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Abstract—This paper considers the problem of reconstructing visually realistic 3D models of dynamic semitransparent scenes, such as

fire, from a very small set of simultaneous views (even two). We show that this problem is equivalent to a severely underconstrained

computerized tomography problem, for which traditional methods break down. Our approach is based on the observation that every pair

of photographs of a semitransparent scene defines a unique density field, called a Density Sheet, that 1) concentrates all its density on

one connected, semitransparent surface, 2) reproduces the two photos exactly, and 3) is the most spatially compact density field that

does so. From this observation, we reduce reconstruction to the convex combination of sheet-like density fields, each of which is derived

from the Density Sheet of two input views. We have applied this method specifically to the problem of reconstructing 3D models of fire.

Experimental results suggest that this method enables high-quality view synthesis without overfitting artifacts.

Index Terms—Semitransparent scenes, fire, volumetric reconstruction, 3D reconstruction, computerized tomography, view synthesis,

image-based modeling, image-based rendering.

Ç

1 INTRODUCTION

THE computational modeling of physical phenomena such
as fire and smoke has received significant attention in

computer graphics [1], [2], [3], [4], [5], [6], [7], [8] as well as in
other fields of experimental science [9], [10], [11], [12], [13],
[14], [15], [16]. While photographs provide a great deal of
information about such phenomena, very little is known
about how 3D models can be extracted from images.
Extracting suchinformationcouldopenupnewopportunities
for creating better visual models [1], [2], [4], [6]; developing
image-based representations of such phenomena [17]; per-
mitting the manipulation of scene appearance in photographs
that contain such phenomena; and developing new, dynamic
simulation systems that use real-world data as input.

Toward this end, this paper considers the problem of
reconstructing semitransparent scenes from a set of simul-
taneously captured images or videos. We take fire as our
central example, and show that by using optical models
developed in the combustion literature [10], [11], [18], we
can model fire as a semitransparent density field whose
appearance at a projected pixel is a linear function of the
transparencies along the corresponding ray.

We believe that any practical method for modeling
dynamic semitransparent scenes from multiple viewpoints
must satisfy three criteria:

. Small viewpoint coverage. Dynamic phenomena
require simultaneous image capture. While multiview

systems with tens of video cameras do exist [11], [19],
the method should not break down for small data sets.

. Photo-consistency. To preserve visual realism,
reconstructed density fields must reproduce the
input images.

. Good view synthesis. All views should be rendered
with high quality, without “overfitting” the limited
number of input views.

Even though these criteria have received much attention in
the case of opaque objects [19], satisfying them for
semitransparent scenes is not well understood.

At the heart of our approach lies the observation that every
pair of photos of a semitransparent scene uniquely deter-
mines two special density fields, called Density Sheets, each of
which reproduces the photographs exactly and concentrates
all its density along a single connected surface. Using this
observation as a starting point, we show the following:
1) Density Sheets can be decomposed into a family of
solutions involving further sheet-like structures, 2) this
family is a basis of the space of density fields that are photo-
consistent with two or more views, and 3) the space of photo-
consistent density fields is linear and convex. These results
lead to a simple and efficient algorithm, called Density-Sheet
Decomposition, that computes the density field as a convex
combination of sheet-like density fields derived from pairs of
input views.

Unlike existing methods for reconstructing semitranspar-
ent scenes, Density-Sheet Decomposition is specifically
designed to capture models that are both photo-consistent
and have good view synthesis capabilities. Intuitively,
Density Sheets represent the most spatially-compact inter-
pretation of the input views. Moreover, Density Sheets are
unique and lead to a reconstruction method that is well-posed
and easy to implement. This allows us to reconstruct
semitransparent scenes from as few as two input views, while
also being able to incorporate more views if they are available.
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Our approach offers five contributions over the existing
state of the art. First, unlike methods where photo-consis-
tency and spatial smoothness are the only objectives [20],
[21], [22], [23], our approach establishes spatial compactness
as another objective for visual reconstruction. Second, it
leads to a well-posed reconstruction algorithm that can
handle any number of input views. Third, it introduces
Density Sheets as a complete basis for the space of photo-
consistent density fields, enabling their potential use for
reconstructing and rendering any semitransparent scene
where the linear image formation model is valid. Fourth, the
sheet-like structure of the Density-Sheet Decomposition
algorithm enables use of simple warp-based methods [24]
to create photo-realistic views of the reconstructed scene.
Fifth, our results on fire data sets show that the algorithm is
able to render detailed reconstructions of complex flames
without overfitting artifacts.

We begin this paper by discussing the relation of this work
to current approaches for reconstructing semitransparent
scenes in general and fire in particular. In Section 3, we
present a simplified imaging model for fire, which establishes
an equivalence between fire reconstruction and computer-
ized tomography. Because of this equivalence, the rest of our
analysis applies to the general case of semitransparent scenes
(Section 4). In Section 5, we present an analysis of the space of
density fields photo-consistent with two views, and intro-
duce the Density Sheet solution. We then generalize the
analysis to multiple views, and describe several properties
that allow us to reduce the problem to the two-view case
(Section 6). In Section 7, we describe a new family of photo-
consistent density fields built from sheet-like structures and
show that this family can be used to represent arbitrary
density fields. This leads to an algorithm for M-view photo-
consistent reconstruction that models density fields as super-
positions of sheets. In Section 8, we present experimental
results using real images of fire. We conclude with a
discussion of our approach and some proposed directions
for future work.

2 RELATED WORK

The 3D modeling of fire and other semitransparent scenes
has received significant attention in computer graphics.
Both physics-based [1], [2], [3], [5] and procedural [6], [7],
[8] models have been used to produce visually realistic
simulations of torches, gaseous jets of flame, and smoke. For
scenes consisting of strongly scattering particles such as
smoke, high-fidelity 3D capture of real scenes has been
shown using laser illumination and high-speed photogra-
phy [4]. But, the question of how we can capture models of
general semitransparent scenes, particularly from standard
images, remains largely open.

In addressing this question, we touch upon four distinct
lines of work: computerized tomography, volumetric
reconstruction in computer vision, combustion measure-
ment, and 2D image-based modeling for dynamic scenes.

2.1 Reconstructing Semitransparent Scenes

2.1.1 Computerized Tomography

The problem of reconstructing semitransparent scenes has
received the most attention in the context of computerized
tomography. Our interest is in using very few views (two or
more), which is closest to the “sparse-view tomography”

problem. Some sparse-view methods produce a binary
segmentation rather than a full reconstruction [25], [26], [27]
and, in the context of tomography, “sparse” can actually
mean eight or more views [21], [23], [25]. On the other hand,
classic methods such as filtered back-projection and
algebraic techniques (e.g., [20], [28]) require tens or
hundreds of input views for accurate results.

Tomography methods that are specialized to the ill-
posed nature of the sparse-view case use various techniques
to regularize the problem. This includes favoring local
smoothness in a statistical framework [21], [27], assuming
prior shape models [25], [26], [27], and coarsely discretizing
the density levels [21]. Unfortunately, these methods still
break down when the number of views is extremely limited
and fail to generate 3D reconstructions adequate for photo-
realistic view synthesis.

2.1.2 Volumetric Reconstruction in Computer Vision

In the stereo vision literature, several volumetric methods
have attempted to recover transparencies along with voxel
color information [22], [29], [30]. While some of these
methods are more directed at modeling occlusion uncer-
tainty [30] or mixed pixels at object boundaries [22], several
of these methods have addressed the full tomography
problem [22], [29]. For example, the Roxel method [29] is
related to algebraic methods from computerized tomogra-
phy [20] but its imaging model has an unclear physical basis
since it confounds transparency and uncertainty. These
methods do not guarantee photo-consistency nor do they
produce results suitable for view synthesis, particularly
when the number of views is limited.

Along similar lines, algebraic methods from tomography
have also been applied to image-based rendering for trees
with dense foliage, from tens of views [31]. Because a
significant fraction of pixels in this context are opaque, this
approach is closer to view-dependent texture mapping
using the visual hull and is less suitable for complex
semitransparent scenes that consist of multiple layers.

Although methods for reconstructing semitransparent
scenes from a sparse number of views have attempted to
address the ill-posed nature of the problem, none of the
above methods explicitly characterize the fundamental
ambiguities in the space of photo-consistent solutions. For
this reason, they are ill-equipped for handling the extreme
cases (i.e., two views). To our knowledge, the only previous
work addressing tomographic reconstruction with two
views involves binary density fields for segmentation [27].

2.2 Reconstructing Fire

2.2.1 Combustion Measurement

In the combustion literature, methods for the 3D measure-
ment of fire have mainly been directed toward the measure-
ment of specific physical properties (e.g., temperature) and
the qualitative recovery of 3D shape [9], [10], [11], [12], [13],
[14], [15], [16]. Most methods do not restrict themselves to
visible light images from cameras, but rather employ a wide
variety of sensors. Common approaches involve lasers [11],
[16], special optical systems to exaggerate refraction [11], [12],
[13], [14], [15], and thermography devices [9], [10]. None of
these methods provide instantaneous 3D reconstruction at
resolutions high enough for image-based rendering. In fact,
many previous methods capture images with multiple-
second exposures [9], [10], [12], [15] or assume a “stationary”
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fire [11] to reconstruct rough approximations to the density
field. As a result, these methods are not appropriate for view
synthesis and cannot be used to model complex flickering
flames (e.g., Fig. 11), whose structures can change dramati-
cally from instant to instant.

Because the straightforward application of classic tomo-
graphy methods [20], [28] to fire reconstruction would
require an impractical number of synchronized cameras,
results in this vein have been severely limited in both
resolution and accuracy [9], [13], [32]. One exception is a 20-
camera apparatus designed to reconstruct quasi-static or
nonvisible flame [11]. More recently, methods from sparse-
view tomography have been applied to fire reconstruction
as well using eight synchronized cameras [23]. While this
approach yields a plausible density distribution at a scale
coarser than a pixel, the high-frequency detail present in the
original images is not reconstructed. For an extremely
limited number of views (e.g., 2-5), even such sparse-view
tomography methods fail to produce results appropriate for
view synthesis [21], [23], [25], [26], [27].

2.2.2 Image-Based Modeling for Dynamic Scenes

An alternative approach is to avoid almost all reconstruction
and model fire in strictly image-based terms. Image-based
methods such as video textures [17], [33] and linear
dynamical systems [34], [35], have already been applied to
fit simple 2D dynamic models of fire to video sequences.
Although these methods can generate realistic continuations
of flickering flames, and even allow basic attributes such as
speed [35] and direction of flow [36] to be manipulated, they
do not allow us to vary viewpoint nor to model nonstationary
effects such as materials consumed by fire.

3 LINEAR OPTICAL MODEL OF FIRE

Fire is typically defined as an oxygen-fueled chemical
decomposition that releases heat to the environment [18]. In
this work, we are strictly concerned with flames, i.e., the
visible luminous reaction products of fire.1 We rely on a first-
order model of flame appearance, proposed in the combus-
tion measurement literature, called the soot volume model [18].
Under this model, the appearance of flame is generated by a
continuum of luminous carbonaceous soot particles, where in
a given infinitesimal volume, both intensity and absorption
are proportional to soot particle density. Following the
approach of Stam [2], we ignore refraction2 and derive this
model as a specialization of a more general model for
radiative transfer [37].

At a given image point, the image irradiance, Î, can be
expressed as the sum of two terms—a term that integrates
radiance from luminous fire material along the ray through
that pixel and a term that incorporates background radiance
(Fig. 1):

Î ¼
Z L

0

DðtÞ �ðtÞJðtÞdt þ Îbg�ðLÞ; ð1Þ

whereDðtÞ is the fire’s density field along that ray, J models
the total effect of emission and in-scatter less any out-scatter
per unit mass,Ldefines the interval ½0; L� along the ray where
the field is nonzero, Îbg is the radiance of the background, and
� models transparency. The transparency can be thought of as
the degree by which the fire products between the pixel and a
position x along the ray permit the radiance from further
away to reach that pixel,

�ðxÞ ¼ exp ��
Z x

0

DðtÞdt
� �

; ð2Þ

where � is a positive medium-dependent constant known
as the extinction cross-section [18], and is assumed to be
constant throughout the fire.

To simplify this model, we rely on two further assump-
tions used in the combustion literature:

. Negligible scattering. This is a good approximation
for fire not substantially obscured by smoke because
emission from luminous soot particles dominates
radiance [2], [10], [11], [14]. In this case, the function
JðtÞ in (1) becomes a pure self-emission term.

. Constant self-emission. This assumption models
fires whose brightness depends only on the density
of luminous soot particles [18], allowing us to assume
that self-emission is constant per unit mass, i.e., that
JðtÞ is a constant, J0.

Together with (1) and (2), these assumptions lead to an
expression for Î that depends only on the fire’s transparency
along the ray:

Î ¼ J0 1� �ðLÞð Þ þ Îbg�ðLÞ: ð3Þ

In practice, the short image exposure times we use to prevent
pixel saturation leads to an effectively invisible background,
i.e., Îbg ¼ 0. This obviates the need to measure the back-
ground radiance in the absence of fire and also permits
measurement in the presence of dynamic backgrounds.

A key feature of (3) is that it allows us, through a simple
transformation, to establish a linear relation between the
image irradiance and the density field along the correspond-
ing ray. To see this, note that the image irradiance, Î, is
bounded from above by J0, since taking the limit of infinite
fire density causes the transparency to approach zero,
limD!1 �ðLÞ ¼ 0. Therefore, when the camera’s settings do
not allow pixel saturation, so that J0 is mapped to the
maximum intensity, we can linearize (3) using the following
invertible transformation:
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Fig. 1. Optical model of fire. The image irradiance, Î, at a pixel depends
on the integral of luminous fire density along a ray through the center of
projection, c. The density field, DðtÞ, along the ray is parameterized by
the distance, t 2 ½0; L�, from the image plane. The background intensity,
Îbg, also contributes to the intensity, Î.

1. In general, not all fire burns with visible flames. Some gases that burn
cleanly are visually detectable only by their secondary effects, for example,
the refractive distortion of the atmosphere [11]. We do not deal with this
type of fire here.

2. The combustion literature supports this assumption, as the refraction in
visible flame is generally small, with deflections less than 0.1 degree [11], [14].



I ¼ � 1

�
log

Î � J0

Îbg � J0

 !
; ð4Þ

to obtain

I ¼
Z L

0

DðtÞdt: ð5Þ

We further assume a linear camera response so that the image
irradiance Î is proportional to the image intensity. The final
unspecified aspect of our imaging model is the unknown
constant �, which is conflated with density by the transfor-
mation in (4). Since our goal is to model the appearance of fire,
we only need to model the density up to scale, so both of these
proportionality constants can be safely ignored.

4 PROBLEM STATEMENT

Consider a 3D semitransparent density field, D̂ðr; c; zÞ,
viewed under orthographic projection by a set of viewing
directions perpendicular to the vertical z-axis (Fig. 2). Our
goal is to obtain a photo-consistent reconstruction of the
3D density field. We assume the linear imaging model of (5),
where a pixel’s intensity is the integral of the density along its
associated ray.

The reconstruction of the 3D density field can be reduced
to a sequence of 2D problems whose goal is to reconstruct a
single epipolar slice, D̂ðr; c; z0Þ, of the 3D field from
corresponding epipolar lines in the input views. In practice,
the pixels along corresponding epipolar lines are discrete
and can be thought of as 1D column vectors. This leads to
the following general problem:

Definition 1 (Photo-Consistent Density Reconstruction).
Given the N-dimensional column vectors I1; . . . ; IM corre-
sponding to M orthographic views of a 2D density field
represented by a nonnegative N �N matrix D̂, compute a
matrix D such that the following photo-consistency equation is
satisfied for all pixels p (Fig. 3):

ImðpÞ ¼
X

ðr;cÞ2F ðpÞ wðr; c; pÞDðr; cÞ; ð6Þ

where F ðpÞ collects the elements of D that contribute to pixel p
and wðr; c; pÞ is a nonnegative weight that describes the
contribution of element Dðr; cÞ to the intensity of pixel p.

In the following, we assume without loss of generality

that the density field is normalized, i.e.,
P

r;c D̂ðr; cÞ ¼ 1. As

in computerized tomography [20], this reconstruction

problem is a linear system in the N2 unknown density

elements. This system is also subject to the nonnegativity of

the density elements to ensure that the density field is

physically meaningful. For M input images, the system has

MN equations and is clearly underdetermined for the

sparse-view case, when M � N . In general, D 6¼ D̂, there-

fore photo-consistent density reconstruction is “weaker”

than the well-posed problem examined by computerized

tomography methods where OðN2Þ views are available.
While any density field D satisfying the linear system can

reproduce the input images, not all of them are equally good

in generating novel views that are “similar” to the input

views. We explore this issue further in the next section.

5 THE DENSITY SHEET

The photo-consistent reconstruction problem has many

solutions when only two views of a density field are available

(Fig. 4). In fact, given images I1 and I2 corresponding to row

and column sums of the density field, respectively, it is trivial

to show that the matrix

D ¼ I1I
T
2 ð7Þ

is a solution, i.e., satisfies (6) for all pixels. We call this

solution the multiplication solution. Note that any two images

can be reduced to this orthogonal-view case by a known

and invertible 2D warp [24] of the epipolar plane.
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Fig. 2. Viewing geometry. (a) Two orthographic images corresponding to

a 90 degree rotation about the vertical z-axis, along with an epipolar

plane. (b) Two simultaneous images of a flame, with white horizontal

lines indicating the corresponding epipolar lines at height z0.

Fig. 3. Finding a photo-consistent density D entails satisfying the
discrete line integrals represented by (6) for all pixels. For a given view,
the density element Dðr; cÞ contributes to pixel IðpÞ according to the
weight wðr; c; pÞ. We define this weight, represented by the lightly
shaded region, as the fractional area of Dðr; cÞ overlapping the cone
corresponding to IðpÞ.

Fig. 4. Ambiguities in two-view fire reconstruction. Dark gray squares
represent twice the density of light gray ones. All three density fields are
photo-consistent with the two orthogonal views, I1, I2, but their images
differ along the third. We call the rightmost density field the “multi-
plication solution”. Note that view I003 has double the number of nonzero
pixels compared to I3 and I03.



While the multiplication solution is photo-consistent, it

does not generalize to more than two views and it leads to
significant artifacts during view synthesis. For example,

Fig. 4c shows that double images are created in intermediate
views, resulting in a blurred appearance. Intuitively, the

multiplication solution represents the most spread-out,
spatially incoherent solution to the two-view tomographic

reconstruction problem.3

The key idea of our approach is to identify an alternative
pair of photo-consistent solutions, called Density Sheets,
which represent the conceptual opposite of the multiplica-
tion solution: rather than spread the density as much as
possible, Density Sheets concentrate it along a monotonic
curve, resulting in density fields that have maximal spatial
coherence.

Theorem 1 (Density Sheet Theorem). Every pair of

nonnegative vectors, I1 and I2, with equal sum define two

unique nonnegative matrices, D, D0, which have the following

properties:

. For each matrix, the row and column sums are equal to
I1 and I2, respectively.

. D is nonzero only along a discrete monotonic curve
connecting Dð1; 1Þ to DðN;NÞ.

. D0 is nonzero only along a discrete monotonic curve
connecting D0ð1; NÞ to D0ðN; 1Þ.

We prove Theorem 1 constructively, by giving an algo-

rithm that constructs Density Sheets from pairs of input views
and then proving that it is correct.4 To gain some intuition,

imagine “pushing” the intensities in image I1 rightward
along the rows of the density field, concentrating them on a

monotonic curve, until the field becomes photo-consistent
with image I2 (Fig. 5a). This “pushing” and “spreading”

procedure will always be possible because both images sum

to one. In general, there are two such curves of opposite
diagonal orientation, corresponding to the graphs of a

monotonically decreasing (Fig. 5a) and monotonically in-
creasing (Fig. 5b) function.

More concretely, we use the following iterative algorithm

to construct Density Sheet D of Theorem 1 (Fig. 6); the

second Density Sheet D0 can be constructed analogously.

The algorithm has an OðNÞ time complexity.

Algorithm 1. Density Sheet Construction Algorithm

1) Set D ¼ 0.

2) (Current element). Set ðr; cÞ ¼ ð1; 1Þ and set

Dðr; cÞ ¼ minf I1ð1Þ; I2ð1Þ g.
3) (Monotonic expansion). Expand the curve in one of

two directions:

(Rightward) If
P

c Dðr; cÞ < I1ðrÞ or r ¼ N ,

- set Dðr; cþ 1Þ ¼
minfI2ðcþ 1Þ; I1ðrÞ �

P
c Dðr; cÞg.

- set c ¼ cþ 1.

(Downward) Otherwise,

- set Dðrþ 1; cÞ ¼
minf I1ðrþ 1Þ; I2ðcÞ �

P
r Dðr; cÞg.

- set r ¼ rþ 1.

4) Repeat Step 3) until ðr; cÞ ¼ ðN;NÞ.
The Density Sheet Construction Algorithm is similar in

spirit to stereo matching algorithms that use the cumulative
magnitude of the intensity gradient [38]. Those algorithms
match pixels via a monotonic correspondence curve, with
invariance to global changes in contrast. Unlike the case of
stereo, where the correspondence curve is unique and models
both occlusion and corresponding pixels in images of an
opaque surface, there are two such curves in the semitran-
sparent case, both of which are consistent with our more
general imaging model.

6 SPACE OF PHOTO-CONSISTENT DENSITY FIELDS

While two-view Density Sheets may be adequate for
modeling simple scenes, they cannot model complex density
fields with large appearance variations across viewpoint. For
example, a Density Sheet cannot generate the “parallax”
which characterizes the appearance of density distributed
over multiple layers. Particularly for more complex flames,
the structure of a Density Sheet may actually be perceived as a
simple semitransparent surface (see Fig. 11, third row).

To overcome these limitations, we generalize our
analysis to multiple views and complex density fields. To
achieve this, we use the following three properties of the
space of photo-consistent density fields. These properties
give us a way to combine multiple two-view solutions
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Fig. 5. Creating Density Sheets. (a) Moving from top to bottom in image
I1, the density of each pixel in I1 is “pushed” in the direction of the arrows
to ensure the field’s photo-consistency with the second image. (b) A
second sheet is defined by switching the roles of the input images.
(c) The corresponding multiplication solution.

Fig. 6. Visualizing a step in the Density Sheet Construction Algorithm.
Pixel intensities in the light gray regions of I1, I2 are fully explained by a
field that concentrates its nonzero density along a “partial” Density Sheet
(dark gray elements) and has zero density elsewhere (light gray region
of D). Depending on the amount of unexplained intensity at the
projections of element ðr; cÞ, the partial Density Sheet is expanded in
one of the two directions indicated by the arrows. A sequence of six such
expansions was used to create the Density Sheet in Fig. 5b.

3. It is possible to show that the multiplication solution is the maximum
entropy solution: since I1 and I2 are normalized and nonnegative, they can
be viewed as marginals of a joint distribution, pðI1; I2Þ. Their joint entropy is
maximized when I1 and I2 are independent, namely, when pðI1; I2Þ ¼
pðI1ÞpðI2Þ, corresponding directly to the case D ¼ I1I

T
2 .

4. See Appendix A for the full proof of the algorithm’s correctness.



without working directly in the prohibitively high-dimen-
sional space of N �N density fields:

Property 1 (Nesting Property). The space of density fields that
are photo-consistent withM input images is a subset of the space
of density fields photo-consistent with M � 1 of those images.

Proof. Follows directly from the definition of photo-
consistency (Definition 1). tu
The Nesting Property suggests that every density field

photo-consistent with M views must lie in the intersection
of all 2-view solution spaces, for all pairs of input views.

Property 2 (Convexity Property). Every convex combination of

photo-consistent density fields is photo-consistent.

Proof. By definition, the discrete line integral for a
particular pixel in an input image, given by (6), has the
same value for all photo-consistent density fields. Hence,
by the linearity of discrete integration, every convex
combination of these integrals has the same value. Thus,
convex combinations of density fields are themselves
photo-consistent (and nonnegative). tu
A key consequence of the Convexity Property is that the

space of photo-consistent density fields is a convex polytope
(Fig. 7). This follows because the only constraints we impose
on the space of density fields, i.e., nonnegativity and photo-
consistency, are finite in number and linear in the density
elements, implying a piecewise-linear boundary. Although
only the photo-consistent density fields on the extreme
corners of the polytope span the space of M-view solutions
with their convex combination, a sparser sampling on the
boundary may still permit a good approximation.

Property 3 (Image Linearity Property). The image of a linear
combination of photo-consistent density fields is the linear
combination of their respective images.

Proof. Follows directly from the linearity of image forma-
tion given by (6). tu
The Image Linearity Property implies that if we represent

the space of photo-consistent fields as the convex combina-
tion of “basis density fields,” we can represent photo-
consistency constraints as linear functions of the images of
these fields, rather than the fields themselves. This is
especially important from a computational standpoint since

it allows us to operate exclusively on images of dimensionN ,
rather than density fields of dimension N2.

7 DENSITY-SHEET DECOMPOSITION

The analysis of Section 6 tells us that if we have, for every pair
of input views, a set of “basis density fields” spanning the
associated 2-view solution space, we can express every
density field that is photo-consistent with M views as a
convex combination of all these basis fields. Moreover, we can
always find such a convex combination using image-space
computations, i.e., by finding a convex combination of the
images of these basis fields that reproduces allM input views.

To turn these ideas into an algorithm, we answer two
questions: 1) how do we efficiently generate an appropriate
set of basis fields from the input views, and 2) how do we find
convex combinations of these fields that maximize photo-
consistency with all views? We consider each question below.

7.1 Generating Basis Density Fields

By considering the views pairwise and applying the
Density Sheet Construction Algorithm of Section 5, we
can trivially generate up to 2 � M

2

� �
¼MðM � 1Þ Density

Sheets from M input views. Unfortunately, this basis is not
expressive enough to span the space of photo-consistent
density field and, hence, cannot represent arbitrarily
complex density fields. We therefore generalize the Density
Sheet Construction Algorithm to compute basis density
fields that provably span this space. We call the resulting
bases Decomposed Density Sheets.

Recall that the Density Sheet Construction Algorithm
takes into account all pixels in a pair of corresponding
epipolar lines. To define the new Decomposed Density
Sheets, we combine smaller Density Sheets built from parts
of the input images that have equal sums. Specifically, given
images I1 and I2, we apply the following algorithm (Fig. 8).

Algorithm 2. Density Sheet Decomposition Algorithm

1) (Weight assignment). Choose a weight, w, with

0 � w � 1.

2) (Image decomposition). Decompose each image into two
parts, governed by weight w

I1 ¼ wI01 þ ð1� wÞI001
I2 ¼ wI02 þ ð1� wÞI002 ;

ð8Þ

where all images are nonnegative and have equal sum.

3) (Density Sheet construction). Build Density Sheets D0

and D00 from image pairs I01; I
0
2 and I001 ; I

00
2 , respectively.

4) (Density Sheet combination). Combine Density Sheets

D0 and D00 to obtain the Decomposed Density Sheet

D ¼ wD0 þ ð1� wÞD00: (9)

Note that the resulting Decomposed Density Sheet, D, will
always be photo-consistent with the input images I1; I2.
This is a direct consequence of the Convexity and Image
Linearity Properties of Section 6.

To fully specify the algorithm we must describe how to
decompose the images in Step 2, given some choice of the
weightw. To do this, we split I1 and I2 into a central interval of

HASINOFF AND KUTULAKOS: PHOTO-CONSISTENT RECONSTRUCTION OF SEMITRANSPARENT SCENES BY DENSITY-SHEET... 875

Fig. 7. Visualizing the space of density fields. A point in the figure
represents an N �N density field D. The space of density fields photo-
consistent with M � 1 views is a region in this space (outermost
polygon). The Nesting Property tells us that as the number of input views
increases to M, this region shrinks (dark gray polygon). Moreover, the
Convexity Property implies that these regions are always convex
polytopes. In general, the convex polytope defined by a set of “basis
ðM � 1Þ-view density fields” (light gray polygon) may not span the entire
M-view polytope.



pixels, whose fraction of the total sum isw, and the remainder
(Fig. 8). The resulting density field therefore retains the sheet-
like structure of the basic Density Sheet in a piecewise fashion.
Note that we construct D0 and D00 with opposite diagonal
orientation, otherwise their combination would simply be
one of the Density Sheets for the input images.

The family of Decomposed Density Sheets can thus be
parameterized by the diagonal orientation of D0, the weight of
the central intervalw, and the offsets of the central intervals I01
and I02 from the first pixel in the images. Therefore, given
W distinct weights and T distinct offsets, we can create
2WT 2 Decomposed Density Sheets using this method.

Intuitively, when we are restricted to a limited number of
these bases, we would like to choose them so that the central
Density Sheet “covers” all areas of the density field. As we
change the offset parameters, the rectangular region contain-
ing wD0 will translate over the N �N field, motivating a
simple scheme where the T offsets for a central interval of
weight w � 1=T are distributed linearly over the whole
range. Specifically, we define the set of offsets for each input
image as t1; t2 2 f i

T�1 ð1� wÞg
T�1
i¼0 . By varying the diagonal

orientation of the central Density Sheet and selecting the
offset for each input image, we thus obtain 2T 2 bases for each
choice of the weight. Likewise, we adopt a simple method to
distribute the W different weights linearly, according to
w 2 f1

T þ T�1
T

k
Wg

W�1
k¼0 .

7.2 Completeness Theorem

A fundamental property of Decomposed Density Sheets is
that even though they are easy to generate, the subspace
they span contains all density fields that are photo-
consistent with the input views. We derive this result by
analyzing the space of photo-consistent density fields and
showing that we can generate enough Decomposed Density
Sheets to span this space. Specifically, we know from
Section 6 that the space of photo-consistent density fields is
a convex polytope. First, we show that this polytope lies in
an ðN � 1Þ2-dimensional hyperplane:

Theorem 2. The space of N �N density fields that are photo-
consistent with two views is an ðN � 1Þ2-dimensional
convex polytope in the space of N �N matrices.

Proof. See Appendix B for a constructive proof. tu
Next, we show that the Decomposed Density Sheets form

a complete basis for the space of photo-consistent density
fields, by constructing a family of Decomposed Density
Sheets that spans the ðN � 1Þ2-dimensional hyperplane. In
other words, the parameters of the Decomposed Density
Sheets (diagonal orientation, weight, and offsets in the input

images) give us enough degrees of freedom to generate
bases that span the space:

Theorem 3 (Density Sheet Completeness). The family of

Decomposed Density Sheets forms a complete basis for the

space of M-view photo-consistent density fields.

Proof: (Sketch). We first show how to construct a linearly
independent basis of Decomposed Density Sheets for the
special case of density fields that are photo-consistent
with two constant input images, I1 ¼ I2 ¼ �½1 . . . 1�T . We
then derive transformations that let us reduce the general
problem to this case. See Appendix C for a full proof. tu

7.3 Decomposed Density Sheet Reconstruction

With the procedure for generating Decomposed Density

Sheets (Section 7.1)as a starting point, we rely on the following

algorithm to compute an epipolar slice of the density field

that maximizes photo-consistency with M views:

Algorithm 3. Decomposed Density Sheet Reconstruction

Algorithm

1) (Basis construction). For each of P ¼MðM � 1Þ=2 pairs

of views, generate a family of B Decomposed Density

Sheets, fDp 1;Dp 2; . . . ;Dp Bg using Algorithm 2. Warp

these into a common global coordinate system.
2) (Basis projection). Project the Decomposed Density

Sheets to all input viewpoints, and stack their images

into MP blocks, each of size N �B:

Fmp ¼ ImðDp1Þ ImðDp2Þ � � � ImðDpBÞ½ �;

where the notation ImðDÞ refers to the projection of

density field D to image Im using discrete integration (6).
3) (QP formation). Stack the blocks from Step 2 and the

input images together,

F ¼

F11 F12 � � � F1P

F21 F22 � � � F2P

..

.

FM1 FM2 � � � FMP

2
6664

3
7775; I ¼

I1

I2

..

.

IM

2
6664

3
7775;

to form the following quadratic programming problem:

minimize kFx� Ik2

subject to
X

x ¼ 1; x � 0:
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Fig. 8. Decomposing I1 and I2 into component parts according to w. I1 is decomposed into a central interval of pixels, wI01, whose fraction of the total

sum is w, and the remainder, ð1� wÞI001 , whose fraction of the sum is 1� w. I2 is decomposed analogously, according to w as well. The central

intervals of I1, I2 are offset from the first pixel in the images by t1 and t2, respectively. Also shown are the two Density Sheets with opposite diagonal

orientations, D0 and D00, computed from corresponding pairs of parts (Section 5).



4) (QP solution). Solve this quadratic optimization problem
by any standard method (e.g., [39]). The resulting

optimal x gives the weights needed to express the

density field as a convex combination of the

Decomposed Density Sheets computed in Step 1.

Because the quadratic programming problem is convex, the
solver will find a global minimum of the objective function.
This solution is not necessarily unique because the mini-
mum kFx� Ik2 ¼ 0 will be attained by all density fields of
this form that are photo-consistent.

7.4 Discussion

The result of this algorithm is a reconstruction of the density

field as a superposition of piecewise Density Sheets defined

by pairs of views, namely a convex combination of the various

Decomposed Density Sheet bases. As with the basic Density

Sheet solution, the sheet-like structures are well-suited to

view synthesis because they allow us to effectively warp

pieces of the original images in order to render them.
If the P �B Decomposed Density Sheets computed by a

run of Algorithm 3 are such that a convex combination is

photo-consistent with all views, the algorithm will attain the

optimal lower bound, kFx� Ik2 ¼ 0. Otherwise, it will

return the convex combination of bases that minimizes

inconsistency with the input images in a least-squared sense.
Note that Step 3 of the algorithm is suboptimal because a

combination of Decomposed Density Sheets constrained to be
convex may not, in general, span allM-view photo-consistent
solutions (Fig. 7). While optimizing over linear, rather than
convex, combinations of sufficiently many sheets would
avoid this problem, this would incur a significant computa-
tional cost. This is because explicit enforcement of nonnega-
tivity constraints for arbitrary linear combinations requires
working directly in the N2-dimensional space of density
fields. In practice, we enforce the convex combination
constraint exclusively.

As described in Section 4, this algorithm is applied
independently to a collection of epipolar planes slicing
through the 3D volume. The coherence between adjacent
epipolar lines in the input images, however, implies that
adjacent slices of the volume will have similar decomposi-
tions. In practice, this tends to generate a superposition of
coherent 2D surfaces in the 3D volume.5

8 EXPERIMENTAL RESULTS

We performed experiments on a variety of scenes of fire,
some simulated and some real. Here, we show results from
three scenes containing real fire that try to convey a range of
different flame structures.6 We show that the basic Density
Sheet produces excellent results for simple to moderately
complex flames and that the Density-Sheet Decomposition
algorithm is useful for reconstructing more complex scenes of
fire.

8.1 “Torch” Data Set

The first scene (“torch”) was a citronella patio torch,

burning with a flickering flame about 10 cm tall. Two

synchronized progressive-scan Sony DXC-9000 cameras,

roughly 90 degrees apart, were used to acquire videos of the

flame at 640� 480 resolution (Fig. 2). While ground truth

for this scene was not available, the structure of the flame is

simple, and it appears that epipolar slices actually contain a

single elongated blob of density.

The cameras were calibrated using Bouguet’s Camera

Calibration Toolbox for Matlab [40] to an accuracy of about

0.5 pixels. The input views were then rectified so that

corresponding horizontal scanlines define the epipolar

slices. For each of the 25 frames in the video sequence,

each epipolar slice was reconstructed independently.

We compared three different reconstruction methods

with respect to the quality of synthesized views interpolat-

ing between the two cameras (Fig. 9). First, the multi-

plication solution shows typical blurring and doubling

artifacts. Interpolated views of this solution do not contain

the same high frequency content as the input images and

suggest that the viewpoints were “accidentally” aligned so

as to hide significant structures in the scene. Second, an

algebraic method based on fitting Gaussian blobs to the

density field [41] overfits the two input images and

produces a badly mottled appearance for synthesized

views. This confirms that sparse-view tomography methods

are not suitable when the number of viewpoints is

extremely limited. Third, the Density Sheet reconstruction

produces very realistic views that appear indistinguishable

in quality from the input views.
If the viewpoint is varied while time is fixed, the true

nature of the Density Sheet reconstruction as a transparent
surface can be perceived. The addition of temporal
dynamics, however, enhances photo-realism. For simple
flames like the “torch” scene, a two-view reconstruction
consisting of a single Density Sheet serves as a good
impostor for the true scene.

To render the Density Sheet solution, we first compute

the geometry of the Density Sheet and then use this sheet to

warp the input images to the interpolated view by back-

ward mapping [24]. We then blend the warped input

images according to a simple view-dependent linear

interpolation. To render the other solutions, we use

standard volume rendering which applies discrete integra-

tion to the reconstructed 3D density field.

8.2 “Burner” Data Set

The second scene (“burner”), courtesy of Ihrke and

Magnor [23], [42], consists of a colorful turbulent flame

emanating from a gas burner. This scene was captured for

348 frames using eight synchronized video cameras with

320� 240 resolution. The cameras are roughly equidistant

from the flame and distributed over the viewing hemi-

sphere. Ground truth is not available for this scene either,

but an algebraic tomography method restricted by the

visual hull produces a reasonable approximation to the

true density field [23].
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5. Formally, it is easy to show that the function that maps input images to
Density Sheets is smooth. This is why Density Sheets from adjacent
scanlines have similar shape when the intensity variation across these
scanlines is small (e.g., Fig. 9, rows 3-4).

6. See http://www.cs.toronto.edu/~hasinoff/fire for color images and
video clips, as well as more results.



For the “burner” data set, we applied our algorithms to

just two of the input cameras, spaced about 60 degrees

apart. We used the calibration provided to rectify the

images from this pair of cameras and then computed the

Density Sheet from corresponding scanlines. Finally, as in

view morphing [43], we used a homography to warp the

images synthesized in the rectified space back to the

interpolated camera (Fig. 10).
Although the “burner” scene is significantly more

complex than the previous scene, two-view reconstruction

using a single Density Sheet can still produce realistic

intermediate views (Fig. 10, rows 1–2). As with the “torch”

data set, the view interpolation appears even more

plausible when the dynamics of the flame are added.
As shown in the third row of Fig. 10, a significant artifact

occurs when the true flame consists of multiple structures

and when our imaging model (Section 3) is not satisfied

exactly. In this example, the true scene and both input

images consist of two major flame structures, but the

images disagree on the total intensity (i.e., the total density)

of each structure. For the Density Sheet solution, this

discrepancy leads to a “tearing” effect where a spurious
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Fig. 9. Three different reconstructions of the “torch” data set (frame 8) from two input images. Labels on the left indicate the method used. On the

right, we show a top view of a reconstructed epipolar slice, corresponding to the white horizontal line in the 0	 images (dark regions denote areas with

concentrated fire density). Note that the multiplication and Density Sheet solutions reproduce the input images exactly. The bottom row illustrates the

3D geometry of the Density Sheet solution, rendered as a specular surface.



thin vertical structure is used to account for the lack of
correspondence. Note that this problem applies more
generally to any technique assuming a linear image
formation model for this particular data set.

We also compare interpolated views generated using the

Density Sheet reconstruction and the algebraic tomography

method of Ihrke and Magnor [23]. While the tomography

method uses all eight cameras to reconstruct a coarse

963 voxel grid, the Density Sheet reconstruction explains the

density field locally using a single transparent surface

defined by the closest two cameras. Despite this imbalance,

the simple Density Sheet reconstruction (Fig. 10, bottom) may

still be preferable for view synthesis. The volume renderings

produced by algebraic tomography are relatively noisier,

lower resolution, and less “similar” to the sharp and smooth

input images.

8.3 “Jet” Data Set

The third scene (“jet”) consists of a complex flame emerging
from a gaseous jet (Fig. 11, first row). The data set consists of
47 synchronized views, roughly corresponding to inward-
facing views arranged around a quarter-circle, captured from
a promotional video for a commercial 3D freeze-frame system
[44]. Since no explicit calibration was available for this
sequence, we assumed that the views were evenly spaced.

To test the view synthesis capabilities of our approach, we

used a subset of the 47 frames as input and used the rest to

evaluate agreement with the synthesized views (Fig. 11).

Rendering results from the multiplication solution and the

Density Sheet solution (Algorithm 1) suggest that these

solutions cannot accurately capture the flame’s appearance

and structure, and are not well suited to more complex

flames with large appearance variation across viewpoint.
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Fig. 10. Density Sheet reconstruction of the “burner” data set [23], [42], interpolating between two cameras about 60 degrees apart. At the top, the
first and last columns are input views; the middle columns are interpolated. Each row represents a different frame from the turbulent flame sequence.
The highlighted region draws attention to a spurious thin structure present in interpolated views of the third row. This artifact is due to inexact
correspondence between major flame structures because our imaging model is violated. At the bottom, we compare views interpolated using the
Density Sheet, midway between the two cameras, alongside nearby views generated by an algebraic tomography method using all eight cameras
[23].



To incorporate more views, we applied the blob-based

algebraic tomography method in [41] and the Density-Sheet

Decomposition algorithm (Algorithm 3) with the 45 degree

view as a third image. In the latter algorithm, we generated

B ¼ 150 Decomposed Density Sheets for each of the

P ¼ 3 pairs of input views in Step 1, giving rise to a total

of 450 basis density fields.
To further explore the benefit of using multiple views, we

optimized the convex combination of these fields in Steps 2-4

in two ways: 1) by maximizing photo-consistency with the

three input images, and 2) by maximizing photo-consistency

with four additional images from the sequence, but using the

same three-view basis.7 The results in Fig. 11 and Table 1

suggest that the Density-Sheet Decomposition algorithm

produces rendered images that are superior to the other
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Fig. 11. Reconstruction of the “jet” data set. Ground truth images of the fire are shown in the top row; the remaining rows correspond to different
reconstruction methods. Labels on the left indicate the method used, with the number of input views in brackets. From left to right: 45	 view, which is
synthesized for the multiplication and Density Sheet solutions and is an input view for the other methods; 68	 view, synthesized for all methods;
zoomed-in view of the region marked in the 68	 image; 135	 view, which is a distant extrapolation; and top view of a reconstructed epipolar slice,
corresponding to the white horizontal line in the 135	 image (dark regions denote areas with concentrated fire density).

7. The reason for using M 0 > M views for photo-consistency and M for
basis computation is that this leaves unchanged the number of unknowns in
the quadratic programming problem. With a constant number of bases per
view-pair (Section 7.1), the number of unknowns grows according to
OðM2Þ, not OðM 02Þ, which makes the problem less computationally
intensive.



methods. They also show that increasing the number of
images has a clear benefit.

Three observations can be made from these experiments:

First, the convex combination of Decomposed Density

Sheets can capture the structure of complex flames because

the sheets sweep out regions of the density field, explaining

fire density at multiple depths. Second, the resulting

algorithm can render complex flames from a small number

of input views, without the doubling artifacts of the

multiplication solution or the overfitting artifacts of the

blob-based method. This is because the family of Decom-

posed Density Sheets is expressive and induces a bias

toward compact solutions. Third, the sheets’ surface-like

structure enables photo-realistic rendering of complex

semitransparent scenes by simply warping and blending

partial input images (8). Thus, the density models we

extract may be suitable for interactive graphics applications.

9 DISCUSSION

One feature of semitransparency is that no part of the scene

will be occluded as long as the camera exposure is set to

prevent saturation. This benefit, however, comes at the cost

that the space of photo-consistent density fields is funda-

mentally ambiguous when the number of input views is

small. In this work, we have assumed spatial coherence in

the density field in order to achieve good view synthesis.

It would be useful to understand how photo-consistency

constraints from three or more views restrict the space of two-

view andM-view solutions. In particular, a third view would

be expected to eliminate much of the ambiguity that causes

the doubling of sharp features found in the multiplication

solution (Fig. 4). Such a view is less likely to be helpful for

disambiguating smooth and diffuse regions because, as in

standard stereo, the lack of high-frequency detail makes

unambiguous reconstruction in these regions more difficult.

So far, we have assumed that the cameras are restricted

to lie on the same plane, but most previous methods for

semitransparent reconstruction extend readily to general

viewing configurations (at least in theory). Unfortunately,

in such configurations the basis coefficients from different

2D slices of the 3D density field become linked, leading to

much larger quadratic programming problems. In the worst

case, with three orthogonal views, the coefficients of all

Decomposed Density Sheet bases from all slices are needed

to evaluate photo-consistency for a single pixel. To enhance

computational efficiency, it might be possible to consider

Decomposed Density Sheet bases defined in 3D and

constructed from bands of epipolar lines in the input views.

From the point of view of fire reconstruction, simulta-

neous recovery of the 3D temperature, density, and

pressure fields, commonly used in combustion engineering

and computer graphics [1], [11] appears to be a daunting

task. Consequently, simpler models of fire, like the one we

describe in Section 3, dominate current reconstruction

techniques. This suits our purpose, since we are more

interested in modeling appearance variation than extracting

particular physical properties of fire. In fact, the advantage

of any image-based technique is that any flames we can

observe can be reconstructed directly, without modeling or

simulating their interaction with the environment [1], [6].

10 CONCLUDING REMARKS

In this paper, we introduced Density Sheets as a basic
primitive for representing, reconstructing, and rendering
semitransparent scenes from a small number of input views.
This primitive was derived through a detailed analysis of the
space of densities that are photo-consistent with two or more
views and was designed with four key properties in
mind—photo-consistency, uniqueness, spatial compactness, and
representational completeness. We showed that these properties
lead to simple reconstruction algorithms that produce stable
solutions even for very limited numbers of input views (even
two), despite the ill-posed nature of the volumetric recon-
struction problem. Importantly, we showed that the behavior
and solution space of these algorithms can be characterized
and that the resulting reconstructions have good view
interpolation and extrapolation capabilities.

The question of how best to capture the global 3D
structure and dynamics of fire and other physical phenom-
ena remains open. Toward this goal, we are investigating
new spatio-temporal coherence constraints and ways to
integrate our approach with traditional simulation meth-
ods. In theory, image-based reconstructions could be used
to train or validate physical simulators, and these simula-
tors could be used to evaluate reconstructions in terms of
their physical plausibility.

While our experiments suggest that Density Sheets and

the Density-Sheet Decomposition algorithm are useful for

fire reconstruction, these tools may also prove useful in

more general contexts. This includes the reconstruction of

other volumetric phenomena such as smoke [4], sparse-

view tomography problems in medical diagnostics [20], and

accelerated image-based methods for volume rendering.

APPENDIX A

PROOF OF THEOREM 1

Proof (by induction). We show that Algorithm 1 generates a
density fieldDwith the desired properties. The downward
and rightward expansions in Step 3 guarantee that the
elements of D traced by the pair ðr; cÞ define a monotonic
four-connected curve. Therefore, it is sufficient to show
that D is nonnegative and photo-consistent. For ease of
notation, we denote the row and column sums of D by
s1 ¼ D1 and s2¼ DT1, respectively, where 1¼½1 . . . 1�T .
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TABLE 1
Per-Pixel RMS Reconstruction Error for the “Jet” Data Set

aThe first two reconstructions reproduce the input views exactly.
bThree input views were used to generate the basis, and four additional
views were used to evaluate photo-consistency only.



We show that properties H1-H4, corresponding to our
induction hypothesis, hold throughout the course of the
algorithm, as the element ðr; cÞ traces a path from (1,1) to
ðN;NÞ:

H1: D is photo-consistent with the subvectors
I1ð1; . . . ; r� 1Þ and I2ð1; . . . ; c� 1Þ;

H2: D is photo-consistent with I1ðrÞ or I2ðcÞ;
H3: D satisfies s1 � I1 and s2 � I2; and
H4: D � 0.

For the base case ðr; cÞ ¼ ð1; 1Þ, H1-H4 are trivially
satisfied after Step 2 of the algorithm.

Part I: The algorithm terminates with D photo-consistent
with I1; I2. First, we show that if D is photo-consistent
with one of the vectors I1; I2, then H1-H4 imply that D
must be photo-consistent with both of them. In parti-
cular, assume wlog that ðr; cÞ ¼ ðN; jÞ and s1 ¼ I1. From
H3, we know that s2ðjÞ � I2ðjÞ, and because

P
I1 ¼

P
I2,

all density must be distributed within the first j columns.
Thus, I2ðjþ 1; . . . ; NÞ ¼ 0 and s2ðjÞ ¼ I2ðjÞ, implying
that I2 is photo-consistent as well. Second, we note that
the expansions prescribed by Step 3 of the algorithm are
valid even at the boundary cases: If r ¼ N , then the
expansion will be rightward; if c ¼ N , the expansion will
be downward unless s1ðrÞ < I1ðrÞ. But, this inequality is
never satisfied: if s1ðrÞ < I1ðrÞ, H2-H3 imply that s2 ¼ I2

and, therefore, s1 ¼ I1, leading to a contradiction. Thus,
the algorithm always terminates with ðr; cÞ ¼ ðN;NÞ.

Part II: Every application of Step 3 preserves the induction
hypothesis. If the expansion is rightward, then either
s1ðrÞ < I1ðrÞ or s1 ¼ I1. In the first case, H2-H3 imply that
s2ðcÞ ¼ I2ðcÞ. Then, by construction, Dðr; cþ 1Þ will be
set to some nonnegative value so that either the new
column is photo-consistent (i.e., s2ðcþ 1Þ ¼ I2ðcþ 1Þ),
or the current row becomes photo-consistent (i.e.,
s1ðrÞ ¼ I1ðrÞ). Both outcomes preserve H1-H4 for
ðr; cþ 1Þ. If s1 ¼ I1, it must also be the case that s2 ¼ I2

and setting Dðr; cÞ ¼ 0 as prescribed by Step 3 of the
algorithm preserves H1-H4. Analogously, every down-
ward expansion also preserves the inductive hypothesis.

Therefore, thealgorithm terminateswith ðr; cÞ ¼ ðN;NÞ
and H1-H4 intact. Hence, D � 0 and D is photo-consistent
with both vectors. The proof for D0 is analogous. tu

APPENDIX B

PROOF OF THEOREM 2

Proof. From Section 6, we know that the space of photo-
consistent density fields is a convex polytope. We show
that it is ðN � 1Þ2-dimensional in the two-view case.

Given two nonnegative, N-dimensional column vec-
tors I1 and I2, consider an N �N matrix D whose row
and column sums, respectively, are equal to these
vectors, i.e., D1 ¼ I1 and DT1 ¼ I2. Every such matrix
can be expressed as D ¼ D0 þ S, where D0 is any photo-
consistent density (e.g., the multiplication solution), and
S preserves row and column sums, i.e., S1 ¼ 0 and
ST1 ¼ 0. Note that fixing the ðN � 1Þ � ðN � 1Þ upper-
left block of S uniquely defines the remaining elements,
giving us an upper bound of ðN � 1Þ2 on the dimension-
ality of the polytope.

We now show that the ðN � 1Þ2 upper bound is tight

by explicitly constructing a basis for the polytope’s

hyperplane that consists of ðN � 1Þ2 linearly indepen-
dent matrices. In particular, consider the family of

N �N matrices fSijgi;j<N defined in Fig. 12, where each

matrix consists of four nonzero elements arranged in a

rectangle. Adding a matrix Sij to D0 has the effect of

shifting mass from two diagonal corners of the rectangle

to the other two corners.8 The matrices fSijgi;j<N are

linearly independent since Sijði; jÞ ¼ 1 and Si0j0 ði; jÞ ¼ 0

for all other i0; j0 < N . Therefore, they span the ðN � 1Þ2-
dimensional hyperplane.

The hyperplane can be expressed as a linear combina-
tion of the resulting two-view photo-consistent matrices,
D0 and fD0 þ Sijgi;j<N . tu

APPENDIX C

PROOF OF THEOREM 3

Lemma 1. Let �c be the set of nonnegative N �N matrices
whose row and column sums are constant vectors, i.e., �c ¼
fD jD1 ¼ �1 and DT1 ¼ �1g for some � 2 IR. The Decom-
posed Density Sheets form a basis spanning �c.

Proof. Assume, without loss of generality, that � ¼ 1.
Theorem 2 tells us that the set �c is an ðN � 1Þ2-
dimensional polytope. We use a constructive proof,
specifying Decomposed Density Sheet matrices that span
this polytope’s hyperplane.

First, consider the family of N �N binary matrices
fTijgi;j<N defined in Figs. 13a and 13b. These matrices
are zero except for three identity-matrix blocks and a
2� 2 block at position ði; jÞ. Each matrix Tij satisfies
Tij1 ¼ 1 and TT

ij1 ¼ 1 and, therefore, belongs to �c.
Moreover, Tij is a Decomposed Density Sheet corre-
sponding to the output of Algorithm 2 with I1 ¼ I2 ¼ 1
and specified by the parameters t1 ¼ i�1

N , t2 ¼ j�1
N , and

w ¼ 2
N (see Section 7.1).

We now define matrix T̂ij ¼ Tij � IN and show that the
family fT̂ijgi;j<N is linearly independent for i 6¼ jþ 1. This
provides us with a basis of dimension ðN � 1Þ2 � ðN � 2Þ,
each of whose members, T̂ij, is the difference of two
Decomposed Density Sheets (IN and Tij). Note that each

882 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 5, MAY 2007

Fig. 12. The matrices fSijgi;j<N form a basis for the space of N �N
photo-consistent matrices. Each matrix contains only four nonzero

elements arranged in a rectangle whose bottom-right corner is fixed at

element ðN;NÞ. Sij is zero in the gray-shaded regions. Clearly, Sij1 ¼ 0

and STij1 ¼ 0.

8. The matrices Sij can be thought of a generalization to continuous-
valued density fields of the “switching matrices” described in [27].



T̂ij will have elements with values 1, 0, or -1. Furthermore,
note the recursive structure of fT̂ijg, where the upper-
leftmost ðN � 1Þ�ðN � 1Þ block of a given T̂ij with i; j <
N � 1 corresponds directly to matrix T̂ij for a problem of
size N � 1.

We use induction on N to obtain our linear indepen-
dence result, where the induction hypothesis for N � 1
implies that fT̂ijgi;j<N�1 are linearly independent for
i 6¼ jþ 1. The base cases for N � 2 are trivial. Given the
induction hypothesis, it remains to show that the addition
of the 2N � 4 matrices, fT̂N�1;jgj<N�2 and fT̂i;N�1gi<N ,
preserves linear independence. This is simple to show,
since T̂N�1;jðN; jÞ ¼ 1 for j < N � 2, but the element
ðN; jÞ is zero for all other T̂ij. Similarly, T̂i;N�1ði;NÞ ¼ 1
for i < N , but apart from the case i ¼ N � 2, the element
ði;NÞ is zero for all other T̂ij. This leaves just T̂N�2;N�1,
for which element ðN � 2; NÞ is nonzero in fT̂N�1;jgj<N�2

as well. However, none of these other matrices can
participate in a linear combination reproducing T̂N�2;N�1,
since they comprise the only T̂ij for which any of the
elements fðN; kÞgN�3

k¼1 are nonzero.

The family fT̂ijgi;j<N gives us ðN � 1Þ2 � ðN � 2Þ
linearly independent matrices. So, to obtain a basis for
the ðN � 1Þ2 dimensions of �c we need N � 2 additional
linearly independent matrices. To construct them, we
consider a second family of N �N matrices fUkgk<N�1,
shown in Fig. 13c. This family contains a total of N � 2
members, each of which belongs to �c. Moreover, Uk is a
Decomposed Density Sheet by construction, correspond-
ing to the output of Algorithm 2 with I1 ¼ I2 ¼ 1 and
parameters t1 ¼ kþ1

N , t2 ¼ 0, and w ¼ 1
2N . Similarly, we

define Ûk ¼ Uk � IN .

The matrices in the family fÛkgk<N�1 are linearly
independent, and they are linearly independent of
fT̂ijgi;j<N as well. In particular, the matrices fÛkgk<N�1

are linearly independent because Ûkðkþ 2; 1Þ ¼ 1 and this
element is zero for all Ûk0 6¼k. They are linearly independent
of fT̂ijgi;j<N because Ûkð1; 2Þ ¼ 1 for all k, and the only
member of fT̂ijgi;j<N for which this element is nonzero is
T̂1 1, which cannot participate in a linear combination
reproducing Ûk (because T̂1 1 is the only T̂ij for which
element (2,1) is nonzero, whereas Ûkð2; 1Þ ¼ 0 for any k).

Therefore, the combined family fT̂ijgi;j<N [ fÛkgk<N�1

contains ðN � 1Þ2 linearly independent matrices.
It follows that the polytope �c can be expressed as a

linear combination of the Decomposed Density Sheets
fTijgi;j<N , fUkgk<N�1, and IN . tu

Lemma 2. Let �r be the set of nonnegative N �N matrices

whose row and column sums are vectors of rational elements,

i.e., �r ¼ fD jD1 ¼ 1
mn1 and DT1 ¼ 1

mn2g for m > 0;m 2
IN and n1;n2 2 INN . The Decomposed Density Sheets form a

basis spanning �r.

Proof. Given a particular D 2 �r, we describe a mapping T
that reduces the problem to the case where row and

columns are constant vectors. This lets us apply Lemma 1

to obtain a set of Decomposed Density Sheets spanning the

transformed space. To show that D is spanned by

Decomposed Density Sheets it suffices to show that

1) the inverse mapping, T �1, is linear and onto, and 2) that

the basis defined in Lemma 1, when transformed byT �1, is

still a set of Decomposed Density Sheets.

Assume, without loss of generality, that
P

n1 ¼P
n2 ¼ m. We define the mapping T : IRN�N ! IRm�m

by expanding each matrix element Dði; jÞ to a matrix block

of size n1ðiÞ � n2ðjÞ, or collapsing it to an empty matrix if

either n1ðiÞ or n2ðjÞ is zero. In the first case, each of the

block elements is set to Dði;jÞ
n1ðiÞn2ðjÞ . Intuitively, we can think

of matrix D as being stretched nonuniformly, along the

columns and then the rows, so that its row and column

sums become constant vectors. The transformed matrix

T ðDÞ satisfies T ðDÞ1 ¼ T ðDÞT1 ¼ 1
m1.

The inverse mapping T �1 : IRm�m ! IRN�N is defined
by taking sums of the matrix blocks defined by T , where
the “sum” of an empty matrix block is taken to be zero,
so that T �1ðT ðDÞÞ ¼ D and T �1 is onto. Furthermore,
because summation is a linear operator, T �1 is also
linear, i.e., T �1ðD1 þ �D2Þ ¼ T �1ðD1Þ þ �T �1ðD2Þ.

It remains to show that a Decomposed Density Sheet
is still a Decomposed Density Sheet after transformation
by the inverse mapping, T �1. But, this is indeed the case
because block-wise summation preserves the Density
Sheet structure, i.e., the properties of Theorem 1. tu

HASINOFF AND KUTULAKOS: PHOTO-CONSISTENT RECONSTRUCTION OF SEMITRANSPARENT SCENES BY DENSITY-SHEET... 883

Fig. 13. Matrix definitions for the proof of Theorem 3. (a) and (b) For a given i; j < N, the N �N matrix Tij contains a 2 � 2-pixel central block at
position ði; jÞ and three identity matrix blocks. Ik denotes an identity matrix of size k� k. The elements in gray-shaded regions are zero. (c) Definition
of the N �N matrix Uk.



Theorem 3 (Density Sheet Completeness). The family of
Decomposed Density Sheets forms a complete basis for the
space of M-view photo-consistent density fields.

Proof. For any sufficiently small " > 0, we reduce the 2-view
problem to an "-approximation of the case where row and
column sums consist of rational elements. We then apply
Lemma 2 to this rational approximation and show that the
elements of the resulting Decomposed Density Sheet basis
can be adjusted to span the original space. Finally, we
apply the Nesting Property (Property 1, Section 6) to
extend this completeness result to M views.

Specifically, without loss of generality consider an

N �N nonnegative matrix D satisfying
P

D ¼ 1. Define

the matrix ~D ¼ dD" e=d1"e with rational elements such that
~D 2 �r and max j ~D�Dj < ".

We apply the proofs of Lemmas 1-2 to construct a
basis of Decomposed Density Sheets that spans the
space of matrices photo-consistent with ~D1 and ~DT1.
Denote this basis by fBkgk<K . Now, using the same
parameters corresponding to a particular Bk (i.e., the
parameters t1, t2, and w used in Lemmas 1-2), we create
a corresponding Decomposed Density Sheet matrix B0k
that is photo-consistent with D1 and DT1. By construc-
tion max jB0k �Bkj < N2", since in the worst case all
N2 perturbations of magnitude " will be concentrated
on a single element.

It now suffices to show that the family of Decomposed
Density Sheets fB0kgk<K consists of linearly independent
matrices and, therefore, spans D. Since the group of
nonsingular matrices is open, there exists some � > 0
such that any family fB00kgk<K with max jB00k �Bkj < �
consists of linearly independent matrices (see [45], for
example). We can therefore guarantee linear indepen-
dence by choosing " < �=N2. tu
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