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Abstract

We present variable-aperture photography, a new method

for analyzing sets of images captured with different aper-

ture settings, with all other camera parameters fixed. We

show that by casting the problem in an image restora-

tion framework, we can simultaneously account for defo-

cus, high dynamic range exposure (HDR), and noise, all of

which are confounded according to aperture. Our formula-

tion is based on a layered decomposition of the scene that

models occlusion effects in detail. Recovering such a scene

representation allows us to adjust the camera parameters in

post-capture, to achieve changes in focus setting or depth-

of-field—with all results available in HDR. Our method is

designed to work with very few input images: we demon-

strate results from real sequences obtained using the three-

image “aperture bracketing” mode found on consumer dig-

ital SLR cameras.

1. Introduction

Typical cameras have three major controls—aperture,

shutter speed, and focus. Together, aperture and shutter

speed determine the total amount of light incident on the

sensor (i.e., exposure), whereas aperture and focus deter-

mine the extent of the scene that is in focus (and the degree

of out-of-focus blur). Although these controls offer flexibil-

ity to the photographer, once an image has been captured,

these settings cannot be altered.

Recent computational photography methods aim to free

the photographer from this choice by collecting several

controlled images [16, 10, 2], or using specialized optics

[17, 13]. For example, high dynamic range (HDR) pho-

tography involves fusing images taken with varying shutter

speed, to recover detail over a wider range of exposures than

can be achieved in a single photo [16].

In this work we show that flexibility can be greatly in-

creased through variable-aperture photography, i.e., by col-

lecting several images of the scene with all settings ex-

cept aperture fixed (Figure 1). In particular, our method

is designed to work with very few input images, including

the three-image “aperture bracketing” mode found on con-
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all-in-focus extrapolated, f1 refocused far, f2

variable-aperture input photos

post-capture resynthesis, in HDR

Figure 1. Variable-aperture photography. Top: Input photographs

for the DUMPSTER dataset, obtained by varying aperture setting

only. Without the strong gamma correction we apply for display

(γ =3), these images would appear extremely dark or bright, since

they span a wide exposure range. Note that aperture affects both

exposure and defocus. Bottom: Examples of post-capture resyn-

thesis, shown in high dynamic range (HDR) with tone-mapping.

Left-to-right: the all-in-focus image, an extrapolated aperture (f1),

and refocusing on the background (f2). See [1] for videos.

sumer digital SLR cameras. In contrast to how easily one

can obtain variable-aperture input images, controlling fo-

cus in a calibrated way requires special equipment on cur-



rent cameras. Variable-aperture photography takes advan-

tage of the fact that by controlling aperture we simultane-

ously modify the exposure and defocus of the scene. To our

knowledge, defocus has not previously been considered in

the context of widely-ranging exposures.

We show that by inverting the image formation in the

input photos, we can decouple all three controls—aperture,

focus, and exposure—thereby allowing complete freedom

in post-capture, i.e., we can resynthesize HDR images for

any user-specified focus position or aperture setting. While

this is the major strength of our technique, it also presents

a significant technical challenge. To address this challenge,

we pose the problem in an image restoration framework,

connecting the radiometric effects of the lens, the depth and

radiance of the scene, and the defocus induced by aperture.

The key to the success of our approach is formulating an

image formation model that accurately accounts for the in-

put images, and allows the resulting image restoration prob-

lem to be inverted in a tractable way, with gradients that can

be computed analytically. By applying the image formation

model in the forward direction we can resynthesize images

with arbitrary camera settings, and even extrapolate beyond

the settings of the input.

In our formulation, the scene is represented in layered

form, but we take care to model occlusion effects at defo-

cused layer boundaries [5] in a physically meaningful way.

Though several depth-from-defocus methods have previ-

ously addressed such occlusion, these methods have been

limited by computational inefficiency [11], a restrictive oc-

clusion model [7], or the assumption that the scene is com-

posed of two surfaces [7, 11, 15]. By comparison, our ap-

proach can handle an arbitrary number of layers, and incor-

porates an approximation that is effective and efficient to

compute. Like McGuire, et al. [15], we formulate our im-

age formation model in terms of image compositing [20],

however our analysis is not limited to a two-layer scene or

input photos with special focus settings.

Our work is also closely related to depth-from-defocus

methods based on image restoration, that recover an all-

in-focus representation of the scene [19, 14, 11, 21]. Al-

though the output of these methods theoretically permits

post-capture refocusing and aperture control, most of these

methods assume an additive, transparent image formation

model [19, 14, 21] which causes serious artifacts at depth

discontinuities, due to the lack of occlusion modeling. Sim-

ilarly, defocus-based techniques specifically designed to al-

low refocusing rely on inverse filtering with local windows

[4, 9], and do not model occlusion either. Importantly, none

of these methods are designed to handle the large exposure

differences found in variable-aperture photography.

Our work has four main contributions. First, we intro-

duce variable-aperture photography as a way to decouple

exposure and defocus from a sequence of images. Sec-

ond, we propose a layered image formation model that is

efficient to evaluate, and enables accurate resynthesis by

accounting for occlusion at defocused boundaries. Third,

we show that this formulation is specifically designed for

an objective function that can be practicably optimized

within a standard restoration framework. Fourth, as our

experimental results demonstrate, variable-aperture photog-

raphy allows post-capture manipulation of all three cam-

era controls—aperture, shutter speed, and focus—from the

same number of images used in basic HDR photography.

2. Variable-aperture photography

Suppose we have a set of photographs of a scene taken

from the same viewpoint with different apertures, holding

all other camera settings fixed. Under this scenario, im-

age formation can be expressed in terms of four compo-

nents: a scene-independent lens attenuation factor R, the

mean scene radiance L, the sensor response function g(·),
and image noise η,

I(x, y, a) = g
(

sensor irradiance
︷ ︸︸ ︷

R(x, y, a, f)
︸ ︷︷ ︸

lens term

· L(x, y, a, f)
︸ ︷︷ ︸

scene radiance term

)

+ η
︸︷︷︸

noise

, (1)

where I(x, y, a) is image intensity at pixel (x, y) when the

aperture is a. In this expression, the lens term R models

the radiometric effects of the lens and depends on pixel po-

sition, aperture, and the focus setting, f , of the lens. The

radiance term L corresponds to the mean scene radiance in-

tegrated over the aperture, i.e., the total radiance subtended

by aperture a divided by the solid angle. We use mean radi-

ance because this allows us to decouple the effects of expo-

sure, which depends on aperture but is scene-independent,

and of defocus, which also depends on aperture.
Given the set of captured images, our goal is to perform

two operations:

• High dynamic range photography. Convert each of the

input photos to HDR, i.e., recover L(x, y, a, f) for the input

camera settings, (a, f).

• Post-capture aperture and focus control. Compute

L(x, y, a′, f ′) for any aperture and focus setting, (a′, f ′).

While HDR photography is straightforward by controlling

exposure time rather than aperture [16], in our input pho-

tos, defocus and exposure are deeply interrelated according

to the aperture setting. Hence, existing HDR and defocus

analysis methods do not apply, and an entirely new inverse

problem must be formulated and solved.

To do this, we establish a computationally tractable

model for the terms in Eq. (1) that well approximates the

image formation in consumer SLR digital cameras. Impor-

tantly, we show that this model leads to a restoration-based

optimization problem that can be solved efficiently.

3. Image formation model

Sensor model. Following the high dynamic range litera-

ture [16], we express the sensor response g(·) in Eq. (1) as a
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Figure 2. Defocused image formation with the thin lens model.

(a) Fronto-parallel scene. (b) For a two-layered scene, the shaded

fraction of the cone integrates radiance from layer 2 only, while the

unshaded fraction integrates the unoccluded part of layer 1. Our

occlusion model of Section 4 approximates layer 1’s contribution

to the radiance at (x, y) as (LP +LQ) |Q|
|P |+|Q|

, which is a good

approximation when 1

|P |
LP ≈ 1

|Q|
LQ.

smooth, monotonic function mapping the sensor irradiance

R ·L to image intensity in the range [0, 1]. The effective

dynamic range is limited by over-saturation, quantization,

and the sensor noise η, which we model as additive.

Exposure model. Since we hold exposure time constant,

a key factor in determining the magnitude of sensor irradi-

ance is the size of the aperture. In particular, to represent the

total solid angle subtended by the aperture, we use an expo-

sure factor ea, which converts between the mean radiance

L and the total radiance integrated over the aperture, eaL.

Because this factor is scene-independent, we incorporate it

in the lens term,

R(x, y, a, f) = ea R̂(x, y, a, f) , (2)

therefore the factor R̂(x, y, a, f) models residual radio-

metric distortions, such as vignetting, that vary spatially

and depend on aperture and focus setting. To resolve the

multiplicative ambiguity, we assume that R̂ is normalized

so the center pixel is assigned a factor of one.

Defocus model. While more general models are possible

[3], we assume that the defocus induced by the aperture

obeys the standard thin lens model [18, 5]. This model has

the attractive feature that for a fronto-parallel scene, relative

changes in defocus due to aperture setting are independent

of depth.

In particular, for a fronto-parallel scene with radiance L,

the defocus from a given aperture can be expressed by the

convolution L = L ∗ Bσ [18]. The 2D point-spread func-

tion B is parameterized by the effective blur diameter, σ,

which depends on scene depth, focus setting, and aperture

size (Figure 2a). From simple geometry,

σ =
|d − u|

u
Da , (3)

where d is the depth of the scene, u is the depth of the in-

focus plane, and Da is the diameter of the aperture. This

implies that regardless of the scene depth, the blur diameter

is proportional to the aperture diameter.

The thin lens geometry also implies that whatever its

form, the point-spread function B will scale radially with

blur diameter, i.e., Bσ(x, y) = 1
σ2 B( x

σ
, y

σ
). In practice, we

assume that Bσ is a 2D symmetric Gaussian, where σ rep-

resents the standard deviation.

4. Layered scene radiance

To make the reconstruction problem tractable, we rely on

a simplified scene model that consists of multiple, possibly

overlapping, fronto-parallel layers, corresponding to a gross

object-level segmentation of the 3D scene.

In this model, the scene is composed of K layers,

numbered from back to front. Each layer is specified by

an HDR image, Lk, that describes its outgoing radiance

at each point, and an alpha matte, Ak, that describes its

spatial extent and transparency.

Approximate layered occlusion model. Although the re-

lationship between defocus and aperture setting is particu-

larly simple for a single-layer scene, the multiple layer case

is significantly more challenging due to occlusion.1 A fully

accurate simulation of the thin lens model under occlusion

involves backprojecting a cone into the scene, and integrat-

ing the unoccluded radiance (Figure 2b) [5]. Unfortunately,

this process is computationally intensive, since the point-

spread function can vary with arbitrary complexity accord-

ing to the geometry of the occlusion boundaries.

To ensure tractability, we therefore formulate an approx-

imate model for layered image formation (Figure 3) that

accounts for occlusion, is designed to be efficiently com-

putable and effective in practice, and leads to simple ana-

lytic gradients used for optimization.

The model entails defocusing each scene layer indepen-

dently, and combining the results using image compositing:

L =

K∑

k=1

[(AkLk) ∗ Bσk
] · Mk . (4)

where Mk is a second alpha matte for layer k, representing

the cumulative occlusion from defocused layers in front,

Mk =
K∏

k′=k+1

(
1 − Ak′ ∗ Bσk′

)
. (5)

1Since we model the layers as thin, occlusion due to perpendicular step

edges [7] can be ignored.
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Figure 4. Reduced representation for the layered scene in Figure 3, based on the all-in-focus radiance, L. The all-in-focus radiance specifies

the unoccluded regions of each layer, AkL, where {Ak} is a hard segmentation of the unoccluded radiance into layers. We assume that L

is sufficient to describe the occluded regions of the scene as well, with inpainting (lighter, dotted) used to extend the unoccluded regions

behind occluders as required. Given these extended layers, AkL + A
∗
kL

∗
k, we apply the same image formation model as in Figure 3.

Eqs. (4) and (5) can be viewed as an application of the mat-

ting equation [20], and generalizes the method of McGuire,

et al. [15] to arbitrary focus settings and numbers of layers.

Intuitively, rather than integrating partial cones of rays

that are restricted by the geometry of the occlusion bound-

aries (Figure 2b), we integrate the entire cone for each layer,

and weigh each layer’s contribution by the fraction of rays

that reach it. These weights are given by the alpha mattes,

and model the thin lens geometry exactly.

In general, our approximation is accurate when the re-

gion of a layer that is subtended by the entire aperture has

the same mean radiance as the unoccluded region (Fig-

ure 2b). This assumption is less accurate when only a small

fraction of the layer is unoccluded, but this case is mitigated

by the small contribution of the layer to the overall integral.

Worst-case behavior occurs when an occlusion boundary is

accidentally aligned with a brightness or texture discontinu-

ity on the occluded layer, however this is rare in practice.

All-in-focus scene representation. In order to simplify

our formulation even further, we represent the entire scene

as a single all-in-focus HDR radiance map. In this repre-

sentation, each layer is modeled as a binary alpha matte that

“selects” the pixels of each layer (Figure 4).

While the all-in-focus radiance directly specifies the

unoccluded radiance AkL for each layer, accurate mod-

eling of defocus near occlusions requires an estimate of

radiance at occluded points on the layers too (Figure 2b).

We estimate extended versions of the unoccluded layers,

AkL + A
∗

kL
∗

k, in Section 7. The same image formation

model of Eq. (4) applies in this case well.

Complete scene model. In summary, we represent the

scene by the triple (L,A, σ), consisting of the all-in-focus

HDR scene radiance, L, the segmentation of the scene into

unoccluded layers, A = {Ak}, and the per-layer blur di-

ameters, σ, specified in the widest aperture.2

2We use Eq. (3) to relate the blur diameters over aperture setting. In

practice, however, we estimate the ratio of aperture diameters, Da/DA,

using the calibrated exposure factors, i.e.,
√

ea/eA. This approach is

more accurate than directly using the manufacturer-supplied f-numbers.



∆(x, y, a) =
1

R̂(x, y, a, f)
g−1

(
I(x, y, a)

)

︸ ︷︷ ︸

linearized and lens−corrected
image intensity

− min

{

ea ·

︸︷︷︸
exposure
factor

[
K∑

k=1

[
(AkL + A

∗

kL
∗

k) ∗ Bσa,k

]
· Mk

]

︸ ︷︷ ︸

layered occlusion model
from Eqs. (4) and (5)

, 1

︸︷︷︸

clipping
term

}

, (7)

5. Restoration-based framework for HDR

layer decomposition

In variable-aperture photography we do not have any

prior information about the layer decomposition (i.e., depth)

or scene radiance. We therefore formulate an inverse prob-

lem whose goal is to compute (L,A, σ) from a set of input

photos. The resulting optimization can be viewed as a gen-

eralized image restoration problem that unifies HDR imag-

ing and depth-from-defocus by jointly explaining the input

in terms of layered HDR radiance, exposure, and defocus.

In particular we formulate our goal as estimating

(L,A, σ) that best reproduces the input images, by mini-

mizing the objective function

O(L,A, σ) =
1

2

A∑

a=1

‖∆(x, y, a)‖2 + λ ‖L‖β . (6)

In this optimization, ∆(x, y, a) is the residual pixel-wise

error between each input image I(x, y, a) and the corre-

sponding synthesized image; ‖L‖β is a regularization term

that favors piecewise smooth scene radiance; and λ > 0
controls the balance between squared image error and the

regularization term.

Eq. (7) shows the complete expression for the residual

∆(x, y, a), parsed into simpler components. The resid-

ual is defined in terms of input images that have been lin-

earized and lens-corrected. This transformation simplifies

the optimization of Eq. (6), and converts the image forma-

tion model of Eq. (1) to scaling by an exposure factor ea,

followed by clipping to model over-saturation. Note that

the transformation has the side-effect of amplifying the ad-

ditive noise in Eq. (1),

η̂ =
1

R̂

∣
∣
∣
∣

dg−1(I)

dI

∣
∣
∣
∣
η , (8)

where η̂ → ∞ for over-saturated pixels. Since this

amplification can be quite significant, it must be taken into

account during optimization. The innermost component of

Eq. (7) is the layered image formation model of Section 4.

Weighted TV regularization. To regularize Eq. (6), we

use a form of the total variation (TV) norm, ‖L‖TV =
∫
‖∇L‖. This norm is useful for restoring sharp discon-

tinuities, while suppressing noise and other high frequency

detail [22]. The variant we propose,

‖L‖β =

∫ √
(
w(L) ‖∇L‖

)2
+ β , (9)

includes a perturbation term β > 0 that remains constant3

and ensures differentiability as ∇L → 0 [22]. More impor-

tantly, our norm incorporates per-pixel weights w(L) meant

to equalize the TV penalty over the high dynamic range of

scene radiance (Figure 7).

We define the weight w(L) for each pixel according to

its inverse exposure level, 1/ea∗ , where a∗ corresponds to

the aperture for which the pixel is “best exposed”. In par-

ticular, we synthesize the transformed input images using

the current scene estimate, and for each pixel we select the

aperture with highest signal-to-noise ratio, computed with

the noise level η̂ predicted by Eq. (8).

6. Optimization method

To optimize Eq. (6), we use a series of alternating min-

imizations, each of which estimates one of L,A, σ while

holding the rest constant.

• Image restoration. To recover the scene radiance L that

minimizes the objective, we take a direct iterative approach

[22, 21], by carrying out a set of conjugate gradient steps.

Our formulation ensures that all required gradients have

straightforward analytic formulas (Appendix A).

• Blur refinement. We use the same approach, of taking con-

jugate gradient steps, to optimize the blur diameters σ.

• Layer refinement. The layer decomposition A is more

challenging to minimize because it involves a discrete la-

beling. We use a naı̈ve approach that simultaneously modi-

fies the layer assignment of all pixels whose residual error is

more than five times the median, until convergence. Each it-

eration in this stage evaluates whether a change in the pixels’

layer assignment leads to a reduction in the objective.

• Layer ordering. Recall that the indexing for A specifies

the depth ordering of the layers, from back to front. To test

modifications to this ordering, we note that each blur diam-

eter corresponds to two possible depths, either in front or

behind the in-focus plane (Eq. (3)). We use a brute force ap-

proach that tests all 2K−1 distinct layer orderings, and select

the one leading to the lowest objective (Figure 5c).

• Initialization. In order for this procedure to work, we need

to initialize all three of (L,A, σ), as discussed below.

7. Implementation details

Scene radiance initialization. We define an initial esti-

mate for radiance, L, by directly selecting pixels from the

input images, scaled according to their exposure, ea. For

3We used β = 10
−8 in all our experiments.



each pixel, we choose the narrowest aperture for which the

estimated signal-to-noise ratio, computed using Eq. (8), is

above a fixed threshold. In this way, most pixels will come

from the narrowest aperture image, except for the darkest

regions of the scene, whose narrow-aperture pixel values

will be dominated by noise.

Initial layering and blur assignment. To obtain an ini-

tial estimate for the layers and blur diameters, we use a sim-

ple window-based depth-from-defocus method [18, 9]. This

method involves directly testing a set of hypotheses for blur

diameter, specified in the widest aperture, by synthetically

defocusing the image as if it were a fronto-parallel scene.

Because of the large exposure differences between pho-

tos taken several f-stops apart, we evaluate consistency with

a given blur hypothesis by comparing images captured with

successive aperture settings, (a, a + 1). To evaluate each

such pair, we convolve the narrower aperture image with

the incremental blur aligning it with the wider one. Since

our point-spread function is Gaussian, this incremental blur

can be expressed in a particularly simple form, namely an-

other 2D Gaussian with standard deviation (σ2
a+1 − σ2

a)
1

2 .

Each blur hypothesis therefore leads to a per-pixel error

measuring how well the input images are resynthesized. We

minimize this error within a Markov random field (MRF)

framework, which allows us to reward global piecewise

smoothness as well (Figure 5). In particular, we employ

graph cuts with the expansion-move approach [8], where

the smoothness cost is defined as a truncated linear function

of adjacent label differences on the four-connected grid.

Sensor response and lens term calibration. To recover

the sensor response function, g(·), we apply standard HDR

imaging methods [16] to a calibration sequence captured

with varying exposure time.

We recover the radiometric lens term R(x, y, a, f) using

calibration as well, using the pixel-wise method in [12].

Occluded radiance estimation. As illustrated in Fig-

ure 4, we assume that all scene layers, even where occluded,

can be expressed in terms of the all-in-focus radiance L. In

practice, we use inpainting to extend the unoccluded lay-

ers, by up to the largest blur diameter, behind any occlud-

ers. During optimization, we use a low-cost technique that

simply chooses the nearest unoccluded pixel for a particular

layer, but for rendering we use a higher-quality PDE-based

inpainting method [6].

8. Results and discussion

To test our approach on real data, we captured sequences

using a Canon EOS 1Ds Mark II, secured on a tripod, with

an 85mm f1.2L lens set to manual focus. In all our exper-

iments we use the three-image “aperture bracketing” mode

set to ±2 stops, and select shutter speed so that the images
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Figure 5. (a)–(b) Initial layer decomposition and blur assign-

ment for the DUMPSTER dataset, obtained using our depth-from-

defocus method: (a) greedy layer assignment, (b) MRF-based

layer decomposition, with initial front-to-back depth ordering in-

dicated. (c) Revised layering, obtained by iteratively modifying

the layer assignment for high-residual pixels, and re-estimating the

depth ordering.
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Figure 6. Layered image formation results at occlusion bound-

aries. Left: Tone-mapped HDR image of the DUMPSTER dataset,

for an extrapolated aperture (f1). Top inset: Our model handles

occlusions in a visually realistic way. Middle: Without inpaint-

ing, i.e., assuming zero radiance in occluded regions, the result-

ing darkening emphasizes pixels whose layer assignment has been

misestimated, that are not otherwise noticeable. Bottom: An addi-

tive image formation model [19, 21] exhibits similar artifacts, plus

erroneous spill from the occluded background layer.

are captured at f8, f4, and f2 (yielding relative exposure lev-

els of roughly 1, 4, and 16, respectively). Adding more in-

put images (e.g., at half-stop intervals) does improve results,

although less so in dark and defocused regions, which must

be restored with deconvolution. We captured RAW images

for increased dynamic range, and demonstrate our results

for downsampled 500 × 333 pixel images.4

We also tested our approach using a synthetic dataset

(LENA), to enable comparison with ground truth (Figure 7

and 8a). This dataset consists of an HDR version of the

512×512 pixel Lena image, where we simulate HDR by di-

viding the image into three vertical bands and artificially ex-

posing each band. We decompose the image into layers by

assigning different depths to each of three horizontal bands,

and generate the input images by applying the forward im-

4See [1] for additional results and videos.



(a) (b)

Figure 7. Effect of TV weighting. All-in-focus HDR restoration

result for the LENA dataset, tone-mapped and with enhanced con-

trast for the inset, (a) weighting the TV penalty according to ef-

fective exposure, and (b) without weighting. In the absence of TV

weighting, dark scene regions give rise to little TV penalty, and

therefore get relatively under-smoothed.

age formation model. Finally, we add Gaussian noise to the

input with a standard deviation of 1% of the intensity range.

To obtain our results, we follow the iterative method de-

scribed in Section 6, alternating 10 conjugate gradient steps

each of image restoration and blur refinement, until con-

vergence, interspersing the layer refinement and reordering

procedure every 80 such steps. For all experiments we set

the smoothing parameter to λ = 0.002.

Once the image restoration has been computed, i.e., once

(L,A, σ) has been estimated, we can apply the forward

image formation model with arbitrary camera settings, and

resynthesize new images at near-interactive rates (Figures 1,

6–8). Note that since we do not record the focus setting f
at capture time, we only recover layer depths up to scale.

Thus, to modify focus setting, we specify the depth of the

in-focus plane as a fraction of the corresponding depth in

the input. To help visualize the full exposure range of the

HDR images, we apply tone-mapping using a simple global

operator of the form T (x) = x
1+x

.

For ease of comparison, we do not resynthesize the resid-

ual radiometric distortions R̂, such as vignetting, nor do we

simulate geometric distortions, such as the image magnifi-

cation caused by changing focus setting. If desired, these

lens-specific artifacts can be simulated as well.

Note that while camera settings can also be extrapolated,

this functionality is somewhat limited. In particular, while

extrapolated wider apertures can model the increased rela-

tive defocus between layers (Figure 1, bottom), our input

images lack the information needed to decompose an in-

focus layer, wholly within the depth-of-field of the widest

aperture, into any finer gradations of depth.

To evaluate our layered occlusion model in practice, we

compare our resynthesis results at layer boundaries with

those obtained using alternative methods. As shown in Fig-

ure 6, our layered occlusion model produces visually realis-

tic output, and is a significant improvement over the additive

model [19, 21]. Importantly, our layered occlusion model is

accurate enough to resolve the correct layer ordering in all

of our experiments, simply by applying brute force search,

testing which ordering leads to the smallest objective.

Another strength of variable-aperture photography is that

dark and defocused areas of the scene are handled naturally

by our image restoration framework. These areas normally

present a special challenge, since they are dominated by

noise for narrow apertures, but defocused for wide aper-

tures. In general, high-frequencies cannot be recovered

in such regions, however, our variant of TV regularization

helps successfully “deconvolve” blurred intensity edges and

to suppress the effects of noise (Figure 7a, inset).

A current limitation of our method is that our scheme

for re-estimating the layering is not always effective, since

residual error in reproducing the input images is sometimes

not discriminative enough to identify pixels with incorrect

layer labels, amidst other sources of error such as imperfect

calibration. Fortunately, even when the layering is not es-

timated exactly, our layered occlusion model often leads to

visually realistic resynthesized images (Figures 6 and 8b).

For further results and discussion of failure cases, see [1].

9. Concluding remarks

We demonstrated how variable-aperture photography

leads to a unified restoration framework for decoupling

the effects of defocus and exposure, which permits post-

capture control of the camera settings in HDR. For future

work, we are interested in extending our technique to multi-

resolution, and addressing motion between exposures, pos-

sibly by incorporating optical flow into the optimization.
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A. Analytic gradient computation

Because our image formation model is a simple linear

operator, the gradients required to optimize our objective

function take a compact analytic form.

Due to space constraints, the following expressions as-

sume a single aperture only, with no inpainting (see the sup-

plementary materials [1] for the generalization):

∂O

∂L
= −

K∑

k=1

[∆AkMk ⋆ Bσk
] +

∂‖L‖β

∂L
(10)

∂O

∂σk

= −
∑

x,y

[
K∑

k′=1

[

∆Ak′Mk′ ⋆
∂Bσk′

∂σk′

]]

AkL , (11)

where ⋆ denotes 2D correlation, and these gradients are re-

vised to be zero for over-saturated pixels. The gradient for
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Figure 8. (a) Resynthesis results for the LENA dataset are almost visually indistinguishable ground truth, however slight differences, mainly

due to image noise, remain. (b) For the PORTRAIT dataset, the gamma-corrected input images (γ =3) show posterization artifacts because

the scene’s dynamic range is large. Although the final layer assignment has residual errors near boundaries, the restoration results are

sufficient to resynthesize visually realistic new images. We demonstrate refocusing in HDR, simulating the widest input aperture (f2).

the regularization term is

∂‖L‖β

∂L
= −div




w(L)2 ∇L

√
(
w(L) ‖∇L‖

)2
+ β



 . (12)
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