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Fig. 1. Our novel neural network architecture can reproduce sophisticated image enhancements with inference running in real time at full HD resolution on
mobile devices. It can not only be used to dramatically accelerate reference implementations, but can also learn subjective effects from human retouching.

Performance is a critical challenge in mobile image processing. Given a ref-
erence imaging pipeline, or even human-adjusted pairs of images, we seek
to reproduce the enhancements and enable real-time evaluation. For this,
we introduce a new neural network architecture inspired by bilateral grid
processing and local affine color transforms. Using pairs of input/output im-
ages, we train a convolutional neural network to predict the coefficients of a
locally-affine model in bilateral space. Our architecture learns to make local,
global, and content-dependent decisions to approximate the desired image
transformation. At runtime, the neural network consumes a low-resolution
version of the input image, produces a set of affine transformations in bilat-
eral space, upsamples those transformations in an edge-preserving fashion
using a new slicing node, and then applies those upsampled transformations
to the full-resolution image. Our algorithm processes high-resolution im-
ages on a smartphone in milliseconds, provides a real-time viewfinder at
1080p resolution, and matches the quality of state-of-the-art approximation
techniques on a large class of image operators. Unlike previous work, our
model is trained off-line from data and therefore does not require access to
the original operator at runtime. This allows our model to learn complex,
scene-dependent transformations for which no reference implementation is
available, such as the photographic edits of a human retoucher.
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tography; Image processing;
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1 INTRODUCTION
The high resolution of images and videos produced by contemporary
cameras and mobile devices puts significant performance pressure
on image processing algorithms, requiring sophisticated code op-
timization by skilled programmers. While systems contributions
have sought to facilitate the implementation of high-performance
executables, e.g. [Hegarty et al. 2014; Mullapudi et al. 2016; Ragan-
Kelley et al. 2012], they require programmer expertise, their runtime
cost still growswith the complexity of the pipeline, and they are only
applicable when source code is available for the filters. Addition-
ally, because image enhancement is subjective, it is often desirable
to learn an enhancement model directly from human adjustments,
e.g. [Bychkovsky et al. 2011]. To this end, we present a machine
learning approach where the effect of a reference filter, pipeline, or
even subjective manual photo adjustment is learned by a deep net-
work that can be evaluated quickly and with cost independent of the
reference’s complexity. We focus on photographic enhancements
that do not spatially warp the image or add new edges, e.g. [Aubry
et al. 2014; Hasinoff et al. 2016].
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We share the motivation of prior work that seeks to accelerate
“black box” image processing operations, either by using a remote
server, e.g. [Gharbi et al. 2015] or by processing a low-resolution
image and then using the low-resolution output to approximate a
high-resolution equivalent [Chen et al. 2016]. For some operations,
these approaches can achieve large speedups but they suffer from
significant limitations: the underlying image processing operation
must be somewhat scale-invariant (Figure 9), and must be fast to
evaluate at low resolution. In addition, these techniques rely on
the availability of an explicit reference implementation, and there-
fore cannot be used to learn an implicitly-defined operation from a
database of human annotated input/output pairs.
Many deep learning architectures have been used for image-to-

image transformations, e.g. [Isola et al. 2016; Liu et al. 2016; Long
et al. 2015; Xu et al. 2015; Yan et al. 2016]. However, most prior
work incur a heavy computational cost that scales linearly with
the size of the input image, usually because of the large number of
stacked convolutions and non-linearities that must be evaluated at
full resolution. This general form allows for flexible models to be
learned, but this expressivity comes at a price: such architectures are
orders of magnitude too slow for real-time viewfinder applications,
requiring seconds to process a 1megapixel image on the best desktop
GPUs—more than 1000× slower than our proposed model (2ms on
GPU). Our speedup is enabled by specifically targeting photographic
transformations, which are often well-approximated with linear
operations in bilateral space [Chen et al. 2016], and accordingly
learning our model in this space.
We present a new network architecture that is capable of learn-

ing a rich variety of photographic image enhancements and can
be rapidly evaluated on high-resolution inputs. We achieve this
through three key strategies: 1) We perform most predictions in a
low-resolution bilateral grid [Chen et al. 2007], where each pixel’s
x ,y coordinates are augmented with a third dimension which is a
function of the pixel’s color. To do this, we introduce a new node for
deep learning that performs a data-dependent lookup. This enables
the so-called slicing operation, which reconstructs an output image
at full image resolution from the 3D bilateral grid by considering
each pixel’s input color in addition to its x ,y location. 2) We follow
previous work which has observed that it is often simpler to pre-
dict the transformation from input to output rather than predicting
the output directly e.g., [Chen et al. 2016; Gharbi et al. 2015; Shih
et al. 2013]. This is why our architecture is designed to learn, as
an intermediate representation, a local affine color transformation
that will be applied to the input through a new multiplicative node.
3) While most of our learning and inference is performed at low
resolution, the loss function used during training is evaluated at
full resolution, which causes the low-resolution transformations we
learn to be directly optimized for their impact on high-resolution
images.

Taken together, these three strategies (slicing, affine color trans-
form, and full-resolution loss) allow us to perform the bulk of our
processing at a low resolution (thereby saving substantial compute
cost) yet reproduce the high-frequency behavior of the reference
operator.
We demonstrate the expressiveness of our model on a bench-

mark of 7 applications including: approximating published image

filters [Aubry et al. 2014; Hasinoff et al. 2016], reverse-engineering
black-box Photoshop actions, and learning the retouching style of
photographers [Bychkovsky et al. 2011] from a set of manually cor-
rected photographs. Our technique produces output whose quality
is comparable to or better than previous work, while being more
widely applicable by not requiring some reference implementation
of the image operation being approximated, being end-to-end learn-
able from input/output image pairs, and running in real-time on
mobile hardware. The forward pass of our network takes 14ms to
process a full screen resolution 1920× 1080 image on a Google Pixel
phone, thereby enabling real-time viewfinder effects at 50Hz.

2 RELATED WORK
Though image enhancement algorithms have been the focus of a
great deal of research, most sophisticated algorithms are too expen-
sive to be evaluated quickly on mobile devices, which is where the
vast majority of digital images are captured and processed. Because
of this, previous work has identified specific critical operations and
developed novel algorithms to accelerate them. For instance, Farb-
man et al. [2011] introduced convolution pyramids to accelerate
linear translation-invariant filters. Similarly, many approaches have
been proposed to accelerate bilateral filtering, due to the ubiquity of
edge-aware image processing [Adams et al. 2010; Chen et al. 2007;
Paris and Durand 2006; Tomasi and Manduchi 1998].

One way to accelerate an operator is to simply apply it at low res-
olution and upsample the result. A naïve upsampling will generally
lead to an unacceptably blurry output, but this issue can often be
ameliorated by using a more sophisticated upsampling technique
that respects the edges of the original image. Joint bilateral upsam-
pling [Kopf et al. 2007] does this by using a bilateral filter on a
high-resolution guidance map to produce a piecewise-smooth edge-
aware upsampling. Bilateral space optimization [Barron et al. 2015;
Barron and Poole 2016] builds upon this idea by solving a compact
optimization problem inside a bilateral grid, producing upsampled
results which are maximally smooth.
Gharbi et al. [2015] focus on learning the transformation from

input to output instead of the output itself. They approximate a
large class of complex, spatially-varying operators with a collection
of simple local models—a transform recipe—that is tailored to a given
input/output pair. The task of computing the operator and fitting
the recipe is offloaded to the cloud while the mobile device need
only apply the recipe, thereby saving time and energy. Similarly,
Chen et al. [2016] approximate an image operator with a grid of local
affine models in bilateral space, the parameters of which are fit to an
input/output pair in a manner resembling the guided filter [He et al.
2013]. By performing this model-fitting on a low-resolution image
pair, this technique enables real-time on-device computation. We
build upon this bilateral space representation, but rather than fitting
amodel to approximate a single instance of an operator from a pair of
images, we construct a rich CNN-like model that is trained to apply
the operator to any unseen input. This bypasses the need for the
original operator at runtime and opens up the opportunity to learn
non-algorithmic transformations (i.e., hand-adjusted input/output
image pairs). This also allows us to optimize the affine coefficients
to model the operator running at full resolution, which is important
for filters that vary with scale (Figure 9).
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Neural networks for image processing. Recently, deep convolu-
tional networks have achieved significant progress on low-level
vision and image processing tasks such as depth estimation [Eigen
et al. 2014], optical flow [Ilg et al. 2016], super-resolution [Dong
et al. 2014], demosaicking and denoising [Gharbi et al. 2016; Zhang
et al. 2016], image matting [Shen et al. 2016], colorization [Iizuka
et al. 2016], and general image-to-image “translation” tasks [Isola
et al. 2016]. Recent work has even explored learning deep networks
within a bilateral grid [Jampani et al. 2016] though this work does
not address our task of learning image transformations in that space,
and instead focuses on classification and semantic segmentation.
Some architectures have been trained to approximate a general
class of operators. Xu et al. [2015] develop a three-layer network
in the gradient domain to accelerate edge-aware smoothing filters.
Liu et al. [2016] propose an architecture to learn recursive filters
for denoising, image-smoothing, inpainting and color interpolation.
They jointly train a collection of recursive networks and a convo-
lutional network to predict image-dependent propagation weights.
While some of this work can process low-resolution images on a
desktop GPU at interactive rates, they remain too slow for our appli-
cation: real-time processing of high-resolution images on a mobile
device.

Automatic photo editing. Our model can be trained to automati-
cally correct photographs from input/output image pairs provided
by a human retoucher. This is the task introduced by Bychkovsky et al.
[2011], who estimate global brightness/contrast adjustments that
characterize the personal style of 5 trained photographers. They
train a regression model with handcrafted features that capture both
low-level information and semantic content (e.g., faces) on a dataset
of 5000 raw images. Hwang et al. [2012] approach the problem with
a coarse-to-fine search for the best-matching scenes that takes more
than a minute for a 500×333 image. Kaufman et al. [2012] learn local
color and contrast manipulations from hard-coded features (faces,
blue skies, clouds, underexposed areas), running over 2 minutes for
a VGA image. More recently, Yan et al. [2016] use a compact pixel-
wise neural network and handcrafted features. Their network takes
1.5 s to process a 1 megapixel image (on top of the time needed for
object detection, dense image segmentation, and scene recognition
used in their features). Our model can learn similar global tonal ad-
justments and generalizes to more complex effects, including color
corrections and local edits, in addition to being much faster.

3 OUR ARCHITECTURE
We propose a new convolutional network architecture that can be
trained to perform fast image enhancement (Figure 2). Our model
is designed to be expressive, preserve edges, and require limited
computation at full resolution. It is fully end-to-end trainable and
runs in real-time at 1080p on a modern smartphone.

We performmost of the inference on a low-resolution copy Ĩ of the
input I in the low-res stream (Fig. 2, top), which ultimately predicts
local affine transforms in a representation similar to the bilateral
grid [Chen et al. 2016]. In our experience, image enhancements often
depend not only on local image features but also on global image
characteristics such as histograms, average intensity, or even scene
category. Therefore, our low-res stream is further split into a local

path and a global path. Our architecture then fuses these two paths
to yield the final coefficients representing the affine transforms.

The high-res stream (Fig. 2, bottom) works at full resolution and
performs minimal computation but has the critical role of captur-
ing high-frequency effects and preserving edges when needed. For
this purpose, we introduce a slicing node inspired by bilateral grid
processing [Chen et al. 2007; Paris and Durand 2006]. This node per-
forms data-dependent lookups in the low-resolution grid of affine
coefficients based on a learned guidance map. Given high-resolution
affine coefficients obtained by slicing into the grid with the full-
resolution guidance map, we apply local color transforms to each
pixel to produce the final output O. At training time, we minimize
our loss function at full resolution. This means that the low-res
stream, which only processes heavily downsampled data, still learns
intermediate features and affine coefficients that can reproduce
high-frequency effects.
As a first approximation, one can think of our work as allevi-

ating the need for the reference filter at runtime in Chen et al.’s
Bilateral Guided Upsampling [2016]. In a sense, we seek to predict
the affine color transform coefficients in the bilateral grid given
a low-resolution version of the image. However, there are several
key elements that go beyond this. First, the downsampling into the
bilateral grid is learned. Second, the guidance image is also learned
and not restricted to luminance. Finally, we apply the loss function
not on the affine coefficients, but on the final image at full resolu-
tion, which allows us to capture high-frequency effects and handle
operators that are not scale-invariant (Figure 9). We illustrate the
role of each component of our architecture with an ablation study
in Figures 3, 4, 5 and 7.

3.1 Low-resolution prediction of bilateral coefficients
The input Ĩ to the low-res stream has a fixed resolution 256 ×
256. It is first processed by a stack of strided convolutional layers
(Si )i=1, ...,nS to extract low-level features and reduce the spatial reso-
lution. Then, in a design inspired by Iizuka et al. [2016], the last low-
level features are processed by two asymmetric paths: the first path
(Li )i=1, ...,nL is fully convolutional [Long et al. 2015] and specializes
in learning local features that propagate image data while retaining
spatial information. The second path (Gi )i=1, ...,nG uses both con-
volutional and fully-connected layers to learn a fixed-size vector
of global features (e.g. high-level scene category, indoor/outdoor,
etc.) with a receptive field covering the entire low-resolution im-
age Ĩ. The outputs of the two paths, GnG and LnL , are then fused
into a common set of features F . A pointwise linear layer outputs a
final array A from the fused streams. We interpret this array as a
bilateral grid of affine coefficients (Section 3.2). Since we produce a
3D bilateral grid from a 2D image in a content-dependent fashion,
we can view the low-res stream as implementing a form of learned
splatting.

3.1.1 Low-level features. We first process the low-resolution
image S0 := Ĩ with a stack of standard strided convolutional layers
with stride s = 2 (Figure 2):

Sic [x ,y] = σ*.
,
bic +

∑
x ′,y′,c ′

wi
cc ′
[
x ′,y′

]
Si−1
c ′
[
sx + x ′, sy + y′

]+/
-

(1)
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FULL-RES PROCESSING

LOW-RES COEFFICIENT PREDICTION

§3.4.1 guidance map

slicing
layer

apply
coefficients

full-res input

pixel-wise
network

§3.1.2 local features

§3.3 sliced coefficients

   §3.2 bilateral grid 
of coefficients

§3.1.4 fusion

§3.4.2 full-res output

low-res input §3.1.1 low-level features §3.1.3 global features

Fig. 2. Our new network architecture seeks to perform as much computation as possible at a low resolution, while still capturing high-frequency effects at full
image resolution. It consists of two distinct streams operating at different resolutions. The low-resolution stream (top) processes a downsampled version
Ĩ of the input I through several convolutional layers so as to estimate a bilateral grid of affine coefficients A. This low-resolution stream is further split in
two paths to learn both local features Li and global features G i , which are fused (F ) before making the final prediction. The global and local paths share
a common set of low-level features S i . In turn, the high-resolution stream (bottom) performs a minimal yet critical amount of work: it learns a grayscale
guidance map д used by our new slicing node to upsample the grid of affine coefficients back to full-resolution Ā. These per-pixel local affine transformations
are then applied to the full-resolution input, which yields the final output O.

Where i = 1, . . . ,nS indexes the layers, c and c ′ index the layers’
channels, wi is an array of weights for the convolutions, bi is a
vector of biases, and the summation is over −1 ≤ x ′,y′ ≤ 1 (i.e.,
the convolution kernels have 3 × 3 spatial extent). We use the ReLU
activation function σ (·) = max(·, 0) and use zero-padding as the
boundary condition in all convolutions.
These low-level layers progressively reduce the spatial dimen-

sions by a total factor of 2nS . ThusnS has two effects: 1) it drives the
spatial downsampling between the low-resolution input Ĩ and the
final grid of affine coefficients—the higher nS , the coarser the final
grid, and 2) nS controls the complexity of the prediction: deeper
layers have an exponentially larger spatial support and more com-
plex non-linearities (by composition); thus, they can extract more
complex patterns in the input. Figure 3 shows a comparison with a
network in which the low-level layers have been removed, and re-
placed by a hard-coded splatting operation [Chen et al. 2007]. With-
out these layers, the network loses much of its expressive power.
Our architecture, uses nS = 4 low-level layers. Table 1 summarizes
the dimensions of each layer.

3.1.2 Local features path. The last low-level features layer SnS
is then processed by a stack of nL = 2 convolutional layers Li in
the local path (Figure 2, yellow). These layers take the same form as
Equation (1), identifying L0 := SnS , but this time with stride s = 1.
We keep both the spatial resolution and number of features constant
in the local path. Because the resolution is held constant, the spatial
support of the filters only grows linearly with nL . A deep enough

stack of convolution layers, roughly measured by nS +nL , is critical
to capturing useful semantic features [Krizhevsky et al. 2012]. If a
higher spatial resolution is desired for the final grid of coefficients,
one can reduce nS and increase nL to compensate accordingly, so as
not to reduce the expressiveness of the network. Without the local
path, the predicted coefficients would lose any notion of spatial
location.

(a) input (b) reference (c) ours (d) fixed splat

Fig. 3. Our low-level convolutional layers are fully learned and can extract
semantic information. Replacing these layers with the standard bilateral
grid splatting operation causes the network to lose much of its expressive
power. In this example of our Face brightening operator (a-b), the network
with hardcoded splatting (d) cannot detect the face properly because the
grid’s resolution is too low. Instead, it slightly brightens all skintones, as
is visible on the hands. Our progressive downsampling with strided con-
volutions learns the semantic features required to solve this task properly
(c), brightening only the face while darkening the background like in the
reference.
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(a) ours, with global features (b) without global features

Fig. 4. The global features path in our architecture allows our model to
reason about the full image, e.g., for subjective tasks such as reproducing
subjective human adjustments that may be informed by intensity distri-
bution or scene type (a). Without the global path, the model can make
local decisions that are spatially inconsistent (b). Here, the network fails to
recognize that the blue area in the top-left corner also belongs to the sky
and should therefore receive the same correction as the area just below it.

3.1.3 Global features path. Like the local path, the global fea-
tures path branches out from SnS , that is G0 := SnS . It comprises
two strided convolutional layers (Equation (1), with s = 2) followed
by three fully-connected layers, for a total of nG = 5 global layers
(Figure 2, blue). One consequence of using fully-connected layers is
that the resolution of the input Ĩ needs to be fixed, since it dictates
the dimensions of G2 and the number of network parameters that
act on it. As we will see in Section 3.3, thanks to our slicing operator,
we can still process images of any resolution, despite the size of the
low-res stream being fixed.
The global path produces a 64-dimensional vector that summa-

rizes global information about the input and acts as a prior to reg-
ularize the local decisions made by the local path. Without global
features to encode this high-level description of the input, the net-
work can make erroneous local decisions that lead to artifacts as
exemplified by the large-scale variations in the sky in Figure 4.

3.1.4 Fusion and linear prediction. We fuse the contributions of
the local and global paths with a pointwise affine mixing followed
by a ReLU activation:

Fc [x ,y] = σ�
�
bc +

∑
c ′

w ′cc ′G
nG
c ′ +

∑
c ′

wcc ′L
nL
c ′ [x ,y]�

�
(2)

This yields a 16 × 16 × 64 array of features from which, we make
our final 1 × 1 linear prediction to produce a 16 × 16 map with 96
channels:

Ac [x ,y] = bc +
∑
c ′

Fc ′[x ,y]wcc ′ (3)

Table 1. Details of the network architecture. c, fc, f and l refer to convolu-
tional, fully-connected, fusion and pointwise linear layers respectively.

S1 S2 S3 S4 L1 L2 G1 G2 G3 G4 G5 F A

type c c c c c c c c fc fc fc f l
size 128 64 32 16 16 16 8 4 – – – 16 16
channels 8 16 32 64 64 64 64 64 256 128 64 64 96

3.2 Image features as a bilateral grid
So far we have described our model as a neural network. We now
shift our perspective to that of a bilateral grid. To facilitate this, in a
slight abuse of notation, we will occasionally treat the final feature
map A as a multi-channel bilateral grid whose third dimension has
been unrolled:

Adc+z [x ,y]↔ Ac [x ,y, z] (4)

where d = 8 is the depth of the grid. Under this interpretation, A
can be viewed as a 16 × 16 × 8 bilateral grid, where each grid cell
contains 12 numbers, one for each coefficient of a 3 × 4 affine color
transformation matrix. This reshaping lets us interpret the strided
convolutions in Equation (1) as acting in the bilateral domain, where
they correspond to a convolution in the (x ,y) dimensions and ex-
press full connectivity in the z and c dimensions. This operation is
therefore more expressive than simply applying 3D convolutions
in the grid, which would only induce local connectivity on z [Jam-
pani et al. 2016]. It is also more expressive than standard bilateral
grid splatting which discretizes I into several intensity bins then
box filters the result [Chen et al. 2007]; an operation that is easily
expressed with a 2-layer network. In a sense, by maintaining a 2D
convolution formulation throughout and only interpreting the last
layer as a bilateral grid, we let the network decide when the 2D to
3D transition is optimal.

3.3 Upsampling with a trainable slicing layer
So far we have described how we learn to predict a bilateral grid
of coefficients A from a low-resolution image Ĩ using the low-res
stream of our network. We now need to transfer this information
back to the high-resolution space of the original input I to produce
our final output image. To this end, we introduce a layer based on
the bilateral grid slicing operation [Chen et al. 2007]. This layer
takes as input a single-channel guidance map д and a feature map
A (viewed as a bilateral grid) with a much lower spatial resolution
than д. It performs a data-dependent lookup in the final feature map
A. The layer is sub-differentiable with respect to both A and д. This
allows us to backpropagate through it at train time.

The result of the slicing operator is a new feature map Āwith the
same spatial resolution as д, obtained by tri-linearly interpolating
the coefficients of A at locations defined by д:

Āc [x ,y] =
∑

i, j,k

τ (sxx − i )τ
(
syy − j

)
τ (d · д[x ,y] − k )Ac [i, j,k]

(5)
Using a linear interpolation kernel τ (·) = max(1 − | · |, 0), and
where sx and sy are the width and height ratios of the grid’s di-
mensions w.r.t. the full-resolution image’s dimensions. Essentially,
each pixel is assigned the vector of coefficients whose depth in the
grid is given by the gray scale value д[x ,y], i.e., loosely speaking
Ac [i, j,д[x ,y]]. Flownet2 [Ilg et al. 2016] and Spatial Transformer
Networks [Jaderberg et al. 2015] have used similar interpolation op-
erators for in-network spatial warping. We fix the spatial resolution
of the grid to 16 × 16, and its depth to d = 8.

The slicing operation is parameter-free and can be implemented
efficiently in an OpenGL shader [Chen et al. 2007]. It acts as a
bottleneck layer that constrains the representation of the neural
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(a) input (b) fully-convolutional output, no slicing

(c) our output (d) ground truth

Fig. 5. Our new slicing node is central to the expressiveness of our architec-
ture and its handling of high-resolution effects. Replacing this node with a
standard bank of learnable deconvolution filters reduces expressiveness (b)
because no full-resolution data is used to predict the output pixels. Thanks
to its learned full-resolution guidance map, our slicing layer approximates
the desired enhancement with much higher fidelity (c), thereby preserving
the edges of the input (a) and capturing the high-frequency transformations
visible in the ground-truth output (d).

network to a low-dimensional space. This both simplifies the learn-
ing problem and speeds up the processing time [Barron et al. 2015;
Barron and Poole 2016]. Crucially, performing inference within a
bilateral grid forces our model’s predictions to follow the edges in
д, thereby regularizing our predictions towards edge-aware solu-
tions (unlike standard networks based on transpose-convolutions
or “deconvolution layers”, Figure 5). This design decision tends to
benefit photographic manipulation tasks such as ours and enables
our significant speedup over more general models due to the low
dimensionality of A (Figure 10).

This data-dependent lookup is critical to the expressive power of
our model. As we will see in Section 3.4.2, it allows us to predict a
complex operation on the full-resolution image using a collection
of much simpler local models.

3.4 Assembling the full-resolution output
So far, we have described how to obtain and upsample the bilateral
grid of affine coefficients. The rest of the processing is done at full
resolution. It should therefore be simple and easily-parallelizable to
minimize computational cost. From the full-resolution input I, we
extract a set of nϕ full-resolution features ϕ that fulfill two roles:
1) they are combined to predict the guidance map д used in the

slicing node, and 2) they are used as regression variables for the
local affine models.
The most cost-efficient approach is to use the channels of the

input image as features, that is ϕ = I (with nϕ = 3) and the local
affine models are color transformations. All our results use this fast
formulation.

3.4.1 Guidance map auxiliary network. We define д as a simple
pointwise nonlinear transformation of the full-resolution features:

д[x ,y] = b +
2∑

c=0
ρc
(
M�c · ϕc [x ,y] + b ′c

)
(6)

WhereM�c are the rows of a 3×3 color transformation matrix, b and
b ′c are scalar biases, and ρc are piecewise linear transfer functions
parametrized as a sum of 16 scaled ReLU functions with thresholds
tc,i and slopes ac,i :

ρc (x ) =
15∑
i=0

ac,i max
(
x − tc,i , 0

)
(7)

The parameters M , a, t , b, b ′ are learned jointly with the other
network parameters.M is initialized to the identity and a, t , b, and
b’ are initialized such each ρc is an identity mapping over [0, 1],
which is necessary to avoid learning a degenerate д. Figure 7 shows
the impact of using this learned guide and Figure 6 shows an example
of the color transformation matrix and tone curve that are learned
for the corresponding task.

3.4.2 Assembling the final output. Although image operators
may be complex when viewed at the scale of an entire image, recent
work has observed that even complicated image processing pipelines
can often be accurately modeled as a collection of simple local
transformations [Chen et al. 2016; Gharbi et al. 2015; He and Sun
2015]. We therefore model each channel of our final output Oc as an
affine combination of the full-resolution features, with coefficients
defined by the channels of the sliced feature map Ā:

Oc [x ,y] = Ānϕ+(nϕ+1)c +

nϕ−1∑
c ′=0

Āc ′+(nϕ+1)c [x ,y]ϕc ′[x ,y] (8)

Fig. 6. The color transform matrix (left) and per-channel tone curves (right)
used to produce the guidance map д, as learned by one instance of our
model.
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(a) linear input image (b) network without learned guide

(c) ours, with learned guide (d) ground truth

Fig. 7. Our slicing node uses a learned guidance map. Using luminance as
guide causes artifacts with the HDR+ pipeline reproduction, in particular
with posterization artifacts in the highlights on the forehead and cheeks (b).
In contrast, our learned guide (c) correctly reproduces the ground truth (d).

Interpolated affine transformations similar to this have been used
successfully for matting [Levin et al. 2008], intrinsic image decom-
position [Bousseau et al. 2009] and time of day transfer [Shih et al.
2013]. For such models, the size of the patch in which the affine
model is fit drives the trade-off between efficiency and quality. At
the extreme, it is always possible to achieve a perfect reconstruction
of any operator by fitting an independent model at every pixel (i.e.,
the patch size is 1 × 1). For small patches (e.g., 3 × 3), an affine
model can faithfully reproduce many image operators. As the patch
grows larger, the affine relationship no longer holds for all but trivial
operators, though others have shown that this limitation can be
mitigated using piecewise linear functions [Yuan and Sun 2011] or
non-linear and edge-aware components [Gharbi et al. 2015]. See
Figure 8 for a visualization of the 3D bilateral grid of affine coeffi-
cients A corresponding to the input/output pair in Figure 2. One of
the 12 channels of the 2D coefficients after slicing can also be seen
in Figure 2.

3.5 Training procedure
We train our network on a dataset D = {(Ii ,Oi )}i of full-resolution
input/output pairs for a given operator. We optimize the weights
and biases by minimizing the L2 loss on this training set:

L = 1
|D|
∑
i
‖Ii − Oi ‖2 (9)

We additionally regularize the weights with an L2 weight decay
of 10−8. The weights for the convolutional and fully-connected
layers are initialized according to [He et al. 2015] and the biases are
initialized to 0. We use batch normalization [Ioffe and Szegedy 2015]
between each pair of intermediate feature maps, andwe optimize the
network parameters with the ADAM solver [Kingma and Ba 2015].
We train with a batch size of 4 to 16 (depending on the resolution)

Fig. 8. Coefficient maps for the affine color transform. The vertical axis
corresponds to the learned guidance channel, while the horizontal axis
unrolls the 3x4 sets of coefficients. Each thumbnail, one example of which
is highlighted, shows a 16x16 low-resolution map.

and a learning rate of 10−4. The remaining parameters in ADAM
are kept to the values recommended by the authors. Our model is
implemented in Tensorflow [Abadi et al. 2015] and Halide [Ragan-
Kelley et al. 2012]. For all experiments, models are trained on an
NVIDIA Titan X (Maxwell) for 30 epochs, which typically takes 2–3
days.

4 RESULTS
We evaluate our model’s ability to reproduce both algorithmic image
operators (Section 4.1) and human-annotated retouches (Section 4.2).
Our model is faster than both standard neural networks and state-
of-the-art filter approximation techniques and runs in real-time on
mobile device (Section 4.3).
A selection of our results on different tasks can be seen in Fig-

ure 14. Our output is generally accurate and, even when it differs
from the ground-truth, it remains plausible. Despite the heavy spa-
tial and bilateral downsampling inherent to our approach, image
artifacts are rare and unobjectionable. This is because of the edge-
aware nature of the bilateral grid and our model’s capacity to learn
smooth output transformations. Our outputs are usually slightly
softer (e.g. on the HDR+ example of Figure 14) because the highest-
frequency transformations like sharpening and the correction of
chroma aberrations can introduce new edges not present in the
input, which our model does not handle

4.1 Reproducing image operators
We evaluate the accuracy of our model on several tasks composed
of programmatically-defined image operators:
. HDR+ [Hasinoff et al. 2016] – a complex hand-engineered pho-
tographic pipeline that includes color correction, auto-exposure,
dehazing, and tone-mapping.

. the Local Laplacian filter [Paris et al. 2011] – an edge-preserving,
multi-scale (yet non-scale-invariant) operator used for detail en-
hancement (we use two different strengths for the effect),
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. the Style Transfer task of [Aubry et al. 2014] (which happens to
be based on the Local Laplacian),

. a Face brightening task using a dataset of labeled faces [Jain and
Learned-Miller 2010],

. several different black-box Adobe Photoshop (PS) filters and user-
created “actions”1.

PSNRs for these tasks using our model and baseline approaches can
be found in Table 2.
We use two variants of the style transfer task. In the first vari-

ant (Style Transfer), we learn to transform any new input towards
a unique fixed style. In the second, more challenging variant (n-
Styles Transfer) we adapt our network to take two input images
(concatenated along their channel axis) and predict the results of
transferring the style of one image to the other (again using the
algorithm of Aubry et al. [2014]). In this variant the network does
not learn to predict a single consistent output; but rather, it learns to
extract the desired transformation from the target image and apply
that transformation to the input image.

4.1.1 Datasets. Besides HDR+ and the face brightening dataset,
all the effects were applied to the unprocessed set of the MIT “FiveK”
dataset [Bychkovsky et al. 2011]. We reserve 500 images for vali-
dation and testing, and train on the remaining 4500. We augment
the data with random crops, flips and rotations. We generated the
dataset for n-Styles Transfer by mapping each image in the MIT
“FiveK” dataset to 100 distinct images (the style targets) .

4.1.2 Baseline. The previous work closest in spirit to our goals
are Bilateral Guided Upsampling (BGU) [Chen et al. 2016] and Trans-
form Recipes (TR) [Gharbi et al. 2015] to which we compare our
outputs. However, whereas our technique learns a photographic
operator offline from a dataset of images, BGU and TR use no prior
training and instead fit specially-tailored models to an input/output

1http://designbump.com/photoshop-actions-for-instagram-effects/

Table 2. We compare accuracy to Bilateral Guided Upsampling (BGU) and
Transform Recipes (TR). Note that BGU and TR are “oracle” techniques,
as they run the code used to evaluate each image operator at a reduced
or full resolution, and so can be thought of as providing an upper-bound
on performance. Despite its disadvantage, our model sometimes performs
better than these oracle baselines due its expressive power and ability to
model non-scale-invariant operators.

Task (PSNR, dB) Ours BGU TR
HDR+ 28.8 26.9 29.0
Local Laplacian 33.5 32.2 38.6
Local Laplacian (strong) 30.3 20.6 31.8
Face brightening 33.7 30.9 33.9
Style Transfer 23.9 21.9 31.7
n-Styles Transfer 27.6 21.9 33.7
PS eboye 45.0 33.5 41.5
PS early bird 25.9 22.2 32.8
PS instagram 40.3 37.1 40.7
PS infrared 38.4 34.5 38.7
PS false colors 38.1 34.3 38.6
PS lomo-fi 26.2 24.1 34.4

(a) input

(c) BGU 17.7 dB (d) ours 32.1 dB

(b) reference output

Fig. 9. Our method (d) can learn to replicate the correct effect (b) for opera-
tions that are not scale invariant, such as the Local Laplacian filter shown
here (a–b). Methods like Bilateral Guided Upsampling that only apply the
operation at low-resolution (insets (a–b)) produce a different-looking output
(c). The difference is most noticeable in the areas pointed by the arrows.

pair in an online fashion. BGU and TR therefore require direct ac-
cess to the image operator, as they require the ability to run that
image operator on images (either downsampled on-device or full-
resolution on a server, respectively). This makes our comparisons
against these baselines somewhat biased against our technique, as
these baselines make more limiting assumptions about what is avail-
able, and also cannot learn to approximate a general instance of an
image operator from data. Regardless, we report metrics for these
techniques as a kind of “oracle” baseline.
Transform Recipes assumes that a mobile device would send a

highly compressed (and therefore degraded) image to a server for
processing, and would recieve an inexpensive “recipe” for approx-
imating an image transformation from that server. Because TR’s
client-server setup is not relevant to the scope of this paper, we run
the model (using the authors’ recommended settings) on uncom-
pressed, full-resolution images, thereby improving output quality
and making our TR baseline as competitive as possible. In the in-
tended use case of the method, the image quality typically decreases
by 3–5 dB.

BGU assumes that the image operator be run on a low-resolution
version of the input before fitting the model to the low-res in-
put/output pair. We could not run the HDR+ filter at low resolution,
so we used full-resolution input/output pairs and created the low-
resolution inputs to BGU by downsampling. We do however follow
the correct procedure for the Local Laplacian and Style Transfer tasks
for which we have an implementation and directly apply the filter
at low resolution. For these non scale-invariant tasks, the advantage
of our technique becomes clearer (Figure 9).

4.2 Learning from human annotations
We also evaluate accuracy with regards to human annotations using
the MIT-Adobe “FiveK” dataset [Bychkovsky et al. 2011], and our
performance compared to previous work is presented in Table 3.
This task measures our model’s ability to learn a highly subjective
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Table 3. Mean L2 error in La*b* space for retouches from the 5 photogra-
phers in the MIT5k dataset (A,B,C,D,E); lower is better. Our algorithm is
capable of learning a photographer’s retouching style better than previous
work, yet runs orders of magnitudes faster. The comparisons in the first
two groups are evaluated on the dataset from photographer C favored by
previous techniques; see main text for details. In the third group we report
our results on the remaining 4 photographers for completeness. Metrics
taken from previous work [Hwang et al. 2012; Yan et al. 2016] are denoted
by †.

photographer method La*b* L-only

C
random250

ours 7.8 5.5
Yan [2016] 9.9† 5.7†

Bychkovsky [2011] – 5.8†

Hwang [2012] 15.01† –

C
highvar50

ours 7.1 5.2
Yan [2016] 9.9† 8.4†
Bychkovsky [2011] – –
Hwang [2012] 12.03† –

A ours 11.7 9.8
B ours 7.4 5.0
D ours 10.0 7.7
E ours 8.8 6.2

image operator which requires a significant amount of learning and
semantic reasoning. We report mean L2 error in La*b* space (lower
is better) for retouches by the 5 photographers (A,B,C,D,E) in the
MIT “FiveK” dataset, though previous work only presents results
on photographer C [Hwang et al. 2012; Yan et al. 2016]. We use
the “Random 250” and “High Variance 50” dataset splits presented
in [Hwang et al. 2012], which have 250 randomly-chosen and 50
user-weighted images in the test set, respectively.
This is a much more difficult task, and inconsistencies in the

retouches of photographers has been pointed out previously [Yan
et al. 2016]. For example we found that retoucher B in this dataset
was more self-consistent, and was easier for our network to learn.
Nonetheless, our model, trained separately on each artist’s correc-
tions, consistently predicts reasonable adjustments and outperforms
previous work.

4.3 Performance
We implemented our technique on a Google Pixel phone running
Android 7.1.1. Our implementation processes viewfinder-resolution
1920×1080 images in realtime, at 40–50Hz.We extract 8-bit preview
frames in YUV420 format using the Camera2 API. These images
are downsampled to 256 × 256, converted to floating point RGB,
then fed into our network. After the network produces its output (a
bilateral grid of affine coefficients), we transfer them to the GPU as
a set of three 3D RGBA textures, where they are sliced and applied
to the full-resolution input to render the final processed preview.
Overall throughput is under 20ms, with 14ms spent on inference
(CPU), overlapped with 1ms to upload coefficients and 18ms to
render on the GPU. As a point of comparison, running an optimized
implementation [Ragan-Kelley et al. 2012] of the Local Laplacian

U-net, depth 9

U-net, depth 6

reference filter (CPU)
U-net, depth 3

dilated, depth 6
dilated, depth 3

16
32 64

U-net, depth 11
ours 

end-to-end running time (ms, log scale)

Fig. 10. We compare the speed and quality of our algorithm against two
modern network architectures: U-Net (adapted from [Isola et al. 2016]) and
dilated convolutions [Yu and Koltun 2015]. The runtimes were averaged over
20 iterations, processing a 4 megapixel image on a desktop CPU. The PSNR
numbers refer to the Local Laplacian task. Given an insufficient depth, U-Net
and dilated convolutions fail to capture the large scale effects of the Local
Laplacian filter, leading to low PSNRs. Competitive architectures run over
100 times slower than ours, and use orders of magnitude more memory. Our
model’s performance is displayed for a range of parameters. The version
we used to produce all the results is highlighted in red. See Figure 11 for
details on the speed/quality trade-off of our model.

net forward pass (ms)

, twice as many features

ours

8x8

16x16

32x32

Fig. 11. We show PSNRs for the Local Laplacian task and the computation
time required to predict the bilateral coefficients with several settings of our
model’s parameters. Each curve represent a grid depth d . For each curve the
grid’s spatial resolution varies in {8, 16, 32}. The reference model we used to
produced all the results is highlighted with a square marker. Unsurprisingly,
models with larger grid depth perform better (green). Doubling the number
of intermediate features also provides a 0.5 dB improvement (red curve).
Runtimes were measured on an Intel Core i7-5930K.

filter [Paris et al. 2011] on the same device takes over 200ms. Run-
ning the same filter at the reduced 256×256 resolution and applying
Bilateral Guided Upsampling [Chen et al. 2016] with the same grid
dimensions takes 17ms (compared to our 14ms) but loses some of
the filter’s intended effect (Figure 9). Our processing time scales
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linearly with input size, taking 61ms to process a 12-megapixel im-
age. While it usually has higher fidelity, Transform Recipes [Gharbi
et al. 2015] requires 2.95 seconds per image, nearly two orders of
magnitude below real-time viewfinder performance. Mosty notably,
neither Transform Recipes nor Bilateral Guided Upsampling can ap-
ply effects learned from human retouches, or “black box” operators
such as Photoshop filters or HDR+.
Other recent neural-network based architectures that could be

used for such learning are also far from real-time. In Figure 10, we
compare our technique against a U-Net architecture [Ronneberger
et al. 2015] adapted from Isola et al. [2016], and a linear network
based on dilated convolutions [Yu and Koltun 2015]. We explore
several settings for the depth (number of layers, 3 to 11) and the
width (number of filters, 16 to 64) in these architectures, covering
a variety of speed and quality levels. For U-Net, “depth” refers to
the number of downsampling steps and “width” refers to the chan-
nels in the first convolutional layers (these are doubled at each
downsampling step, see Isola et al. [Isola et al. 2016] for details). In
the dilated convolution network, “depth” is the number of dilated
convolution layers, and “width”, the number of channels in each
layer. Our hybrid CPU/OpenGL technique is over 2 orders of magni-
tude faster than both architectures on a desktop CPU. On GPU (not
shown), the performance gap is identical for the forward pass of the
network, but data transfer becomes the bottleneck for our method.
End-to-end, our runtime is still over an order of magnitude faster.
Moreover, both U-Net and dilated convolution require significantly
more memory, which makes them ill-suited for mobile processing.
For this benchmark we used an Intel Core i7-5930K at 3.5GHz with
4 cores and a Titan X (Maxwell) GPU.

We explored the speed/quality trade-offs of our architecture for
the Local Laplacian task varying several parameters: changing the
depth of the grid d from 4 to 16, the grid’s spatial dimensions from
8 × 8 to 32 × 32 and doubling the number of channels (compared
to the numbers reported in Table 1). The summary can be found in
Figure 11.

4.4 Discussion and limitations
All our results use the simplest full-resolution features ϕ = I; i.e.,
both the guide д and the affine regression targets are the color
channels of the input image (Section 3.4). If one relaxes the real-
time rendering constraint, one can extend our model by extracting
features from the high-resolution image. In Figure 13, we show an
example where ϕ is a 3-level Gaussian pyramid. The bilateral grid
then contains 3 × 12 = 36 affine parameters (12 for each scale).
Accordingly we triple the number of intermediate features in the
network compared to the numbers in Table 1. This roughly slows
down the network by a factor 3-4, but provides a 2 dB boost in
quality on the Local Laplacian (strong) task.

We also explored using our architecture to learn tasks beyond im-
age enhancement, like matting, colorization, dehazing, and monocu-
lar depth prediction. These experiments had limited success, as the
strong modeling assumptions required for fast photographic correc-
tion make our model poorly suited to different tasks whose output
cannot be easily expressed as local pointwise transformations of the
input image (Figure 12).
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Fig. 12. Our algorithm fails when the image operator strongly violates
our modeling assumptions. (a) Haze reduces local contrast, which limits
the usefulness of our guidance map. It also destroys image details that
cannot be recovered with our affine model (e.g., on the whiteboard). (b)
Matting has successfully been modeled by locally affine models on 3 × 3
neighborhoods [Levin et al. 2008]. However, this affine relationship breaks
down at larger scales (like a grid cell in our model) where the matte no
longer follows tonal or color variations and is mostly binary. This limits the
usefulness of our bilateral grid. (c) For colorization, the learned guidance
map is at best a nonlinear remapping of the grayscale input. Our model
can thus only learn a local color per discrete intensity level, at a spatial
resolution dictated by the grid’s resolution. Our output is plagued with
coarse variations of colors that are muted due to our L2 loss (see the road
line, and the tree/sky boundary).

5 CONCLUSION
We have introduced a new neural network architecture that can
perform image enhancement in real-time on full-resolution images
while still capturing high-frequency effects. Our model is trained
using pairs of input/output images, allowing it to learn from a ref-
erence implementation of some algorithm or from human adjust-
ments. By performing most of its computation within a bilateral
grid and by predicting local affine color transforms, our model is
able to strike the right balance between expressivity and speed.
To build this model we have introduced two new layers: a data-
dependent lookup that enables slicing into the bilateral grid, and
a multiplicative operation for affine transformation. By training
in an end-to-end fashion and optimizing our loss function at full
resolution (despite most of our network being at a heavily reduced
resolution), our model is capable of learning full-resolution and
non-scale-invariant effects. The accuracy of our model has been
demonstrated on a variety of different image operators, pipelines,
and subjective human-annotated datasets.
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input reference

ours (real-time)
PSNR = 29.5 dB

multiscale extension 
PSNR = 31.8 dB

input

multiscale extension ours (real-time)

Fig. 13. At the expense of extra computation at full-resolution, our model
can be extended with richer affine regression features. Here, by using a
3-level Gaussian pyramid as features ϕ , we can better capture the high-
frequency details in the the Local Laplacian (strong) task.
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Local Laplacian 37.8 dB

Human retouch 33 dB

Face brightening 38.9 dB

HDR+ 32.7 dB

Style Transfer 25 dB

Photoshop 28.2 dB

input reference reference
(cropped)our output differenceour output

(cropped)
reference

Fig. 14. Our method can learn accurate and fast approximations of a wide variety of image operators, by training on input/output pairs processed by
that operator. These operators can be complicated “black box” image processing pipelines where only a binary is available, such as HDR+ or Photoshop
filters/actions. Some operators, such as face-brightening, requires semantic understanding. Our model is even capable of learning from highly subjective
human-annotated input/output pairs, using the MIT-Adobe FiveK dataset. The difference is rescaled to use the full [0, 1] range.
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