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Light-Efficient Photography
Samuel W. Hasinoff, Member, IEEE, and Kiriakos N. Kutulakos, Member, IEEE

Abstract—In this article we consider the problem of imaging a scene with a given depth of field at a given exposure level in the shortest

amount of time possible. We show that by (1) collecting a sequence of photos and (2) controlling the aperture, focus and exposure

time of each photo individually, we can span the given depth of field in less total time than it takes to expose a single narrower-aperture

photo. Using this as a starting point, we obtain two key results. First, for lenses with continuously-variable apertures, we derive a

closed-form solution for the globally optimal capture sequence, i.e., that collects light from the specified depth of field in the most

efficient way possible. Second, for lenses with discrete apertures, we derive an integer programming problem whose solution is the

optimal sequence. Our results are applicable to off-the-shelf cameras and typical photography conditions, and advocate the use of

dense, wide-aperture photo sequences as a light-efficient alternative to single-shot, narrow-aperture photography.

Index Terms—Computational photography, computer vision, computer graphics, shape-from-focus.

F

1 INTRODUCTION

Two of the most important choices when taking a photo
are the photo’s exposure level and its depth of field.
Ideally, these choices will result in a photo whose subject
is free of noise or pixel saturation [1], [2], and appears
to be in focus. These choices, however, come with a
severe time constraint: in order to take a photo that has
both a specific exposure level and a specific depth of
field, we must expose the camera’s sensor for a length
of time that is dictated by the lens optics. Moreover, the
wider the depth of field, the longer we must wait for the
sensor to reach the chosen exposure level. In practice,
this makes it impossible to efficiently take sharp and
well-exposed photos of a poorly-illuminated subject that
spans a wide range of distances from the camera. To get a
good exposure level, we must compromise something—
either use a narrow depth of field (and incur defocus
blur [3], [4], [5], [6]) or take a long exposure (and incur
motion blur [7], [8], [9]).

In this article we seek to overcome the time constraint
imposed by lens optics, by capturing a sequence of
photos rather than just one. We show that if the aperture,
exposure time, and focus setting of each photo is selected
appropriately, we can span a given depth of field with
a given exposure level in less total time than it takes to
expose a single photo (Fig. 1), without increased imaging
noise. This novel observation is based on a simple fact:
even though wide apertures have a narrow depth of
field (DOF), they are much more efficient than narrow
apertures in gathering light from within their depth of
field. Hence, even though it is not possible to span
a wide DOF with a single wide-aperture photo, it is
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possible to span it with several of them, and do so very
efficiently.

Using this observation as a starting point, we de-
velop a general theory of light-efficient photography that
addresses four questions: (1) under what conditions is
capturing photo sequences with “synthetic” DOFs more
efficient than single-shot photography? (2) How can we
characterize the set of sequences that are globally optimal
for a given DOF and exposure level, i.e., whose total
exposure time is the shortest possible? (3) How can
we compute such sequences automatically for a specific
camera, depth of field, and exposure level? (4) Finally,
how do we convert the captured sequence into a single
photo with the specified depth of field and exposure
level?

Little is known about how to gather light efficiently
from a specified DOF. To the best of our knowledge, no
previous method has considered the problem of optimiz-
ing exposure time for a desired DOF and exposure level.
For example, even though there has been great interest in
manipulating a camera’s DOF through optical [7], [10],
[11], [12], [13], [14], [15], [16], [17] or computational [2],
[5], [18], [19], [20], [21], [22] means, most approaches do
so without regard to exposure time—they simply assume
that the shutter remains open as long as necessary to
reach the desired exposure level. This assumption is
also used for high-dynamic range photography [2], [23],
where the shutter must remain open for long periods in
order to capture low-radiance regions in a scene.

In concurrent work, various computational imaging
designs have been analyzed for their efficiency of cap-
turing DOF [17], [24], however these analyses do not
consider capturing multiple photos at full resolution,
nor are the parameters for these designs (e.g., aperture
diameter) explored in detail. In contrast, here we con-
sider capturing multiple photos, with camera settings
carefully chosen to minimize total exposure time for the
desired DOF and exposure level.

Most recently, capturing multiple photos has been
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1 photo @ f/8

total time: 2 s

2 photos @ f/4

total time: 1 s
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with desired DOF
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Fig. 1. Left: Traditional single-shot photography. The desired depth of field is shown in red. Right: Light-efficient

photography. Two wide-aperture photos span the same DOF as a single-shot narrow-aperture photo. Each wide-

aperture photo requires 1/4 the time to reach the exposure level of the narrow-aperture photo, resulting in a 2× net

speedup for the total exposure time.

shown to be a generally efficient strategy for captur-
ing DOF, even for computational cameras specifically
designed for improve single-photo performance [25]. In
particular, one can achieve significant efficiency gains by
using the optimal number of photos to balance between
noise and worst-case defocus. This article describes gains
in light efficiency that are strictly orthogonal to the noise-
defocus tradeoff—we only consider capture sequences
that fully span the DOF, and since we hold exposure
level for each photo fixed, there is no need to model
noise explicitly.

Since shorter total exposure times reduce motion blur,
our work can also be thought of as complementary
to recent synthetic shutter approaches whose goal is to
reduce such blur. Instead of controlling aperture and
focus, these techniques divide a given exposure interval
into several shorter ones, with the same total exposure
(e.g., N photos, each with 1/N the exposure time [9];
two photos, one with long and one with short expo-
sure [8]; or one photo where the shutter opens and
closes intermittently during the exposure [7]). These
techniques do not increase light efficiency and do not
rely on camera controls other than the shutter. As such,
they can be readily combined with our work, to confer
the advantages of both methods.

The final step in light-efficient photography involves
merging the captured photos to create a new one (Fig. 1).
As such, our work is related to the well-known technique
of focus bracketing for extended depth-of-field imaging.
This technique creates a new photo whose DOF is the
union of DOFs in a sequence, and has found wide use in
microscopy [22], macro photography [26], [27] and photo
manipulation [26], [27]. Current work on the subject
concentrates on the problems of image merging [26],
[28] and 3D reconstruction [22] with minimal artifacts.
Indeed, we use an existing implementation [26] for our
own merging step. However, the problem of how to best
acquire such sequences remains open. In particular, the
idea of controlling aperture and focus to optimize total
exposure time has not been explored.

Our work offers four contributions over the state
of the art. First, we develop a theory that leads to
provably-efficient light-gathering strategies, and applies
both to off-the-shelf cameras and to advanced camera
designs [7], [9] under typical photography conditions.
Second, from a practical standpoint, our analysis shows
that the optimal (or near-optimal) strategies are very
simple: for example, in the continuous case, a strategy
that uses the widest-possible aperture for all photos
is either globally optimal or it is very close to it (in
a quantifiable sense). Third, our experiments with real
scenes suggest that it is possible to compute good-quality
synthesized photos using readily-available algorithms.
Fourth, we show that despite requiring less total ex-
posure time than a single narrow-aperture shot, light-
efficient photography provides more information about
the scene (i.e., depth) and allows post-capture control of
aperture and focus.

2 THE EXPOSURE TIME vs. DEPTH OF FIELD

TRADEOFF

The exposure level of a photo is the total radiant energy
integrated by the camera’s entire sensor while the shutter
is open. The exposure level can influence significantly
the quality of a captured photo because when there is no
saturation or thermal noise, a pixel’s signal-to-noise ratio
(SNR) always increases with higher exposure levels.1 For
this reason, most modern cameras can automate the task
of choosing an exposure level that provides high SNR for
most pixels and causes little or no saturation.

To simplify discussion, we assume that the sensor
gain, controlled by the ISO setting, is held fixed. Sensor
gain does not affect the exposure level, but it affects noise
properties and saturation.

Lens-based camera systems provide only two ways to
control exposure level—the diameter of their aperture
and the exposure time. We assume that all light passing

1. Thermal noise, also known as dark current, is significant only for
exposure times longer than a few seconds [1].
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Fig. 2. Exposure time vs. depth of field tradeoff for a sin-

gle photo. Each curve represents all pairs (τ,D) for which

τD2 = L∗ in a specific scene. Shaded zones correspond

to pairs outside the camera limits (valid settings were

τ ∈ [1/8000 s, 30 s] and D ∈ [f /16, f /1.2] with f =85mm).

Different curves represent scenes with different average

radiance (relative magnitude in brackets).

through the aperture will reach the sensor plane, and
that the average irradiance measured over this aperture
is independent of the aperture’s diameter. In this case,
the exposure level L satisfies

L ∝ τ D2 , (1)

where τ is the exposure time and D is the aperture
diameter.2

Now suppose that we have chosen a desired exposure
level L∗. How can we capture a photo at this exposure
level? Eq. (1) suggests that there is a range of strategies
for achieving it—at one extreme, we can choose a long
exposure time and a small aperture diameter; conversely,
we can choose a large aperture diameter and a short
exposure time. Unfortunately, strategies from this family
must balance two side-effects: increasing exposure time
can introduce motion blur when we photograph moving
scenes [8], [9]; opening the lens aperture, on the other
hand, affects the photo’s depth of field (DOF), i.e., the
range of distances where scene points do not appear out
of focus. This leads to an important tradeoff between a
photo’s exposure time and its depth of field (Fig. 2):

Exposure Time vs. Depth of field Tradeoff: To
capture a photo with a desired exposure level L∗ we
can use shorter exposure times and a narrower DOF,
or longer exposure times and a wider DOF.

In practice, the exposure time vs. DOF tradeoff limits
the range of scenes that can be photographed at a given
exposure level (Fig. 2). This range depends on scene ra-
diance, the sensor gain, the physical limits of the camera
(i.e., range of possible apertures and shutter speeds), as
well as subjective factors (i.e., acceptable levels of motion
blur and defocus blur).

Our goal is to “break” this tradeoff by seeking novel
photo acquisition strategies that capture a given depth

2. More precisely, the exposure level L is proportional to the solid
angle subtended by the aperture; even as D → ∞ one is limited
by the finite radiant power in the scene. In practice, Eq. (1) is a
good approximation, since the largest apertures available for consumer
photography do not exceed 0.48 sr (7.7% of the hemisphere).

thin lens law
1

v
+

1

d
=

1

f
(2)

focus setting for distance d v =
df

d− f
(3)

blur diameter for out-of-focus
distance d′ σ = D

|d′ − d|
d′

v

d
(4)

aperture diameter whose DOF
is interval [α, β]

D = c
β + α

β − α
(5)

focus setting whose DOF
is interval [α, β]

v =
2αβ

α+ β
(6)

DOF endpoints for aperture
diameter D and focus v

α, β =
Dv

D ± c
(7)

TABLE 1

Basic equations governing focus and depth of field for

the thin-lens model (Fig. 3).

of field at the desired exposure level L∗ much faster
than traditional optics would predict. We briefly describe
below the basic geometry and relations governing a
photo’s depth of field, as they are particularly important
for our analysis.

2.1 Depth of Field Geometry

We assume that focus and defocus obey the standard
thin lens model [3], [29]. This model relates three positive
quantities (Eq. (2) in Table 1): the focus setting v, defined
as the distance from the sensor plane to the lens; the
distance d from the lens to the in-focus scene plane; and
the focal length f , representing the “focusing power” of
the lens.

Apart from the idealized pinhole, all apertures induce
spatially-varying amounts of defocus for points in the
scene (Fig. 3a). If the lens focus setting is v, all points at
distance d from the lens will be in-focus. A scene point
at distance d′ 6= d, however, will be defocused: its image
will be a circle on the sensor plane whose diameter σ
is called the blur diameter. For any given distance d, the
thin-lens model tells us exactly what focus setting we
should use to bring the plane at distance d into focus,
and what the blur diameter will be for points away from
this plane (Eqs. (3) and (4), respectively).

For a given aperture and focus setting, the depth of field
is the interval of distances in the scene [d1, d2], whose
blur diameter is below a maximum acceptable size c
(Fig. 3b).

Since every distance in the scene corresponds to a
unique focus setting (Eq. (3)), every DOF can also be
expressed as an interval [α, β] in the space of focus
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Fig. 3. (a) Blur geometry for a thin lens. (b) Blur diameter as a function of distance to a scene point. The plot is for

a lens with focal length f = 85mm, focused at 117 cm with an aperture diameter of 5.3mm (i.e., an f /16 aperture in

photography terminology). (c) Blur diameter and DOF represented in the space of focus settings.

settings (Fig. 3c). This alternate DOF representation gives
us especially simple relations for the aperture and focus
setting that produce a given DOF (Eqs. (5) and (6)) and,
conversely, for the DOF produced by a given aperture
and focus setting (Eq. (7)). We adopt this DOF represen-
tation for the rest of our analysis.

A key property of the depth of field is that it shrinks
when the aperture diameter increases: from Eq. (4) it
follows that for a given out-of-focus distance, larger
apertures always produce larger blur diameters. This
equation is the root cause of the exposure time vs. depth
of field tradeoff.

3 THE SYNTHETIC DOF ADVANTAGE

Suppose that we want to capture a single photo with
a specific exposure level L∗ and a specific depth of field
[α, β]. How quickly can we capture this photo? The basic
DOF geometry of Sec. 2.1 tells us we have no choice:
there is only one aperture diameter that can span the
given depth of field (Eq. (5)), and only one exposure
time that can achieve a given exposure level with that
diameter (Eq. (1)). This exposure time is3

τone = L∗ ·
(

β − α

c (β + α)

)2

. (8)

The key idea of our approach is that while lens
optics do not allow us to reduce this time without
compromising the DOF or the exposure level, we can
reduce it by taking more photos. This is based on a
simple observation that takes advantage of the different
rates at which exposure time and DOF change: if we
increase the aperture diameter and adjust exposure time
to maintain a constant exposure level, its DOF shrinks
(at a rate of about 1/D), but the exposure time shrinks
much faster (at a rate of 1/D2). This opens the possibility
of “breaking” the exposure time vs. DOF tradeoff by
capturing a sequence of photos that jointly span the DOF
in less total time than τone (Fig. 1).

3. The apertures and exposure times of real cameras span finite
intervals and, in many cases, take discrete values. Hence, in practice,
Eq. (8) holds only approximately.

Our goal is to study this idea in its full generality,
by finding capture strategies that are provably time-
optimal. We therefore start from first principles, by for-
mally defining the notion of a capture sequence and of its
synthetic depth of field:

Definition 1 (Photo Tuple). A tuple 〈 D, τ, v 〉 that
specifies a photo’s aperture diameter, exposure time, and focus
setting, respectively.

Definition 2 (Capture Sequence). A finite ordered sequence
of photo tuples.

Definition 3 (Synthetic Depth of Field). The union of
DOFs of all photo tuples in a capture sequence.

We will use two efficiency measures: the total exposure
time of a sequence is the sum of the exposure times of
all its photos; the total capture time, on the other hand,
is the actual time it takes to capture the photos with a
specific camera. This time is equal to the total exposure
time, plus any overhead caused by camera internals
(computational and mechanical). We now consider the
following general problem:

Light-Efficient Photography: Given a set D
of available aperture diameters, construct a capture
sequence such that: (1) its synthetic DOF is equal to
[α, β]; (2) all its photos have exposure level L∗; (3)
the total exposure time (or capture time) is smaller
than τone; and (4) this time is a global minimum
over all finite capture sequences.

Intuitively, whenever such a capture sequence exists, it
can be thought of as being optimally more efficient than
single-shot photography in gathering light. Below we
analyze three instances of the light-efficient photography
problem. In all cases, we assume that the exposure level
L∗, depth of field [α, β], and aperture set D are known
and fixed.

3.1 Noise and Quantization Properties

Because we hold exposure level constant and fix the
sensor gain, all photos we consider have similar noise
properties. This follows from the fact that with fixed



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 1, NO. 1, JANUARY 2009 5

sensor gain most sources of noise (photon noise, sen-
sor noise, and quantization noise) depend only on the
number of photons collected. The only exception to this
is thermal noise, which increases with exposure time
[1]. As a result, the photos in a light-efficient sequence,
which involve shorter exposure times, will have no
higher noise than the corresponding narrow-aperture
single shot.

Though we have not explored this here, compositing
techniques that involve blending photos [25] rather than
selecting in-focus pixels [26] present further opportuni-
ties for noise reduction for light-efficient sequences.

Another consequence of holding exposure level con-
stant is that all photos we consider have the same
dynamic range, since all photos are exposed to the
same brightness, and have similar noise properties for
quantization. Standard techniques for HDR imaging [23],
[30] are complementary to our analysis, since we can
apply light-efficient capture for each exposure level.

4 THEORY OF LIGHT-EFFICIENT PHOTOGRA-
PHY

4.1 Continuously-Variable Aperture Diameters

Many manual-focus SLR lenses as well as
programmable-aperture systems [14] allow their
aperture diameter to vary continuously within some
interval D = [Dmin, Dmax]. In this case, we prove that
the optimal capture sequence has an especially simple
form—it is unique, it uses the same aperture diameter
for all tuples, and this diameter is either the maximum
possible or a diameter close to that maximum.

More specifically, consider the following special class
of capture sequences:

Definition 4 (Sequences with Sequential DOFs). A cap-
ture sequence has sequential DOFs if for every pair of adjacent
photo tuples, the right endpoint of the first tuple’s DOF is the
left endpoint of the second.

The following theorem states that the solution to
the light-efficient photography problem is a specific se-
quence from this class:

Theorem 1 (Optimal Capture Sequence for Con-
tinuous Apertures). (1) If the DOF endpoints satisfy
β < (7 + 4

√
3)α, the sequence that globally minimizes total

exposure time is a sequence with sequential DOFs whose
tuples all have the same aperture. (2) Define D(k) and n as
follows:

D(k) = c
k
√
β + k

√
α

k
√
β − k

√
α

, n =






log α
β

log
(

Dmax−c
Dmax+c

)




 . (9)

The aperture diameter D∗ and length n∗ of the optimal
sequence is given by

(D∗, n∗) =

{

(D(n), n) if D(n) >
√

n
n+1 Dmax ,

(Dmax, n+ 1) otherwise.
(10)
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Fig. 4. Optimal light-efficient photography of a “dark”

subject using a lens with a continuously-variable aperture

(f = 85mm). To cover the DOF ([110 cm, 124 cm]) in a

single photo, we need a long 1.5 s exposure to achieve the

desired exposure level. Together, the two graphs specify

the optimal capture sequences when the aperture diam-

eter is restricted to the range [f /16, Dmax]; for each value

of Dmax, Theorem 1 gives a unique optimal sequence. As

Dmax increases, the number of photos (left) in the optimal

sequence increases, and the total exposure time (right)

of the optimal sequence falls dramatically. The dashed

lines show that when the maximum aperture is f /1.2

(71mm), the optimal synthetic DOF consists of n∗ = 13
photos (corresponding to D∗ = 69mm), which provides a

speedup of 13× over single-shot photography.

Theorem 1 specifies the optimal sequence indirectly,
via a “recipe” for calculating the optimal length and
the optimal aperture diameter (Eqs. (9) and (10)). Infor-
mally, this calculation involves three steps. The first step
defines the quantity D(k); in our proof of Theorem 1
(see Appendix A), we show that this quantity represents
the only aperture diameter that can be used to “tile”
the interval [α, β] with exactly k photo tuples of the
same aperture. The second step defines the quantity n;
in our proof, we show that this represents the largest
number of photos we can use to tile the interval [α, β]
with photo tuples of the same aperture. The third step
involves choosing between two “candidates” for the
optimal solution—one with n tuples and one with n+1.

Theorem 1 makes explicit the somewhat counter-
intuitive fact that the most light-efficient way to span a
given DOF [α, β] is to use images whose DOFs are very
narrow. This fact applies broadly, because Theorem 1’s
inequality condition for α and β is satisfied for all lenses
for consumer photography that we are aware of (e.g., see
[31]).4 See Figs. 4 and 5 for an application of this theorem
to a practical example.

Note that Theorem 1 specifies the number of tuples
in the optimal sequence and their aperture diameter,
but does not specify their exposure times or focus set-
tings. The following lemma shows that specifying those
quantities is not necessary because they are determined

4. To violate the condition, a lens must have an extremely short
minimum focusing distance of under 1.077f . Even for macro lenses
that state a minimum focusing distance of 0 the condition is typically
not violated; this distance is measured relative to the front-most lens
surface, while the effective lens center is deeper inside.
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uniquely. Importantly, Lemma 1 gives us a recursive
formula for computing the exposure time and focus
setting of each tuple in the sequence:

Lemma 1 (Construction of Sequences with Sequential
DOFs). Given a left DOF endpoint α, every ordered sequence
D1, . . . , Dn of aperture diameters defines a unique capture
sequence with sequential DOFs whose n tuples are

〈

Di ,
L∗

Di
2 ,

Di + c

Di

αi

〉

, i = 1, . . . , n , (11)

with αi given by the following recursive relation:

αi =

{

α if i = 1 ,
Di+c
Di−c

αi−1 otherwise.
(12)

4.2 Discrete Aperture Diameters

Modern auto-focus lenses often restrict the aperture
diameter to a discrete set of choices, D = {D1, . . . , Dm}.
These diameters form a geometric progression, spaced
so that the aperture area doubles every two or three
steps. Unlike the continuous case, the optimal capture
sequence is not unique and may contain several distinct
aperture diameters. To find an optimal sequence, we
reduce the problem to integer linear programming [32]:

Theorem 2 (Optimal Capture Sequence for Discrete
Apertures). There exists an optimal capture sequence with
sequential DOFs whose tuples have a non-decreasing sequence
of aperture diameters. Moreover, if ni is the number of
times diameter Di appears in the sequence, the multiplicities
n1, . . . , nm satisfy the integer program

minimize
∑m

i=1 ni
L∗

Di
2 (13)

subject to
∑m

i=1 ni log
Di−c
Di+c

≤ log α
β

(14)

ni ≥ 0 (15)

ni integer . (16)

See Appendix A for a proof. As with Theorem 1,
Theorem 2 does not specify the focus settings in the
optimal capture sequence. We use Lemma 1 for this
purpose, which explicitly constructs it from the apertures
and their multiplicities.

While it is not possible to obtain a closed-form ex-
pression for the optimal sequence, solving the integer
program for any desired DOF is straightforward. We use
a simple branch-and-bound method based on successive
relaxations to linear programming [32]. Moreover, since
the optimal sequence depends only on the relative DOF
size α

β
, we pre-compute it exactly for all relative sizes

and store it in a lookup table (Fig. 6a).

4.3 Discrete Aperture Diameters Plus Overhead

Our treatment of discrete apertures generalizes easily to
account for camera overhead. We model overhead as
a per-shot constant, τover , that expresses the minimum
delay between the time that the shutter closes and the
time it is ready to open again for the next photo. To find
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Fig. 5. The effect of camera overhead for various frame-

per-second (fps) rates. Each point in the graphs repre-

sents the total capture time of a sequence that spans

the DOF and whose photos all use the diameter D(n)
indicated. Even though overhead reduces the efficiency of

long sequences, capturing synthetic DOFs is faster than

single-shot photography even for low-fps rates; for current

off-the-shelf cameras with high-fps rates, the speedups

can be very significant.

the optimal sequence, we modify the objective function
of Theorem 2 so that it measures for total capture time
rather than total exposure time:

minimize
∑m

i=1 ni [ τ
over + L∗

Di
2 ] . (17)

Clearly, a non-negligible overhead penalizes long cap-
ture sequences and reduces the synthetic DOF advan-
tage. Despite this, Fig. 6b shows that synthetic DOFs
offer significant speedups even for current off-the-shelf
cameras. These speedups will be amplified further as
camera manufacturers continue to improve their frames-
per-second rate.

5 DEPTH OF FIELD COMPOSITING AND

RESYNTHESIS

While each light-efficient sequence captures a synthetic
DOF, merging the input photos into a single photo with
the desired DOF requires further processing. To achieve
this, we use an existing depth-from-focus and composit-
ing technique [26], and propose a simple extension that
allows us to reshape the DOF, to synthesize photos with
new camera settings as well.

DOF Compositing. To reproduce the desired DOF, we
adopted the Photomontage method [26] with default
parameters, which is based on maximizing a simple
“focus measure” that evaluates local contrast according
to the difference-of-Gaussians filter. In this method, each
pixel in the composite has a label that indicates the
input photo for which the pixel is in-focus. The pixel
labels are then optimized using a Markov random field
network that is biased toward piecewise smoothness
[33]. Importantly, the resulting composite is computed
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Fig. 6. Optimal light-efficient photography with discrete apertures, shown for a Canon EF85mm 1.2L lens (23

apertures, illustrated in different colors). (a) For a depth of field whose left endpoint is α, we show optimal capture

sequences for a range of relative DOF sizes α
β

. These sequences can be read horizontally, with subintervals

corresponding to the apertures determined by Theorem 2. The diagonal dotted line shows the minimum DOF to

be spanned. (b) Visualizing the optimal capture sequence for the DOF [α, β] for differently levels of camera overhead.

Note that as the overhead increases (i.e., lower frames per second rates), the optimal sequence involves fewer photos

with larger DOFs (i.e., smaller apertures).

as a blend of photos in the gradient domain, which
reduces artifacts at label boundaries, including those due
to misregistration.

3D Reconstruction. The DOF compositing operation
produces a coarse depth map as an intermediate step.
This is because labels correspond to input photos, and
each input photo defines an in-focus depth according
to the focus setting with which it was captured. As our
results show, this coarse depth map is sufficient for good-
quality resynthesis (Figs. 7–9). For greater depth accu-
racy, particularly when the capture sequence consists of
only a few photos, we can apply more sophisticated
depth-from-defocus analysis, e.g., [6], that reconstructs
depth by modeling how defocus varies over the whole
sequence.

Synthesizing Photos for Novel Focus Settings and
Aperture Diameters. To synthesize novel photos with
different camera settings, we generalize DOF composit-
ing and take advantage of the different levels of defo-
cus throughout the capture sequence. Intuitively, rather
than selecting pixels at in-focus depths from the input
sequence, we use the recovered depth map to select
pixels with appropriate levels of defocus according to
the desired synthetic camera setting.

We proceed in four basic steps. First, given a specific
focus and aperture setting, we use Eq. (4) and the coarse
depth map to assign a blur diameter to each pixel in the
final composite. Second, we use Eq. (4) again to deter-
mine, for each pixel in the composite, the input photo
whose blur diameter that corresponds to the pixel’s
depth matches most closely. Third, for each depth layer,
we synthesize a photo with the novel focus and aperture
setting, under the assumption that the entire scene is
at that depth. To do this, we use the blur diameter for
this depth to define an interpolation between two of the
input photos. Fourth, we generate the final composite

by merging all these synthesized images into one photo
using the same gradient-domain blending as in DOF
compositing, and using the same depth labels.5

To interpolate between the input photos we currently
use simple linear cross-fading, which we found to be
adequate when the DOF is sampled densely enough
(i.e., with 5 or more images). For greater accuracy when
fewer input images are available, more computationally
intensive frequency-based interpolation [19] could also
be used. Note that blur diameter can also be extrapo-
lated, by synthetically applying the required additional
blur. There are limitations, however, to this extrapola-
tion. While extrapolated wider apertures can model the
resulting increase in defocus, we have limited ability to
reduce the DOF in sharp regions of an input image. That
would entail a form of super-resolution, decomposing
the in-focus region into finer depth gradations [34].

6 RESULTS AND DISCUSSION

To evaluate our technique we show results and timings
for experiments performed with two different cameras—
a high-end digital SLR and a compact digital camera. All
photos were captured at the same exposure level for each
experiment, as determined by the camera’s built-in light
meter. In each case, we captured (1) a narrow-aperture
photo, which serves as ground truth, and (2) the optimal
light-efficient capture sequence for the equivalent DOF.6

The digital SLR we used was the Canon EOS-1Ds
Mark II (HAMSTER and FACE datasets) with a wide-
angle fixed focal length lens (Canon EF85mm 1.2L). We
operated the camera at its highest resolution of 16MP
(4992 × 3328) in RAW mode. To define the desired

5. Note that given a blur diameter there are two possible depths
that correspond to it, one on each side of the focus plane (Fig. 3b). We
resolve this by choosing the matching input photo whose focus setting
is closest to the synthetic focus setting.

6. For additional results and videos, see http://www.ttic.edu/
hasinoff/lightefficient/.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 1, NO. 1, JANUARY 2009 8

(a) photo 3 of 14 @ f/1.2 (b) synthetic DOF composite (c) 1 photo @ f/16
exposure time: 5ms total exposure time: 70ms exposure time: 800ms

(d) coarse depth map, (e) synthesized f/2.8 aperture, (f) synthesized f/2.8 aperture,
labels from DOF composite same focus setting as (a) refocused further

Fig. 7. HAMSTER dataset. Light efficient photography timings and synthesis, for several real scenes, captured using a

compact digital camera and a digital SLR. (a) Sample wide-aperture photo from the synthetic DOF sequence. (b) DOF

composites synthesized from this sequence. (c) Narrow-aperture photos spanning an equivalent DOF, but with much

longer exposure time. (d) Coarse depth map, computed from the labeling we used to compute (b). (e) Synthetically

changing aperture size, focused at the same setting as (a). (f) Synthetically changing focus setting as well, for the

same synthetic aperture as (e).

DOF, we captured a narrow-aperture photo using an
aperture of f/16. For both datasets, the DOF we used
was [98 cm, 108 cm], near the minimum focusing distance
of the lens, and the narrow-aperture photo required an
exposure time of 800ms.

The compact digital camera we used was the Canon S3
IS, at its widest-angle zoom setting with a focal length of
6mm (SIMPSONS dataset). We used the camera to record
2MP (1600 × 1200 pixels) JPEG images. To define the
desired DOF, we captured a photo with the narrowest
aperture of f/8. The DOF we used was [30 cm, 70 cm],
and the narrow-aperture photo required an exposure
time of 500ms.

• HAMSTER dataset Still life of a hamster figurine
(16 cm tall), posed on a table with various other
small objects (Fig. 7). The DOF covers the hamster

and all the small objects, but not the background
composed of cardboard packing material.

• FACE dataset Studio-style 2/3 facial portrait of
a subject wearing glasses, resting his chin on his
hands (Fig. 8). The DOF extends over the subject’s
face and the left side of the body closest the camera.

• SIMPSONS dataset Near-macro sequence of a
messy desk (close objects magnified 1:5), covered
in books, papers, and tea paraphernalia, on top of
which several plastic figurines have been arranged
(Fig. 9). The DOF extends from red tea canister to
the pale green book in the background.

Implementation details. To compensate for the distor-
tions that occur with changes in focus setting, we align
the photos according to a one-time calibration method
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(a) photo 7 of 14 @ f/1.2 (b) synthetic DOF composite (c) 1 photo @ f/16
exposure time: 5ms total exposure time: 70ms exposure time: 800ms

(d) coarse depth map, (e) synthesized f/2.8 aperture, (f) synthesized f/2.8 aperture,
labels from DOF composite same focus setting as (a) refocused closer

Fig. 8. FACE dataset. Light efficient photography timings and synthesis, for several real scenes, captured using

a compact digital camera and a digital SLR. (a) Sample wide-aperture photo from the synthetic DOF sequence.

(b) DOF composites synthesized from this sequence. (c) Narrow-aperture photos spanning an equivalent DOF, but

with much longer exposure time. (d) Coarse depth map, computed from the labeling we used to compute (b). Tile-

based processing leads to depth artifacts in low-texture regions, but these do not affect the quality of resynthesis. (e)

Synthetically changing aperture size, focused at the same setting as (a). (f) Synthetically changing focus setting as

well, for the same synthetic aperture as (e).

that fits a simplified radial magnification model to focus
setting [35].

We determined the maximum acceptable blur diame-
ter, c, for each camera by qualitatively assessing focus
using a resolution chart. The values we used, 25µm (3.5
pixels) and 5µm (1.4 pixels) for the digital SLR and
compact camera respectively, agree with the standard
values cited for sensors of those sizes [29].

To process the 16MP synthetic DOFs captured with
the digital SLR more efficiently, we divided the input
photos into tiles of approximately 2MP each, overlap-
ping their neighbors by 100 pixels, so that all compu-
tation could take place in main memory. As Fig. 8d
illustrates, merging per-tile results that were computed
independently can introduce depth artifacts along tile

boundaries. In practice, these artifacts do not pose prob-
lems for resynthesis, because they are restricted to tex-
tureless regions, whose realistic resynthesis does not
depend on accurate depth.

Timing comparisons and optimal capture sequences.
To determine the optimal capture sequences, we as-
sumed zero camera overhead and applied Theorem 2
for the chosen DOF and exposure level, according to
the specifications of each camera and lens. The opti-
mal sequences involved spanning the DOF using the
largest aperture in both cases. As Figs. 7–9 show, these
sequences led to significant speedups in exposure time—
11.9× and 2.5× for our digital SLR and compact digital
camera respectively.

For a hypothetical camera overhead of 17ms (cor-
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(a) photo 1 of 4 @ f/2.7 (b) synthetic DOF composite (c) 1 photo @ f/8
exposure time: 50ms total exposure time: 200ms exposure time: 500ms

(d) coarse depth map, (e) synthesized f/3.2 aperture, (f) synthesized f/3.2 aperture,
labels from DOF composite same focus setting as (a) refocused further

Fig. 9. SIMPSONS dataset. Light efficient photography timings and synthesis, for several real scenes, captured using a

compact digital camera and a digital SLR. (a) Sample wide-aperture photo from the synthetic DOF sequence. (b) DOF

composites synthesized from this sequence. (c) Narrow-aperture photos spanning an equivalent DOF, but with much

longer exposure time. (d) Coarse depth map, computed from the labeling we used to compute (b). (e) Synthetically

changing aperture size, focused at the same setting as (a). (f) Synthetically changing focus setting as well, for the

same synthetic aperture as (e).

responding to a 60 fps camera), the optimal capture
sequence satisfies Eq. (17), which changes the optimal
strategy for the digital SLR only (HAMSTER and FACE

datasets). At this level of overhead, the optimal sequence
for this case takes 220ms to capture. This reduces the
speedup to 3.6×, compared to 800ms for one narrow-
aperture photo.

DOF compositing. Despite the fact that it relies on a
coarse depth map, our compositing scheme is able to
reproduce high-frequency detail over the whole DOF,
without noticeable artifacts, even in the vicinity of depth

discontinuities (Figs. 7b, 8b, and 9b). Furthermore, even
grossly incorrect depth need not compromise the quality
of the composite if it occurs in dark or textureless regions
(Fig. 8d). The narrow-aperture photos represent ground
truth, and visually they are almost indistinguishable
from our composites.

The worst compositing artifact occurs in the HAM-
STER dataset, at the handle of the pumpkin container,
which is incorrectly assigned to a background depth
(Fig. 10). This is an especially challenging region be-
cause the handle is thin and low-texture compared to
the porcelain lid behind it. In general, our compositing
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narrow aperture synthetic DOF coarse depth map,
ground truth (f/16) composite from DOF composite

Fig. 10. Compositing failure for the HAMSTER dataset

(Fig. 7). The depth-from-focus method we use breaks

down at the handle of the pumpkin container, incorrectly

assigning it to a background layer. This part of the

scene is challenging to reconstruct because strong scene

texture is visible “through” the defocused handle [36],

whereas the handle itself is thin and low-texture.

method inherits the limitations of depth-from-focus: thin
foreground geometry, depth discontinuities, and semi-
transparent surfaces all present challenges that may lead
to compositing artifacts.

Note that while the synthesized photos satisfy our
goal of spanning a specific DOF, objects outside that
DOF will appear more defocused than in the correspond-
ing narrow-aperture photo. For example, the cardboard
background in the HAMSTER dataset is not included in
the DOF (Fig. 11). This background therefore appears
slightly defocused in the narrow-aperture f/16 photo,
and strongly defocused in the synthetic DOF composite.
This effect is expected, since outside the synthetic DOF,
both in the background and foreground, the blur diam-
eter will increase in proportion to the wider aperture
diameter used in the capture sequence (Eq. (4)). For some
applications, such as portrait photography, increased
defocus outside the DOF may be desirable.

Depth maps and DOF compositing. Despite being
more efficient to capture, sequences with synthetic DOFs
provide 3D shape information at no extra acquisition
cost (Figs. 7d, 8d, and 9d). Using the method described
in Sec. 5, we also show results of using this depth map to
compute novel images whose aperture and focus setting
was changed synthetically (Figs. 7e–f, 8e–f, and 9e–f).
As a general rule, the denser and more light-efficient
a capture sequence is, the wider the range of camera
settings it offers for synthetic refocusing.

Focus control and overhead. Neither of our cameras
provide the ability to control focus programmatically, so
we used several methods to circumvent this limitation.
For our digital SLR, we used a computer-controlled
stepping motor to drive the lens focusing ring mechani-
cally [37]. For our compact digital camera, we exploited
modified firmware that enables general scripting [38].
Unfortunately, both these methods incur high additional
overhead, limiting us to about 1 fps in practice.

Note that mechanical refocusing contributes relatively

narrow aperture synthetic DOF
ground truth (f/16) composite

Fig. 11. Background defocus for the HAMSTER dataset.

Because the cardboard background lies outside the DOF,

it is slightly defocused in the narrow-aperture photo. In

the synthetic DOF composite, however, this background is

defocused much more significantly. This effect is expected

since the composite only produces in-focus images for

objects lying within the DOF.

little overhead for the SLR, since ultrasonic lenses, like
the Canon EF85mm 1.2L we used, are fast. Our lens
takes 3.5ms to refocus from one photo in the sequence
to the next, for a total of 45ms to cover the largest
possible DOF spanned by a single photo. In addition,
refocusing can potentially be executed in parallel with
other tasks such as transferring the previous image to
memory. Such parallel execution already occurs in the
Canon’s “autofocus servo” mode, in which the camera
refocuses continuously on a moving subject.

While light-efficient photography may not be prac-
tical using our current prototypes, it will become in-
creasingly so, as newer cameras begin to expose their
focusing API directly and new CMOS sensors increases
throughput. For example, the Canon EOS-1D Mark III
provides remote focus control for all Canon EF lenses,
and the recently released Casio EX-F1 can capture 60 fps
at 2MP. Even though light-efficient photography will
benefit from the latest advances in capture speed, as
Fig. 5 shows, we can still realize time savings at slower
frames-per-second rates.

Handling motion in the capture sequence. Because
of the high overhead due to our focus control mecha-
nisms, we observed scene motion in two of our capture
sequences. The SIMPSONS dataset shows a subtle change
in brightness above the green book in the background,
because the person taking the photos moved during
acquisition, casting a moving shadow on the wall. This
is not an artifact and did not affect our processing.
For the FACE dataset, the subject moved slightly during
acquisition of the optimal capture sequence. To account
for this motion, we performed a global rigid 2D align-
ment between successive images using Lucas-Kanade
registration [39].

Despite this inter-frame motion, our approach for
creating photos with a synthetic DOF (Sec. 5) generates
results that are free of artifacts. In fact, the effects of this
motion are only possible to see only in the videos that we
create for varying synthetic aperture and focus settings.
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Specifically, while each still in the videos appears free of
artifacts, successive stills contain a slight but noticeable
amount of motion.

We emphasize the following two points. First, had we
been able to exploit the internal focus control mecha-
nism of the camera, the inter-frame motion for FACE

dataset would have been negligible, making the above
registration step unnecessary. Second, even with fast
internal focus control, residual motions would occur
when photographing fast-moving subjects; our results in
this sequence suggest that even in that case, our simple
merging method should be sufficient to handle such
motions with little or no image degradation.

7 RELATION TO ALTERNATIVE CAMERA DE-
SIGNS

While our analysis of light-efficient capture has assumed
a conventional camera, the benefits of our approach are
further reaching. More specifically, whatever effective ex-
tended DOF can be realized using an alternative camera
design, one can obtain complementary gains in efficiency
by using larger apertures and capturing more photos to
span the desired DOF.

More specifically, larger apertures have the general
property of decreasing effective DOF, but increasing
light-gathering ability much faster. Thus, the same effi-
ciency gains that we have demonstrated using a conven-
tional camera can be realized using alternative camera
designs as well. For example, light-efficient photography
with a coded aperture camera [15] entails using a larger
aperture and capturing multiple photos to span the DOF.

In the following, we discuss the relationship of the
standard camera to several computational camera de-
signs (in their single-shot form), which make various
tradeoffs to achieve extended DOF [17], [25].

Light field cameras. Light field cameras have commonly
been portrayed as extending DOF [16], [27], however
such comparisons rely on greatly increasing the number
of sensor pixels relative to the standard camera (e.g., by
a factor of 196 [27]). When the resolution of the sensor is
held constant, light field cameras must sacrifice spatial
resolution for increased directional sampling.

As explored in recent work, light field photographs
can be further enhanced by reconstructing depth and ap-
plying super-resolution techniques [40], [41]. However,
similar enhancements can also be applied to standard
photos, in which case super-resolution corresponds to
deconvolving the image.

In practice, light field cameras gather less light than
a conventional camera of the same dimensions, because
they require stopping down the lens to avoid overlap
between lenslet images [27], they may block light as
a result of the imperfect packing of elements [42], and
some designs include a coded mask near the sensor [16].

Wavefront coding and focus sweep. Wavefront coding
methods rely on a special optical element that effectively

spreads defocus over a larger DOF, and then recovers
the underlying in-focus image using deconvolution [11].
While this approach is powerful, it exploits a tradeoff
that is orthogonal to our analysis. Wavefront coding can
extend perceived DOF by a factor of 2 to 10, but it
suffers from reduced SNR at high frequencies [11], and
it provides no 3D information. The need to deconvolve
the image is another possible source of error, particularly
since the point-spread function is only approximately
constant over the extended DOF.

Similar in spirit, “focus sweep” methods [12], [13]
capture a single photo while continuously varying the
focus setting through the DOF. Like wavefront coding,
these methods lead to a deconvolution problem that is
approximately invariant to scene depth.

To compare these methods to our approach in a fair
way, one can fix the total capture time and examine the
SNR of the restored in-focus photos. In this context, for
a standard camera, we divide up the time budget and
capture multiple under-exposed photos. Comparisons of
this type are challenging, as accurately predicting SNR
requires a detailed model of sensor noise, an appropriate
scene prior, and the ability to characterize depth estima-
tion. For a more detailed analysis see [25], [43].

Aperture masks. Narrow apertures on a conventional
camera can be thought of as masks in front of the widest
aperture, however it is possible to block the aperture
using more general masks. For example, ring-shaped
apertures [44] have a long history in astronomy and
microscopy, and recent methods have used coded masks
in conjunction with regular lenses [15], [16].

Previous analysis suggests that ring-shaped apertures
yield little light-efficient benefit [44], and recent work
leads to similar conclusions for coded aperture masks
[24], [25], [43]. While coded masks preserve high fre-
quencies better than a standard camera, and so effec-
tively increase DOF, this advantage is generally out-
weighed by the loss in light-efficiency caused by block-
ing about half of the aperture.

Unlike the wavefront coding and focus sweep case,
processing a coded-aperture image depends on depth
recovery, which is non-trivial from a single photo. Again,
for more detailed analysis, see [25], [43].

8 CONCLUDING REMARKS

In this article we studied the use of dense, wide-aperture
photo sequences as a light-efficient alternative to single-
shot, narrow-aperture photography. While our emphasis
has been on the underlying theory, we believe that our
results will become increasingly relevant as newer, off-
the-shelf cameras enable direct control of focus and
aperture.

We are currently investigating several extensions to
the basic approach. First, we are interested in further
improving efficiency by taking advantage of the depth
information from the camera’s auto-focus sensors. Such
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information would let us save additional time, because
we would only have to capture photos at focus settings
that correspond to actual scene depths.

Second, we are generalizing the goal of light-efficient
photography to reproduce arbitrary profiles of blur di-
ameter vs. depth, rather than just reproducing the depth
of field. For example, this method could be used to
reproduce the defocus properties of the narrow-aperture
photo entirely, including defocus for background objects
as shown in Fig. 11.

APPENDIX A
LIGHT-EFFICIENCY PROOFS

Theorem 1 follows as a consequence of Lemma 1 and
four additional lemmas, while proving Theorem 2 is
more direct. We first state Lemmas 2–5 and prove them
below before addressing the theorems.

Lemma 2 (Efficiency of Sequences with Sequential
DOFs). For every sequence S , there is a sequence S ′ with
sequential DOFs that spans the same synthetic DOF and has
a total exposure time no larger than that of S .

Lemma 3 (Permutation of Sequences with Sequential
DOFs). Given the left endpoint, α, every permutation of
D1, . . . , Dn defines a capture sequence with sequential DOFs
that has the same synthetic depth of field and the same total
exposure time.

Lemma 4 (Optimality of Maximizing the Number of
Photos). Among all sequences with up to n tuples whose
synthetic DOF is [α, β], the sequence that minimizes total
exposure time has exactly n of them.

Lemma 5 (Optimality of Equal-Aperture Sequences).
If β < (7 + 4

√
3)α, then among all capture sequences with

n tuples whose synthetic DOF is [α, β], the sequence that
minimizes total exposure time uses the same aperture for all
tuples. Furthermore, this aperture is equal to

D(n) = c
n
√
β + n

√
α

n
√
β − n

√
α

. (18)

Proof of Lemma 1. We proceed inductively, by defining
photo tuples whose DOFs “tile” the interval [α, β] from
left to right. For the base case, the left endpoint of the
first tuple’s DOF must be α1 = α. Now consider the
i-th tuple. Eq. (5) implies that the left endpoint αi and
the aperture diameter Di determine the DOF’s right
endpoint uniquely:

βi =
Di + c

Di − c
αi . (19)

The tuple’s focus setting in Eq. (11) now follows by
applying Eq. (6) to the interval [αi, βi]. Finally, since
the DOFs of tuple i and i + 1 are sequential, we have
αi+1 = βi.

Proof of Lemma 2. Let 〈 D, τ, v 〉 be a tuple in S ,
and let [α1, β1] be its depth of field. Now suppose that
S contains another tuple whose depth of field, [α2, β2],
overlaps with [α1, β1]. Without loss of generality, assume
that α1 < α2 < β1 < β2. We now replace 〈 D, τ, v 〉 with
a new tuple 〈D′, τ ′, v′ 〉 whose DOF is [α1, α2] by setting
D′ according to Eq. (5) and v′ according to Eq. (6). Since
the DOF of the new tuple is narrower than the original,
we have D′ > D and, hence, τ ′ < τ . Note that this tuple
replacement preserves the synthetic DOF of the original
sequence. We can apply this operation repeatedly until
no tuples exist with overlapping DOFs.

Proof of Lemma 3. From Eq. (11) it follows that the
total exposure time is

τ =
n∑

i=1

L∗

Di
2 , (20)

which is invariant to the permutation. To show that the
synthetic DOF is also permutation invariant, we apply
Eq. (19) recursively n times to obtain the right endpoint
of the synthetic DOF:

βn = α

n∏

i=1

Di + c

Di − c
. (21)

It follows that βn is invariant to the permutation.

Proof of Lemma 4. From Lemma 2 it follows that
among all sequences up to length n whose DOF is [α, β],
there is a sequence S∗ with minimum total exposure
time whose tuples have sequential DOFs. Furthermore,
Lemmas 1 and 3 imply that this capture sequence is
fully determined by a sequence of n′ aperture settings,
D1 ≤ D2 ≤ · · · ≤ Dn′ , for some n′ ≤ n. These settings
partition the interval [α, β] into n′ sub-intervals, whose
endpoints are given by Eq. (12):

α = α1 <

determined by S∗

︷ ︸︸ ︷

α2 < · · · < αn′ < βn′ = β . (22)

It therefore suffices to show that placing n′ − 1 points
in [α, β] is most efficient when n′ = n. To do this, we
show that splitting a sub-interval always produces a
more efficient capture sequence.

Consider the case n = 2, where the sub-interval to be
split is actually equal to [α, β]. Let x ∈ [α, β] be a splitting
point. The exposure time for the sub-intervals [α, x] and
[x, β] can be obtained by combining Eqs. (5) and (1):

τ(x) =
L

c2

(
x− α

x+ α

)2

+
L

c2

(
β − x

β + x

)2

, (23)

Differentiating Eq. (23) and evaluating it for x = α we
obtain

dτ

dx

∣
∣
∣
∣
x=α

= −4L

c2
(β − α)β

(β + α)3
< 0 . (24)

Similarly, it is possible to show that dτ
dx

is positive for
x = β. Since τ(x) is continuous in [α, β], it follows that
the minimum of τ(x) occurs strictly inside the interval.
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Hence, splitting the interval always reduces total expo-
sure time. The general case for n intervals follows by
induction.

Proof of Lemma 5. As in the proof of Lemma 4, we con-
sider the case where n = 2. From that lemma it follows
that the most efficient sequence involves splitting [α, β]
into two sub-intervals [α, x] and [x, β]. To prove Lemma 5
we now show that the optimal split corresponds to a
sequence with two identical aperture settings. Solving
for dτ

dx
= 0 we obtain four solutions:

x =

{

±
√

αβ ,
(8αβ +∆) ± (β − α)

√
∆

2(β + α)

}

, (25)

where ∆ = α2 − 14αβ + β2. The inequality condition of
Lemma 5 implies that ∆ < 0. Hence, the only real and
positive solution is x =

√
αβ. From Eq. (5) it now follows

that the intervals [α,
√
αβ] and [

√
αβ, β] both correspond

to an aperture equal to c

√
β+

√
α√

β−
√
α

. To prove the Lemma

for n > 2, we replace the sum in Eq. (23) with a sum
of n terms corresponding to the sub-divisions of [α, β],
and then apply the above proof to each pair of adjacent
endpoints of that subdivision. This generates a set of
relations, {αi =

√
αi−1αi+1}ni=2, which combine to define

Eq. (18) uniquely.

Proof of Theorem 1. We first consider the most effi-
cient capture sequence, S ′, among all sequences whose
synthetic DOF is identical to [α, β]. Lemmas 4 and 5
imply that the most efficient sequence (1) has maximal
length and (2) uses the same aperture for all tuples. More
specifically, consider such a sequence of n photos with
diameter Di = D(n), for all i, according to Eq. (18).
This sequence satisfies Eq. (21) with βn = β, and we
can manipulate this equation to obtain:

n =
log α

β

log
(

D(n)−c

D(n)+c

) . (26)

Note that while n increases monotonically with aperture
diameter, the maximum aperture diameter Dmax restricts
the maximal n for which such an even subdivision is
possible. This maximal n, whose formula is provided
by Eq. (9), can be found by evaluating Eq. (26) with an
aperture diameter of Dmax.

While S ′ is the most efficient sequence among those
whose synthetic DOFs equal to [α, β], there may be
sequences whose DOF strictly contains this interval that
are even more efficient. We now seek the most efficient
sequence, S ′′ among this class. To find it, we use two
observations. First, S ′′ must have length at most n + 1.
This is because longer sequences must include a tuple
whose DOF lies entirely outside [α, β]. Second, among
all sequences of length n+1, the most efficient sequence
is the one whose aperture diameters are all equal to the
maximum possible value, Dmax. This follows from the
fact that any choice of n+1 apertures is sufficient to span

the DOF, so the most efficient such choice involves the
largest apertures possible.

From the above considerations it follows that the opti-
mal capture sequence will be an equal-aperture sequence
whose aperture will be either D(n) or Dmax. The test in
Eq. (10) comes from comparing the total exposure times
of the sequences S ′ and S ′′ using Eq. (20). The theorem’s
inequality condition comes from Lemma 5.

Proof of Theorem 2. The formulation of the integer lin-
ear program in Eqs. (13)–(16) follows from our objective
of minimizing total exposure time, plus the constraint
that the apertures used in the optimal capture sequence
must span the desired DOF.

First, note that the multiplicities ni are non-negative
integers, since they correspond to the number of photos
taken with each discrete aperture Di. Second, we can
rewrite the total exposure time given by Eq. (20) in terms
of the multiplicities:

τ =
m∑

i=1

ni

L∗

Di
2 , (27)

This corresponds directly to Eq. (13), and is linear in the
multiplicities being optimized. Finally, we can rewrite
the expression for the right endpoint of the synthetic
DOF provided by Eq. (21) in terms of the multiplicities:

βm = α
m∏

i=1

(
Di + c

Di − c

)ni

. (28)

Because all sequences we consider are sequential, the
DOF [α, β] will be spanned without any gaps provided
that the right endpoint satisfies βm ≥ β. By combining
this constraint with Eq. (28) and taking logarithms, we
obtain the inequality in Eq. (14), which is linear in the
multiplicities as well.
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