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Figure 1: Our technique accelerates black-box image processing operators by fitting bilateral-space affine models to a low-resolution
input/output pair. We then produce a high-resolution output by evaluating the models on the high-resolution input. Fitting the affine models
takes milliseconds, even on a mobile phone, and applying them can be done in a simple GPU shader, reducing the total cost to the cost of
running the operator at greatly reduced resolution. In this example, we faithfully reproduce a complex sequence of Adobe Photoshop filters that

increase local contrast, boost saturation, and remove haze.

Abstract

We present an algorithm to accelerate a large class of image process-
ing operators. Given a low-resolution reference input and output
pair, we model the operator by fitting local curves that map the
input to the output. We can then produce a full-resolution output by
evaluating these low-resolution curves on the full-resolution input.
We demonstrate that this faithfully models state-of-the-art operators
for tone mapping, style transfer, and recoloring. The curves are
computed by lifting the input into a bilateral grid and then solving
for the 3D array of affine matrices that best maps input color to
output color per z, y, intensity bin. We enforce a smoothness term
on the matrices which prevents false edges and noise amplification.
We can either globally optimize this energy, or quickly approximate
a solution by locally fitting matrices and then enforcing smoothness
by blurring in grid space. This latter option reduces to joint bilateral
upsampling [Kopf et al. 2007] or the guided filter [He et al. 2013],
depending on the choice of parameters. The cost of running the
algorithm is reduced to the cost of running the original algorithm at
greatly reduced resolution, as fitting the curves takes about 10 ms
on mobile devices, and 1-2 ms on desktop CPUs, and evaluating the
curves can be done with a simple GPU shader.
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1 Introduction

Imaging operators can improve photographs in numerous ways.
They can be used to remove haze [Kim et al. 2013], compress
dynamic range [Paris et al. 2011], colorize [Levin et al. 2004], styl-
ize [Aubry et al. 2014], or enhance details [Farbman et al. 2008].
However, most photographs are captured and processed entirely on
mobile phones, which have limited computational capabilities stem-
ming from their strict power budget. This makes most algorithms
from the literature too slow to deploy on mobile devices.

A simple way to accelerate an operator is to apply it at low resolution,
then upsample the result, ideally using some method which rein-
troduces detail present in the high-resolution original lost in down-
sampling. Two such methods are joint bilateral upsampling [Kopf
et al. 2007] and the fast guided filter [He and Sun 2015]. Either
method can be fast enough to run on a mobile device, but they can
only reproduce a limited range of operators (see figure 8).
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We present bilateral guided upsampling, which unifies and gener-
alizes these two methods. We first make the observation that for
many imaging operators, nearby pixels that have similar colors in the
input also have similar colors in the output. To do otherwise would
introduce a new edge, a halo, or noise where there was no such
feature in the input. This is equivalent to saying that the operator is
a smooth function in bilateral space [Barron et al. 2015].

For a black-box image operator and a specific input image, we can
learn this smooth function by running the operator at reduced reso-
lution and then fitting locally-affine models in bilateral space. That
is, for each tile of the low-resolution image and for each intensity
range, we learn an affine relationship between input and output. We
constrain these affine matrices to vary smoothly, either by solving
for them globally with a smoothness term, or more cheaply by fit-
ting them using overlapping windows. Trilinearly interpolating into
this array of affine models as a function of position and intensity
acts as a piecewise-quadratic local curve that can be applied to the
full-resolution input.

If we reduce our model to a single intensity range for each spatial
tile, then we fit lines rather than curves, and this is precisely the fast
guided filter. If we reduce our affine matrices to their constant terms,
then this is precisely joint bilateral upsampling.

‘We found that we can run most operators at one-eighth resolution
(thus doing 64 times less work) and still produce comparable full-
resolution outputs. Fitting the affine models takes on the order of
milliseconds and producing the full-resolution output can then be
done in a minimal OpenGL shader (included in the supplemental
material). We therefore greatly accelerate the original operator.

Our approach requires that the operator be somewhat scale-invariant.
Applying it at low resolution must yield useful information about
how to apply it at full resolution. This means that we poorly model
operators for which this assumption does not hold, such as denoising
or deblurring.

This paper presents the theory behind this approach (section 3), the
algorithm we propose (section 4), and its performance on a range of
imaging operators (section 5). The algorithm is fast, effective, and
simple. We include source code for both local and global algorithms
along with full-resolution images as supplemental material.

2 Related Work

The bilateral filter is a non-linear, edge-preserving filter, proposed
by Tomasi and Manduchi [1998]. Many techniques and data struc-
tures have been proposed for speeding up the bilateral filter [Paris
and Durand 2006; Chen et al. 2007; Adams et al. 2010; Gastal and
Oliveira 2011; Gastal and Oliveira 2012]. Chen et al. [2007] intro-
duced the bilateral grid, a data structure that enables edge-aware
manipulation of images. Chen et al. used a regular grid of samples,
but this representation has been extended to other layouts such as
k-d trees and high-dimensional lattices [Adams 2011]. Barron et
al. [2015] introduced the concept of “bilateral-space” optimization,
showing that stereo can be solved quickly by projecting the problem
onto the bilateral grid. Barron and Poole [2016] generalize this to
colorization, depth super-resolution and semantic segmentation.

Kopf et al. [2007] proposed joint bilateral upsampling. They use this
technique to upsample low-resolution colorization, tone mapping,
and depth maps into high-resolution ones that respect color discon-
tinuities of the underlying scene. While their approach results in a
piecewise-smooth image, we solve for a smooth fransform between
pairs of images.

Our affine model is inspired by the guided filter [He et al. 2013],
which is a fast, edge-preserving filter. This method works by fitting a
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Figure 2: Left: input image and output after a sequence of edits in
Photoshop. Right: input/output scatter plots of 128 x 128 patches
of the bison’s eye and nose. For many operators, nearby pixels with
similar color in the input also have similar color in the output. This
means that locally, complex algorithms can be approximated by a
smooth curve that maps input values to output values.

2D array of affine functions between overlapping patches in a guide
image and an input image. These affine functions are then applied
to the input image. This smooths the input image while respecting
the edges in the guide image. We instead fit a 3D array of affine
functions on the image’s bilateral-grid representation, meaning that
within a single patch, we fit different affine functions per intensity
range. In the degenerate case where the grid has a single intensity bin,
our representation is equivalent to that of the guided filter. Figure 8
demonstrates the increased expressiveness of our model.

Yuan and Sun [2011] solve the related problem of enhancing a
high-resolution JPEG produced on-camera using a low-resolution
pseudo-raw file processed offline. Their tone-mapping step uses a
locally-affine model to relate patches from the processed RAW file
to the original JPEG. Like the guided filter, this can only express
local lines, not curves.

Gharbi et al. [2015] introduced the concept of a transform recipe.
Whereas we seek to avoid computing the full-resolution operator
entirely, Gharbi et al. instead offload that work to a cloud server,
and send back a multi-scale model similar to but richer than ours
describing the effect of the operator so that it can be reproduced
on device. Compared to transform recipes, we are faster, simpler,
and run entirely on-device. However, we cannot model the effects
of an operator on the highest frequencies as faithfully, because we
never run the operator at full resolution. Despite this, our PSNR is
competitive with their technique (figure 8).

3 Local Properties of Imaging Operators

In this section we analyze the relationship between an input image
and the output image produced by the action of an operator. Figure 2
contains a scatter plot illustrating such a mapping for a particular
operator run on a particular image.

Consider a small patch of the input, and its corresponding patch in
the output. We will attempt to capture the action of the operator
by fitting a model over the patch that predicts the output given
the input. For a 1 x 1 patch, we can fit any operator, no matter
how exotic, with a constant model that simply states the output
intensity. Over a slightly larger patch, a constant model is only
correct where the output image is featureless. To more accurately
model the relationship we can consider the next term in the Taylor



output intensity

7 .

input image

oﬁtput iage

input intensity

>

/

output intensity
output intensity

/

. . . ->
Imput mtensity

input intensity

Figure 3: On the left we show input and output for an aggressive local contrast enhancement using local Laplacian filters [Paris et al. 2011].
At small scale (red, 128 x 128 pixels), even complex algorithms are well approximated by a smooth curve (red, right), and each intensity range
along such a curve is well approximated by an affine model—a line. As patch size grows, the mapping deviates from a single smooth curve.
Far-away pixels with the same color in the input do not have the same color in the output.

series and also record how the output intensity varies under small
perturbations of input intensity. This is now an affine model.

For well-behaved operators, these first order terms should be small.
If a small change in input intensity produces a large change in output
intensity, then the operator must amplify any noise present.

The scale at which the input-output mapping is well approximated
by an affine model depends on the properties of the underlying
operator. We illustrate this in figure 3, where we show input-output
intensity scatter plots for patches of different sizes. An affine model
works well for small patches, especially ones that contain limited
brightness variation, but breaks once the patch size grows beyond
the natural scale of the operator.

If a patch contains a large range of intensities and the operator is non-
linear, the first-order Taylor expansion no longer holds. For example,
if a patch contains very bright pixels and very dark pixels separated
by an edge, the relationship between input and output may be very
different on either side of that edge. We can however still model
the relationship with affine models if we fit a separate affine model
to each intensity range present in a patch. Linearly interpolating
within this array of affine models as a function of intensity produces
a piecewise-quadratic spline describing a local curve mapping input
to output within this patch.

If we grow the patches larger still, then for many interesting opera-
tors, equal-intensity pixels in the input may map to very different in-
tensities in the output, and the relationship can no longer be modeled
by any single function (see the rightmost scatter plot in figure 3). We
therefore slice the image into tiles and fit a distinct curve within each
tile. For well-behaved operators these curves must vary smoothly
across space. If they did not, neighboring pixels with the same inten-
sities in the input could have very different intensities in the output,
which means that the operator has introduced a new edge that was
not present in the input. This is only desirable behavior for a small
class of operators, most notably super-resolution and deblurring.

We now have a 3D array of affine models, indexed by position
and intensity. We require them to vary smoothly with position and
intensity, so we can represent them at low resolution. In fact, fitting
them at low resolution projects the original operator onto a space
of operators that do not amplify noise or introduce new edges. The
3D array can be treated as a type of bilateral grid that stores affine
models instead of colors. Given any input position and intensity,
we can trilinearly interpolate into it to retrieve an appropriate affine
model that will tell us the output intensity.

Using the input/output image data alone, this bilateral grid is sparse.
We can only fit affine models in the cells where we have input data
(see figure 4). If we wish to apply the model to new, previously
unseen input intensities, then we need to extend our models to cover
the entire grid. Our desired smoothness property and our affine
representation makes this straightforward. Spatial smoothness can be
enforced by minimizing finite differences in model coefficients in the
x and y directions. Likewise, intensity smoothness can be enforced
by minimizing finite differences in the intensity direction z. A fully
populated bilateral grid tells us the action of the imaging operator on
any image given only a single example input and output. However, is
merely a first-order Taylor series of the operator about this particular
input, so the quality drops off rapidly as we deviate from it. If we
sample the grid at locations driven by a higher-resolution version of
the same input then we stay close to the original manifold, and so
produce an output very similar to running the original operator at a
higher resolution.

Affine color model We have thus far limited our discussion to
grayscale images. To handle color inputs and outputs, we could use
a 5D bilateral grid, which stores a 3 x 4 affine matrix from input
to output color at each (x,y,r,g,b) cell. However, this space is
too large: even with a low-resolution grid, each cell would not have
enough data to adequately fit an affine transformation. Instead, we
found that a hybrid color model works well. We use a 3D grid, where
the z coordinate corresponds to luminance, but within each cell, we
store a 3 X 4 affine matrix (1 x 4 for operators that map color to
gray). The hybrid model only respects luminance edges by encoding
them as a Euclidean distance, but locally models the operator as an
affine color transformation, as in [Bousseau et al. 2009]. We use this
color model for all our results.

Connection to transform recipes While transform
recipes [Gharbi et al. 2015] handles color differently, for lu-
minance they too fit local curves that map input intensity to output
intensity. Indeed, they go one step further and fit distinct curves
per spatial frequency band. However, fitting the high-frequency
terms in this representation requires access to the full-resolution
input and output, which for us begs the question. We are attempting
to produce a full-resolution output without running the original
operator at that resolution. Despite this handicap, our technique
functions as well as transform recipes in terms of PSNR (figure 8)
and is substantially faster.
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Figure 4: Our algorithm modeling three different operators. Top:
input image and bilateral grid for highlighted scanline. Second row:
local affine models fit to the input/output pair with a data term only.
Note that grid cells with no data are empty. Third row: affine models
fit everywhere using data and smoothness. A global curve (bottom
left) results in affine models that vary with intensity (z), but not
spatially. A vignette can be expressed as an affine model (a scaling)
that varies with position but not intensity. A more complex effect
(bottom right) produces affine models that varies with both.

4 Algorithm

We accelerate an imaging operator by applying it to a low-resolution
version of the input, fitting a bilateral grid of affine models to the
low-resolution input/output pair, and then applying the models to
the high-resolution input. We present two methods for fitting affine
models. The first, based on optimization, is slow but produces the
highest-quality results. The second is a fast approximation to this
that runs in real-time on a mobile device.

Once fit, applying the model to the high-resolution input involves
a per-pixel trilinear interpolation to retrieve a 3 X 4 affine color
transform, and then a matrix multiply to generate the output color.
This can be done rapidly on a GPU, and an OpenGL shader that
implements this is included in the supplemental material.

Preliminaries Chen et al. [2007] showed that joint bilateral fil-
tering of an image with respect to a guide can be expressed as a
splat-blur-slice procedure. We construct a bilateral grid by splatting
the input values at locations determined by the guide image, blur-
ring the values in the grid with a small Gaussian kernel, and then
slicing the values out of the grid by sampling it at same locations
determined by the guide image. Barron et al. [2015] showed that
with matching reconstruction filters (e.g., trilinear), filtering may be
expressed as ST BSx, where x is the vector of values to be filtered,
S and ST are the guide-image-dependent splat and slice matrices
respectively, and B is a blur in grid space. Using this notation, we
set up an optimization problem to solve for grid of affine models.

Optimization Our energy function is a linear least squares prob-
lem and is the sum of data and smoothness terms. The data term
seeks the 3D array of 3 x 4 matrices such that when sliced using the
input luminance, then applied to the input color, best produces the
low-resolution output. Note that while slicing and application both
depend on the input image, the overall reconstruction is linear in the
unknowns. The smoothness term is independent for each affine ma-
trix coefficient and is the squared magnitude of its partial derivatives
in each of the spatial (z, y) and intensity (z) directions. To balance
the data and smoothness terms, we weight each derivative with tun-
ing parameters (\;, Ay, \-), which we fix at (1,1,4 x 107°) in all
our experiments. Our optimization problem is:

2
argmin/ (B — AST’)’) + (A Duy)?
i + (/\yDy'Y)Q M
+ (A\.D.v)? dzdydz

~ collects all the unknowns into a w X h X d X 3 x 4 element vector,
ST is the slicing matrix incorporating trilinear interpolation, and A
is the matrix that applies the per-pixel 3 x 4 matrix to each input
pixel. 3 is the low-resolution output image we seek to match. Note
that ST depends on the low-resolution input luminance, and A is
simply the low-resolution input image replicated and reshaped to
left-multiply each color transform.

This optimization problem can be discretized using standard finite
element analysis and the resulting system of linear equations solved
using sparse QR factorization. For a 320 x 240 image and a 20 x
15 x 10 bilateral grid, our MATLAB implementation takes about 15
seconds on a desktop workstation, which is too slow for real-time
applications. Below, we derive a fast approximation suitable for
deployment on a mobile device.

Fast approximation Instead of optimizing a single global energy
function, the fast approximation solves for the affine matrices in
the bilateral grid as a set of smaller overlapping linear least squares
problems. Within each grid cell, we want the 3 x 4 matrix M that
best maps each input pixel ¢ with RGB values a14, a2s, aizs to its
corresponding output RGB values 31, f£2i, B3i. We handle the
constant term in this affine relationship by setting as; = 1. We
therefore we want the least-squares solution to M o = (3, where M
is the unknown. This is optimized by solving Maa® = ga® for
M in each grid cell.

The algorithm iterates over each input pixel, identifies its corre-
sponding bilateral grid cell using its position and intensity, and
accumulates aa” and Sa® into that cell. Taking into account that
the first term is a symmetric matrix (it is the Gram matrix), this
accumulates 22 distinct values in each grid cell. Note that four of
these values (the last row/column of ™) are precisely the values
that are accumulated in each grid cell during a conventional bilateral
filter using the bilateral grid: a1, @24, a3, and 1.



We then enforce smoothness of the solution by blurring these 22
terms across the x, y, and intensity axes of the grid with a 7-tap
separable filter. This turns our independent least squares problems
into larger overlapping weighted least squares problems with weights
that diminish with distance from the cell in «, y, and intensity. For
under-constrained cells, this effectively inpaints constraints from
more populated cells in the grid. We found that the precise blur
kernel does not significantly affect results, so long as it has a strong
central lobe. We use a 1/(r + 1)* filter, motivated by the kernel
used to interpolate smooth membranes by Farbman et al. [2011].

Some cells may still be under-constrained after this inpainting. We
therefore instead solve a modified system where under-constrained
cells degrade towards -y, a robust ratio between the average output
luminance and the average input luminance over the pixels that
contributed to that cell:

M(aa™ + A1) = Ba™ + M\yI @)

where A = 1075((ca™ )44 + 1). Recall that cva; = 1, 50 (™ )ag
is a count of the number of constraints influencing this cell after
blurring. A must scale with this count so that a huge number of
linearly-dependent constraints (e.g., from a region of constant color)
cannot reduce it to floating-point insignificance. See the code in the
supplemental material for the precise formulation.

Our fast approximation is written in the Halide image processing
language [Ragan-Kelley et al. 2013], and is based on the bilateral
grid sample code from that project. It is parallelized, vectorized,
and fused for locality in the same way. With default settings, our
implementation can solve for affine models in 1-2 ms on a desktop
CPU, and about 10 ms on a mobile CPU (see figure 5).

Connection to the fast guided filter The fast guided filter [He
and Sun 2015] fits an array of affine matrices that map input RGB to
output RGB within overlapping tiles. It is fast both because it fits at
low resolution and also because it exploits the same trick we do—it
blurs Gram matrices to create overlapping problems. If we restrict
our fast approximation to a single intensity bin (thus reducing the
dimensionality of the array from three to two), and correspondingly
use bilinear interpolation instead of trilinear to slice out the affine
matrices, our method becomes the fast guided filter. This technique
can only express local lines rather than local curves, and therefore
models a more limited set of operators (see figure 8).

Connection to joint bilateral upsampling Although Kopf et
al. [2007] did not originally describe it in this way, joint bilateral up-
sampling can be implemented using a bilateral grid by splatting low-
resolution output values at locations determined by low-resolution
input intensities, blurring within the grid, then slicing at locations
determined by the high-resolution image [Adams 2011]. If we re-
strict our fast method to solving for only the constant term in each
grid cell instead of an affine matrix, it reduces to this implementation
of joint bilateral upsampling. The linear system we solve in each
grid cell reduces to 1 x 1, and is exactly the division by the sum of
the weights necessary in joint bilateral upsampling.

Fitting a constant rather than an affine matrix tends to produce
piecewise-constant outputs (again, see figure 8). Kopf et al. therefore
do not use joint bilateral upsampling to produce output RGB values
directly, but rather for quantities that are naturally piecewise constant,
such as depth, alpha mattes, chrominance, or gain maps for local tone
mapping. Utilizing joint bilateral upsampling effectively therefore
requires some degree of problem-specific insight.

Note that if we degrade our fast method by taking the limit as
A — 00, then equation 2 becomes M = ~I. This shows that our
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Figure 5: We can trade-off PSNR against runtime by varying grid
resolution. Here we show the Pareto frontier across various grid
resolutions for the fast approximate method applied to the local
Laplacian filters task from figure 7, with the vertical dashed line
corresponding to the parameter settings used. We also label a few
points with spatial bin size in pixels and number of intensity bins.
The desktop has an Intel Xeon E5-2690 CPU running at 2.9 GHz,
and the phone has a Qualcomm Snapdragon 810 running at 2 GHz.

regularizer is equivalent to Kopf’s tone mapping method that joint
bilateral upsamples a local gain map.

Our fast approximation thus unifies the fast guided filter and joint
bilateral upsampling, reduces to either of them if suitably restricted,
and is more expressive than both.

5 Results

We evaluate our global method and fast approximation on a variety
of image processing operators, applied to 116 images from the
transform recipes dataset. The operators we run are:

* Local Laplacian filters by Aubry et al. [2014] enhances local
contrast in images by constructing the Laplacian pyramid of
the desired output, coefficient-by-coefficient.

¢ Style transfer from the same paper by Aubry et al. [2014]
transfers style from a model image to the input by altering the
input’s distribution of gradients to match that of the model.

* Unsharp mask sharpens an image by magnifying the differ-
ence between the input and a blurred version.

* Colorization by Levin et al. [2004] adds color to a grayscale
image given a set of sparse scribbles.

* Portrait style transfer by Shih et al. [2014] transfers the style
of one portrait image to another.

¢ Lo smoothing by Xu et al. [2011] removes image detail for
the purposes of stylization.

* Matting computes an alpha matte that separates foreground
from background. We use the method of Chen et al. [2013].

* Dehazing corrects for contrast loss due to atmospheric scatter-
ing. We use the algorithm of Kim et al. [2013].

Most images are 5—8 Mpixels (portraits are 1.3 Mpixels). We box-
downsample each image by factors of 4 and 8, then apply the op-
erator to produce a low-resolution output. We run bilateral guided
upsampling on a range of grid resolutions and assess image quality
by computing its PSNR and structural similarity index (SSIM) with
respect to ground truth. With default parameters of 8x downsam-
pling, 8 intensity bins, and spatial bins corresponding to 16 x 16
pixels in the low-resolution input, our global method achieves a



N ) -

a) input b) dehaze then downsample c¢) bilateral guided upsampling d) downsample then dehaze e) bilateral guided upsampling
modeling a — b modeling a — d

Figure 6: Most imaging operators that manipulate tone and color approximately commute with downsampling: applying the same operator to
a higher-resolution image of the same scene should not produce a significantly different output [Jeong et al. 2011]. However, not all black-box
operators are commutative in this way (perhaps due to hidden internal parameters expressed in units of pixels). An example of this is the
dehazing technique of Kim et al. [2013], which produces different results when run at high and low resolution (b and d, respectively). Bilateral
guided upsampling can model the action of the operator at either resolution (¢ matches b, and e matches d). However the premise of this paper
is that modeling an operator at low resolution and using that model to produce a full-resolution result is equivalent to running the operator at
full resolution, and that is not the case here (e does not look like b). The image is from the transform recipes dataset [Gharbi et al. 2015].

mean PSNR of 28.4 dB and a mean SSIM of 0.92 over the entire
dataset. Our fast approximation produces slightly lower image qual-
ity (mean PSNR of 27.0 dB, mean SSIM of 0.88) but runs in under
1 ms on a desktop workstation. To measure the impact of com-
mutativity, we box-downsample the full-resolution ground truth to
represent the output of an ideal scale-invariant operator that com-
mutes with downsampling (see figure 6). When applied to these
image pairs, mean PSNR and SSIM increase to 33.3 dB and 0.94 for
the global method and 29.3 dB and 0.88 for the fast approximation.
Full-resolution versions of the images in figures 6 and 7 are included
in the supplement along with PSNR and SSIM for the entire dataset.

For a 10 MPixel image with default parameters, our fast approxima-
tion on a desktop CPU takes 2 ms to downsample by 8x, 2 ms to fit
curves, and 13 ms to apply them. Most of the cost comes from trilin-
early interpolating the bilateral grid, which is slow on CPUs without
texture hardware but almost free on GPUs. In practice, for most
applications such as those in figure 7, performance is dominated by
running the original operator at low resolution, even with the 64x
acceleration we gain by computing it at 8x reduced resolution.

Discussion and Limitations Both the global optimization and its
fast approximation perform well given the right parameters. While
we used uniform parameter settings for figure 7, the optimal choice
of downsampling factor and grid resolution is operator-dependent,
reflecting the natural scale at which the operator has its effect. Most
operators have semantically meaningful parameters that guide how
they scale with resolution. Linear parameters such as filter radii
should be scaled linearly (e.g., unsharp mask), logarithmic parame-
ters such as the number of pyramid levels should be subtracted (e.g.,
local Laplacian, portrait transfer), and properly designed regularizers
should have units such as inverse pixels or inverse pixels squared,
which dictate how they scale. For label propagation, we conser-
vatively use nearest-neighbor to downsample masks (colorization,
matting, portrait transfer).

The quality of our method depends on whether the operator can be
modeled as a local curve and whether running it at reduced resolution
faithfully captures what it would do to a higher-resolution image of
the same scene. This is not always the case (figure 6). For a small-
support unsharp mask, which enhances the highest frequencies, our
local curves model only holds true over small spatial bins, and
downsampling may entirely discard the frequencies we need to learn
a valid model. At the opposite extreme, a global contrast curve
needs only one spatial bin and can fit the curve from a very low-
resolution input/output pair. When the size of the grid bins or the
downsampling factor is too large for the operator, we fail in the
direction of applying a single global curve, which merely preserves
input detail rather than enhancing it (e.g., the wall in style transfer),
or suppressing it (e.g., Lo smoothing and alpha matting). The guided
filter and joint bilateral upsampling exhibit this same phenomenon

more strongly (figure 8). Transform recipes’ pyramid-based model
has more representative power, but requires running the original
operator at full resolution. If one could learn a transform recipe
without running the original operator at full resolution, it may be
possible to reap the benefits of both techniques.

6 Conclusion

We have described a simple method for accelerating a large class
of image operators. For many operators, nearby pixels that have
a similar color in the input also have a similar color in the output,
meaning that the image-dependent function mapping input colors
to output colors is smooth in bilateral space. We can learn this
smooth function by running the operator at reduced resolution, and
fitting a bilateral grid of affine matrices that map the inputs to the
outputs. This collection of affine matrices can be thought of as
tangent planes to the true function—for each input position and
intensity, the constant term yields the output color and the linear
term controls how a small variation in input position or color yields
a small variation in the output color. Thus, they let us accurately
predict the results of the operator given a higher-resolution input.

Our model can be restricted to the constant term alone in order to
produce joint bilateral upsampling, or restricted to a single intensity
bin to produce the fast guided filter. Thus, we relate these two
methods and demonstrate they both can be interpreted as resampling
by fitting and applying local models.
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