over a neighborhood of p. Similarly to Equation 11,

the above formula can be factored into rings to make appear a link
with anisotropic diffusion. The above formula will also be useful in
our design of an acceleration scheme in Section 3.

Discussion. Previous work has described multi-scale filters
based on the bilateral filter, e.g. [Fattal et al. 2007; Fattal 2009],
and anisotropic diffusion, e.g. [Zhong and Sun 2008]. Our study
shows that local Laplacian filters belong to the same class of fil-
ters. From a practical perspective, the multi-scale filter of Zhong
et al. [2008] aims for image denoising and it is unclear how it
would behave on detail manipulation and tone mapping. In com-
parison, bilateral pyramids have been developed for these applica-
tions. However, these methods tend to suffer from halos (Fig. 3 and
[Farbman et al. 2008, Fig. 10]). In comparison, local Laplacian fil-
ters are less prone to this issue although this comes at the cost of
slower running times [Paris et al. 2011]. In practice, the choice of
filter depends on the application and one’s priorities. Further, the
local Laplacian filters are not restricted to f = Gσr and offer addi-
tional flexibility through the design of the f function. We exploit
this property in Section 4.1 to achieve gradient histogram transfer.

As we have seen earlier, the bilateral filter can also be seen as a
multi-scale variant of anisotropic diffusion (Eq. 5). The difference
between the two filters is how they exploit scale information in the
weighting function. Bilateral filtering weights all the pixels rela-
tively to the center pixel Ip, i.e., relatively to the finest image scale
only. In comparison, the local Laplacian filters adapt the reference
pixel depending on the scale (Eq. 13), effectively defining a weight-
ing scheme for each scale. Collapsing the output pyramid sums all
the filtered coefficients and creates a sophisticated combination that
mixes image information at all scales.

2.1.3 Recap. In this section, we have shown that, when applied
to a two-level pyramid with f = Gσr , the local Laplacian filters can
be expressed in forms closely related to bilateral filtering (Eq. 10)
and anisotropic diffusion (Eq. 11). By doing so, we also highlighted
a few key differences. Compared to bilateral filtering that is a nor-
malized sum, local Laplacian filters are not normalized. We fur-
ther explore this point in the next section and show that it helps
produce clean results at edges. Compared to anisotropic diffusion,
even when restricted to a two-level pyramid, local Laplacian filters
consider a neighborhood defined by Ḡσp that is larger than the 4
adjacent pixels in N4.

2.2 Unnormalized bilateral filtering

In the previous analysis, we showed that local Laplacian filters
share similarities with bilateral filtering. But they are not identi-
cal; Laplacian filters are multiscale and do not normalize the con-
tribution of the pixels, whereas the bilateral filter is two-scale and
normalized. This suggests a variant of the bilateral filter where we
remove the overall normalization but keep the two-scale design.
We call it the unnormalized bilateral filter. As we shall see, this fil-
ter produces better results than the standard bilateral filter without
being as good as the local Laplacian filters. But since the running
times are shorter, this filter can be useful when speed is important.

Formally, we define the unnormalized bilateral filter as:

UBFp = Ip +∑
q

Ḡσs(q−p) Gσr(Iq− Ip) (Iq− Ip) (14)

Compared to the bilateral filter, this unnormalized version has a
weaker effect when the sum of the weights W is small. This occurs
when the center pixel is different from many of its neighbors, which
typically happens at edges. Durand and Dorsey [2002] interpret W
from a robust statistics standpoint and explain that when it is small,
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the bilateral filter returns an estimate based on limited data, which
causes the artifacts that appear at some strong edges. The unnor-
malized version can be interpreted as a filter that is weaker at those
ambiguous locations (Fig. 5). This tends to generate slightly softer
images but greatly reduces the artifacts as shown in Figure 7 and
in supplemental material. We also compared to the post-process
fix described by Durand and Dorsey that blends the bilateral filter
output with a blurred version of the input using log(W ) as blend-
ing control. Similarly, the unnormalized filter achieves cleaner and
softer outputs without requiring post-processing. Although the re-
sults are not as detailed as with the multiscale local Laplacian filter,
the unnormalized filter is about 5 times faster, which can make it a
useful alternative.

Alternative interpretation. The unnormalized bilateral filter
can also be seen as a spatially varying blend between the input and
the result of the bilateral filter:

UBFp = (1−αp) Ip +αp BFp (15)

where the mixing coefficient αp is ∑q Ḡσs(q−p)Gσr(Iq−Ip). This
formula comes directly from Equations 6 and 14. The αp coeffi-
cient is close to 1 in uniform regions and takes lower values near
edges because of the range term. This also explains why the unnor-
malized bilateral filter has a weaker effects near discontinuities.

Effect on brightness. The removal the normalization does not
alter the overall brightness of the output because it is done on the
form of the bilateral filter which applies weights to the pixel differ-
ences (Eq. 6 and 14). That is, changing the weights affects how the
output fluctuates around Ip, it does not affect the absolute bright-
ness since Ip remains the “base value”. Equation 15 also shows that
the brightness of the unnormalized filter is between the value of the
input and that of the normalized filter.

Acceleration method. We build upon Equation 15 and use the
bilateral grid [Chen et al. 2007; Paris and Durand 2009] to effi-
ciently compute the unnormalized bilateral filter.

Discussion. The unnormalized bilateral filter is a middle
ground between bilateral filtering and local Laplacian filtering. As
shown in the close-ups in Figure 6 it produces cleaner edges than
the former without reaching the quality of the latter. The bilateral
filter tends to produce overly sharp edges (e.g., at the border of
the lamp shade) whereas its unnormalized counterpart and the lo-
cal Laplacian filters produce a properly anti-aliased edge. However,
both versions of the bilateral filter can generate reverse gradients on
thin features (e.g., on the window frame) while the local Laplacian
filters are not prone to this problem. Further, we found that the lo-
cal Laplacian filters can generate stronger effects because it affects
several frequency bands unlike the unnormalized bilateral filter that
alters details at a single scale (see the scene through the window
for instance). Figure 7 shows the effects of varying the pyramid
depth to transition from the unnormalized bilateral filter with one
level to local Laplacian filtering with a full pyramid. Halos may be
observed at intermediate depths whereas they are typically not an
issue at small and large scales. This observation is consistent with
the findings of Trentacoste et al. [2012].

3. EFFICIENT LOCAL LAPLACIAN FILTERING

We propose an acceleration technique to evaluate local Laplacian
filters on single-channel images. This encompasses many practical
cases such as detail manipulation and tone mapping [Paris et al.
2011] as well as photographic style transfer that we discuss later

in Section 4. Our strategy is based on the fact that the nonlinearity
comes from the dependency on g. We characterize this dependency
in terms of signal processing, which allows us to design a theoret-
ically grounded subsampling scheme that is more than an order of
magnitude faster than the algorithm proposed by Paris et al. [2011].
In practice, we precompute a small set of pyramids {L[r j(I)]} over
different values γ j of g, where r j is the remapping function for
g = γ j. Whenever we need a pyramid coefficient for a particular g
value, instead of remapping the image and computing a new pyra-
mid, which is expensive, we find j such that γ j ≤ g < γ j+1 and
interpolate the coefficients of precomputed pyramids j and j + 1.
Formally, we seek to sample r as sparsely as possible without los-
ing accuracy. If r is band-limited, using the sampling theorem, the
optimal sampling is the Nyquist limit, i.e., half the smallest wave-
length present in the signal. To estimate this value, we observe r as
a function of g. From that perspective, only the term (i−g) f (i−g)
is not constant and what actually matters is the frequency con-
tent of x f (x). Denoting the Fourier transform by F [·] and using
′ for derivatives, the property F [x f (x)] ∝F [ f ]′ ensures that, if f is
band-limited, r is as well. This means that, if f is band-limited, we
can sparsely sample the intensity domain with only minimal loss.
We further discuss the accuracy of this approach at the end of this
section.

Our algorithm is as follows:
(1) Compute the Gaussian pyramid of I.

(2) Regularly sample the intensity range with the {γ j} values.

(3) Compute the remapped images {r j(I)} and their Laplacian
pyramids {L[r j(I)]}.

(4) For each pyramid coefficient (`,x,y):
i. Get the corresponding coefficient g in the Gaussian pyra-

mid.
ii. Compute a and j such that g = (1−a)γ j +aγ j+1.
iii. Linearly interpolate the output coefficient from the pre-

computed pyramids: L`[O](x,y) = (1−a) L`[r j(I)](x,y)+
a L`[r j+1(I)](x,y).

(5) Collapse the output pyramid {L[O]}.
In practice, a Gaussian function Gσ is used for f , e.g., for the detail
enhancement, we recommend sampling the intensity range every
standard deviation σ . For other applications such as tone mapping,
we proceed similarly and use a sampling that matches the band-
width of f .

Because the number of precomputed pyramids is fixed, this al-
gorithm has linear complexity in the number of pixels. In most
applications, r is not strictly band-limited. Further, we use linear
interpolation instead of a sinc kernel for reconstructing the sig-
nal. The effect of these simplifications is that our algorithm does
not perfectly reproduce the result of the original algorithm. Never-
theless, it produces accurate approximations above 30dB and the
differences are invisible in practice. Most importantly, when sam-
pling every standard deviation, it runs at interactive rates, about
350ms per megapixel on a 2.66GHz Intel Core i7, which is about
50× faster than the heuristic of Paris and colleagues for the same
accuracy (Fig. 8). We also ported our algorithm to graphics hard-
ware (an NVIDIA GeForce 480 GTX), where it runs at about 49ms
for a one megapixel image and about 116ms for a four megapixel
image, which is about 10 times faster than Paris’s heuristic im-
plemented on the same card. Beside this, using the Halide pro-
gramming language dedicated to optimizing image-processing al-
gorithms, Ragan-Kelley et al. [2012] recently reported 49ms on an
NVIDIA Tesla C2070 GPU (equivalent to a mid-range consumer
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GPU) using our algorithm also on a single channel of a 4-megapixel
image, thereby approximately gaining another 2× factor.

Discussion. While these running times are not as fast as other
filters, e.g. [Chen et al. 2007; Fattal 2009; Gastal and Oliveira 2011;
2012], they are sufficient to enable user interaction while still pro-
ducing clean results on a wider range of parameters than what these
faster options support. In practice, the choice between our filter and
these other techniques depend on the application and the priority
between visual quality and speed. In terms of memory, a straight-
forward implementation of the algorithm requires to store all the
precomputed pyramids {L[r j(I)]} in memory at the same time. If
memory consumption is an issue, one can instead compute one such
pyramid at a time and add directly its contribution to the output
pyramid. While this approach requires more updates of the output
pyramids, only one precomputed pyramid needs to be in memory
at a given time, which can be beneficial depending on the available
memory.

4. PHOTOGRAPHIC STYLE TRANSFER

As we showed in Section 2, the re-centering of the remapping
makes local Laplacian filters rely on differences between the value
of a pixel and its neighbors. This makes them closely related to
image gradients. In this section, we propose a new method using
local Laplacian filters to alter the distribution of these differences
and, by extension, the distribution of image gradients. Although
our approach is mostly empirical, it builds upon a strong intuition
and performed well in practice. We illustrate this capability with
an algorithm to transfer photographic style akin to the method of
Bae et al. [2006].

4.1 Manipulating gradient distributions

To gain intuition, we first consider a two-level pyramid and fur-
ther assume that the pixel p has a single neighbor q and ignore
the spatial weight Ḡσp . The output of the filter then becomes:
Op = Ip + f (Iq− Ip) (Iq− Ip). We highlight the role of pixel dif-
ferences by subtracting Iq on both sides. Assuming that f is sym-
metric, which is always the case in practice, we get: Op − Iq =
(Ip− Iq)− f (Ip− Iq) (Ip− Iq). Defining h(x) = [1− f (x)]x, this can
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Fig. 10. To validate our histogram transfer method, we measured the Earth
Mover’s distance between the gradient histogram of the output image and
the gradient histogram of the model image as a function of the number of
iterations. We report the average and standard deviation of this distance
over 15 image pairs. We normalized the distances so that the difference be-
tween the input and model histograms is 1. The output histogram quickly
becomes closer to the model and then the convergence slows down (a). We
tested more iterations, up to 1000, the distance keeps reducing but slowly.
Visually the results becomes stable after a few iterations (Fig. 9). Interleav-
ing standard intensity histogram transfer with our local Laplacian method
speeds up the convergence at a minor computational cost (b).

be rewritten in the more concise form Op− Iq = h(Ip− Iq) which
shows that the filter remaps Ip so that its difference with its neigh-
bor Iq has a desired value specified by the h function. Since p and
q are neighbors, this can be seen as remapping the image gradient
at p. If we now consider again a larger neighborhood as in Equa-
tion 10, the filter can be interpreted as making a trade-off between
the desired gradient values coming from different neighbors. Ḡσp

weights the contribution of each pixel q and h defines the desired
output gradients. Further, h is sufficient to define a local Laplacian
filter since r̃(i) = g+ h(i− g) where r̃ is the remapping function
originally defined by Paris et al. (§ 1.2). This comes directly from
the definitions of f and h.

Building upon this intuition, we describe a method to transfer
the histogram of gradient amplitudes from a model image M to the
input image I. We apply local Laplacian filtering with a remap-
ping function r defined such that gradient statistics of M are trans-
ferred to I. For both images, we compute the histogram of the gra-
dient amplitudes ‖∇I‖ and ‖∇M‖ and the corresponding histogram
transfer function t, i.e. t(x) = CDF

[
‖∇M‖

]−1(CDF
[
‖∇I‖

]
(x)
)

where CDF
[
·
]

denotes the cumulative distribution function, i.e.,
CDF

[
F
]
(x) = ∑p|F(p)<x 1 for F a scalar function defined over the

image domain. The transfer function t means that when two pix-
els have a difference with amplitude |x| in I, we want a difference
with amplitude t(|x|) in O. Finally, we seek to preserve the sign of
the difference, and we define h(x) = sign(x) t(|x|) that leads to the
remapping function:

r(i) = g+ sign(i−g) t(|i−g|) (16)

We use this function to run a local Laplacian filter on I. While we
built our intuition on a simplified case based only on two levels
and two pixels, in practice, the situation is more complex and we
need to iterate to obtain the desired result. Figures 9 and 10a show
that our approach quickly converges after a few iterations. The only
fixed point of the iteration is when r is the identity function, which
implies that t is also the identity function, which finally implies
CDF

[
‖∇M‖

]
= CDF

[
‖∇I‖

]
. This guarantees that the process can

only converge to the desired result where the output has the gra-
dient histogram of the model. In supplemental material, we tested
our method on a variety of image pairs and it always successfully
transferred the gradient histogram.
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4.2 Style transfer algorithm

We demonstrate how to achieve photographic style transfer in the
spirit of Bae et al. [2006] using the gradient transfer method de-
scribed in the previous section. We seek to transfer the “look” of
the model image M to an input image I. Typically, M is a pic-
ture by a master, such as Ansel Adams, and I is a photo by a ca-
sual photographer who wishes to mimic the master’s style. Bae’s
technique involves solving the Poisson equation twice to mitigate
the over-sharpening artifacts inherent in bilateral filtering. This
has two drawbacks: first, the global optimization limits scalabil-
ity, and second, these corrections can limit the large image trans-
forms necessary to achieve more extreme looks. In comparison,
our method is optimization-free and its increased robustness en-
ables more strongly stylized renditions.

Our algorithm follows the same overall approach as Bae’s: we
seek to match both the global contrast, i.e. the large-scale intensity
variations, and the local contrast, i.e. the amount of texture of the
model image M. We use an iterative process. For each iteration,
we first compute the histograms of the input and model gradients,
‖∇I‖ and ‖∇M‖. We build the transfer remapping function r as
described in Section 4.1 and apply the corresponding local Lapla-
cian filter. Then, we apply a standard intensity histogram transfer
to match the intensity distribution of the model M. We typically
apply a few such iterations, 4 in all the results presented in this pa-
per and in supplemental material. Intuitively, the local Laplacian
filtering step transfers the local contrast, i.e. the gradients, and the
intensity matching step transfer the global variations, i.e. the inten-
sity distribution. Further, we found empirically that interleaving the
histogram matching step speeds up the convergence of the gradient
transfer as shown in Figure 10b. To produce the final result, we
observe that after gradient matching, the local contrast is accurate
but the dynamic range may be too large, i.e., some values may be
outside [0,1]. Conversely, after intensity matching, the global con-
trast and the dynamic range match that of the model but the local
contrast is sometimes slightly too weak. We found that after the
last iteration, averaging the result after gradient transfer with the
result after intensity transfer yields a satisfying trade-off on all our
examples (Fig. 9).

4.3 Results

We demonstrate the robustness of our method using a variety of in-
put and model images for which we successfully transfer the look
of the artist’s photo to the input (Fig. 13 and 14). Our technique
handles standard images and HDR images seamlessly since it pro-
duces output with the same dynamic range as the model photo-
graph.

A limitation of our approach is the lack of semantic understand-
ing of the scene. For instance, the method can sometimes intro-
duce unnatural variations in a uniform sky or darken regions that
one would expect to be lit (Fig. 11), or generate overly smooth
results when used with low-detail models (see supplemental mate-
rial). Fixing these problems in general requires either the user in the
loop or a higher-level analysis of the scene, both of which are be-
yond the scope of this paper but would be interesting future work.
Also, some look may be more appropriate for some photos than
others, and we rely on users to make this subjective choice. That
said, these cases are rare and our approach performs well most of
the time. Compared to the method by Bae et al. [2006], our ap-
proach often performs better, especially in its ability to reproduce
the style of texture. Because Bae and colleagues use the bilateral fil-
ter, they need to correct their results using strong gradient-domain

constraints that limit their ability to modify the input image. This
is visible when comparing Bae’s results with and without imposing
these constraints (Fig. 12). While Bae’s results without constraints
better match the models, they suffer from halos at strong edges. The
gradient constraints mitigate these artifacts but come at the cost of
significantly duller renditions. Since our approach does not require
such strong constraints, we are able to obtain high-quality results
that better reproduce the texture in the models without introducing
halos. We also compared our method to histogram transfer applied
to the gradient amplitudes followed by a Poisson reconstruction.
As shown in Figure 13, this naı̈ve approach matches the amount
of details in the models poorly and does not yield satisfying re-
sults. Finally, we also experimented with the multiscale approach
of Sunkavalli et al. [2010] and found that the produced image does
not match the model look as well as our approach (Fig. 13 and 14).

5. CONCLUSION

We have studied local Laplacian filters and have shown that they
are closely related to bilateral filtering and anisotropic diffusion.
This insight has led to several practical contributions: we have de-
scribed the unnormalized bilateral filter which improves the results
of the bilateral filter at edges, sped up the local Laplacian filters, and
described a technique to manipulate image gradients that leads to
a robust algorithm for transferring photographic style. We believe
that these improvements make local Laplacian filtering usable and
suitable for interactive image editing.
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(a) input (b) Guided Filtering [He et al. 2010]

(c) Adaptive Manifolds [Gastal and Oliveira 2012] (d) LLF, σr = 0.1 set to approximately match the detail level of (b)
and (c)

(e) Domain Transform [Gastal and Oliveira 2011] (f) LLF, σr = 0.05 set to approximately match the detail level of (e)

(g) Multiscale [Fattal et al. 2007] (h) Unormalized billateral filter, one level of LLF, σr = 0.05 set to
approximately match the detail level of (g)

Fig. 3. Comparison with the multiscale method of Fattal et al. [2007], Guided Filtering [He et al. 2010], the Domain Transform [Gastal and Oliveira 2011],
and Adaptive Manifolds [Gastal and Oliveira 2012] on detail enhancement. Although these filters produce mostly acceptable results, halos remain visible
around the dome (b,c,e,f). In comparison, local Laplacian filters (LLF) generate clean images without halos (d,g). We used the code provided by the authors
of each method and set the parameters to achieve a large detail increase. For the domain transform and guided filter, we used the parameters suggested in
the papers and a 5x enhancement. For [2007] multiscale method, we used the parameters of the paper and multiplied the output by 2 to have an exposure
more similar to the other methods. For adaptative manifolds, we used the parameters suggested in the paper on the grayscale image to avoid strange color
changes.We adjusted the settings of the local Laplacian filters to produce an approximately similar level of detail enhancement. Despite our efforts, visible
differences remain because of the specificities of each filter. The absence of halos in the results from the local Laplacian filters is not specific to settings that
we selected (see [Paris et al. 2011] for details). We used the fast algorithm described in this paper to compute the local Laplacian filters. More comparison are
available in the supplementary material.
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(a) uncorrected BF (b) corrected BF (c) unnormalized BF (d) local Laplacian filter

(e) uncorrected BF (f) corrected BF (g) unnormalized BF (h) local Laplacian filter

Fig. 6. Compressing an HDR image (a) with strong detail enhancement with the bilateral filter (b) leads to artifacts on the border of strong edges, e.g. on the
window structure and on the lamp base. Some of them can be fixed by a postprocessing step (c), for instance the window structure is significantly improved–
other parts such as the lamp base remains problematic. With our unnormalized bilateral filer (d), most these artifacts are avoided although the rendition is
overall softer, and none appear with our fast version of the local Laplacian filter (e). However, the local Laplacian filter remains slower than the unnormalized
filter. (b,c,d,e) are close-ups of the lamp at the end of corridor (a).
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(a) 1 level - unnormalized bilateral filter (b) 2 levels

(c) 4 levels (d) 8 levels

Fig. 7. Changing the depth of the pyramid used to evaluate the local Laplacian filters progressively transitions from the unnormalized bilateral filter (a) to
the local Laplacian filters. We used σr = 0.05 for all these results. Figure 3 (f) shows the result with a complete 9-level pyramid which visually similar to the
8-level result (d). Unsightly halos are visible at intermediate depths (c); this observation is consistent with the results of Trentacoste et al. [2012].
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Fig. 9. Our iterative method to transfer gradient histograms stabilizes quickly. Visually, the results do not change after 2 iterations.
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input image (HDR, gamma compressed) model

our method Sunkavalli et al. [2010]

Naive gradient transfer using a Poisson equation Bae et al. [2006]

Fig. 13. In contrast to other methods, our style transfer method is able to reveal a lot of small variations in the input image.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



Fast Local Laplacian Filters: Theory and Applications • 15
m

od
el

ou
r m

et
ho

d
B

ae
et

al
.[

20
06

]
Su

nk
av

al
li

et
al

.[
20

10
]

Fig. 14. In the method of Bae and colleagues, the Poisson reconstruction is computationally expensive, and often breaks the style transfer while trying to fix
the strong halos. In contrast, our direct method does not create halos and achieves acceptable style transfer even on these difficult examples.
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