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Abstract

In the last few years, new view synthesis has emerged as an important applica-
tion of 3D stereo reconstruction. While the quality of stereo has improved, it is still
imperfect, and a unique depth is typically assigned to every pixel. This is problem-
atic at object boundaries, where the pixel colors are mixtures of foreground and
background colors. Interpolating views without explicitly accounting for this effect
results in objects with a “cut-out” appearance.

To produce seamless view interpolation, we propose a method called boundary
matting, which represents each occlusion boundary as a 3D curve. We show how this
method exploits multiple views to perform fully automatic alpha matting and to
simultaneously refine stereo depths at the boundaries. The key to our approach is the
3D representation of occlusion boundaries estimated to sub-pixel accuracy. Starting
from an initial estimate derived from stereo, we optimize the curve parameters
and the foreground colors near the boundaries. Our objective function maximizes
consistency with the input images, favors boundaries aligned with strong edges,
and damps large perturbations of the curves. Experimental results suggest that this
method enables high-quality view synthesis with reduced matting artifacts.

Key words: Multi-view stereo, view synthesis, image matting, occlusion
boundaries, sub-pixel reconstruction, 3D curves

1 Introduction

Although stereo correspondence was one of the first problems in computer
vision to be extensively studied, automatically obtaining dense and accurate
estimates of depth from multiple images remains a challenging problem [1].
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Fig. 1. View synthesis with matting. The shaded polygon represents the foreground
object, and the overlaid squares represent pixels. If the object is represented with
an exact sub-pixel boundary model, the true distribution of α (per-pixel fraction
foreground contribution) can be recovered by integration. By contrast, synthesizing
new views from a pixel-level representation requires resampling α, which can lead
to blurring artifacts at object boundaries. The synthesized view corresponds to a
half-pixel translation, resampled with linear interpolation.

Most stereo research has been concerned solely with methods for producing
accurate depth maps, so interpolated views are rarely evaluated as results.
By contrast, our explicit goal is superior view synthesis from stereo. Even for
easy scenes in which all objects are opaque, diffuse, and well-textured, state-
of-the-art stereo techniques often fail to generate high-quality interpolated
views. Even if a perfect depth map were available, current methods for view
interpolation share two major limitations:

• Sampling blur. There is an effective loss of resolution caused by resampling
and blending the input views.

• Boundary artifacts. Foreground objects seem to pop out of the scene, as
in bad blue-screen composites, because most current methods do not per-
form matting to resolve mixed pixels at object boundaries into their fore-
ground and background components. (There are a few notable exceptions,
as discussed in the next section.)

In this paper, we focus on the issue of boundary artifacts and propose a
technique we call boundary matting to reduce such artifacts. Our technique, as
outlined in Figs. 2–3, combines ideas from image matting and stereo to resolve
mixed boundary pixels. Our approach consists of estimating 3D curves over
multiple views and uses stereo data to bootstrap this estimation.

The key feature of our approach is that occlusion boundaries are represented in
3D. This results in several improvements over the state of the art. First, com-
pared to video matting [2] and other methods that recover pixel-level mattes
for the input views [3–6], our method is theoretically better suited to view
synthesis, because it avoids the blurring associated with resampling those
mattes (Fig. 1). Second, our method performs automatic matting from im-
perfect stereo data, fully incorporating multiple views, for large-scale opaque
objects. Third, our method exploits information from matting to refine stereo
disparities along occlusion boundaries. Fourth, our method estimates occlu-
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sion boundaries to sub-pixel accuracy, suitable for super-resolution or zooming.
Fifth, our error metric is symmetric with respect to the input images, and so
does not overly favor specific frames.

Our approach is based on several assumptions. First, we assume that the scene
is made up of opaque Lambertian surfaces, i.e., surfaces that satisfy color con-
stancy across the different input views. In practice, we can handle scenes that
deviate somewhat from this assumption, treating non-Lambertian effects near
object boundaries as noise. Moreover, we do not consider wide-baseline stereo
configurations where these effects are most pronounced. Another important
assumption is that the projected 2D boundaries correspond to the same 3D
edge of an object. This is strictly true only for planar objects, however, this ap-
proximation is reasonable for small camera motion or relatively flat or distant
objects (see Sec. 3.1).

2 Previous work

In their seminal blue screen matting paper, Smith and Blinn [7] review tradi-
tional film-based matting techniques and propose a triangulation method for
matting static foreground objects using multiple images taken with different
backgrounds (see Sec. 3). More recent matting research has focused on natural
image matting, where the goal is to estimate the matte from a single image,
given regions hand-labelled as completely foreground and background [8–12,4].
These methods operate by propagating statistics of the labelled color distrib-
utions throughout the unlabelled regions, yielding impressive results. Chuang
et al. extend their approach from [9] using optical flow techniques to obtain a
semi-automated method for matting video sequences [2]. Most recently, stereo
data was used to automatically perform the initial labeling for natural image
matting, but the matting was estimated independently in each view [5].

Several researchers have also investigated an additive transparent image for-
mation model, useful for separating the reflections found on glass and specular
surfaces [13,14]. Along the same lines, additive transparency has been decom-
posed based on parameterizing the dominant motions in the scene [15].

There has been some work done on estimating transparency from stereo data
in general terms [6,16,17]. In [6], transparency was estimated in a volumet-
ric fashion along with depth, using a plane-sweep algorithm, generalized to a
four-dimensional xydα search space. Results were mainly shown for synthetic
problems, but even for those, the quality of interpolated views was limited.
Similarly, the iterative voxel reconstruction approach presented in [16] gave
results unsuitable for view synthesis, whereas [17] is more appropriate for vol-
umetric scenes that are semi-transparent everywhere. Mixed pixels for stereo
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Fig. 2. Block diagram describing the system architecture. The dashed lines indicate
that the objective function is used to optimize the parameters of the boundary curve
and the foreground colors.

have also been examined as a consequence of using mixture models for esti-
mating optical flow [18], and in developing matching metrics more robust to
mixing [19].

Most closely related to our work is the method proposed by Wexler et al. [3],
which also estimates matting by incorporating multiple views of a scene. How-
ever, as described in Sec. 3, this method effectively calculates alpha in the
reference view only, and therefore requires resampling the mixed pixels (i.e.,
alpha values) from other views. As shown in Fig. 1, this can introduce unde-
sirable blurring. Another basic limitation of this method is that high quality
stereo data is required everywhere in the image, and its performance on inac-
curate stereo is unclear. In practice both these problems were circumvented
in [3] by considering scenes consisting of two planar structures, and demon-
strating object insertion in the reference view rather than view synthesis. In
contrast, since our method is based on a 3D curve representation (see Sec. 3),
the alpha matte has a well-defined geometric interpretation that is consistent
across arbitrary nearby views. Moreover, we tolerate some inaccuracy in the
stereo data by simultaneously estimating the matting and refining the dispar-
ity estimates (i.e., by adjusting the boundary curve).

Our geometric view of α has precedence in work on (single view) user-assisted
segmentation of opaque objects [20,21]. Here, α is estimated from the frac-
tional pixel coverage given by a sub-pixel parametric edge model fit to the
object boundaries. Both methods require manual interaction at key frames,
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Fig. 3. Geometric view of the system. (a) Stereo depth information is used to detect
an occlusion boundary in the reference view, which is backprojected to 3D as our
initial curve estimate. The 3D curve is refined, along with estimates for F color, by
evaluating the projections of the curve in all input views. The value of α for a given
pixel can be computed from the projected curve geometrically. (b) In the simplest
case, α corresponds to the fraction of area on the F side of the curve. (c) Smoother
blurring of the continuous alpha matte is a more realistic model.

and neither extend readily to multiple views. By comparison, our method is
automatic, and multiple views are fully incorporated. Along similar lines, sub-
pixel edge geometry has been used to interpolate sparse point samples for
rendering synthetic scenes, to better respect object and shadow boundaries
[22]. In the recent matting literature [11,4], object boundary geometry has
been represented implicitly using smoothness priors on the alpha profile, in
order to regularize the matting. However, like the previous work, these meth-
ods require user interaction and only operate on individual images.

In one recent approach to view synthesis [23], the matting problem is handled
implicitly, by incorporating an image-based prior that describes the quality of
the final synthesized view in terms of how well it resembles exemplar patches
from the input images. If there are enough input images to adequately sample
alpha variation at the boundaries, this prior may indeed lead to plausible
view synthesis at the boundaries. The lack of an explicit boundary model,
however, means that compositing a new object into the scene, for example,
would be problematic. This image-based exemplar approach was also used in
[24], but they take the further step of estimating matting within each patch
by extrapolating the occluded background colors.
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3 Image formation model

To model the matting effects at occlusion boundaries, we use the well-known
compositing equation [7,25]

C = αF + (1 − α)B , (1)

which describes the observed composite color C as a blend of the foreground
color F and the background color B according to opacity α. The alpha matte
is typically given at the pixel level, so fractional α’s may be due to partial
pixel coverage of foreground objects at their boundaries or due to true semi-
transparency. In this work, we focus exclusively on case where objects are
opaque and alpha values are entirely due to the micro-geometry of partial
pixel coverage.

Our method for inverting Eq. (1) exploits stereo information, and extends
the triangulation method for matting [7]. In its classic form, the triangula-
tion method operates by observing foreground objects in front of V known
backgrounds, giving the linear system

{ Ci = αF + (1 − α)Bi }
V

i=1 , (2)

with 3V equations (one per RGB channel) in 3+1 unknowns (F and α). This
system is well-posed for V ≥ 2, provided that the background colors for each
pixel are different.

Instead of using a fixed camera and substituting different backgrounds behind
the foreground objects, we use multiple views to provide us with images of the
same foreground region against different backgrounds, as in [3]. This approach
is valid under the assumption that foreground color varies little over nearby
views, and provided that we can obtain the unoccluded background colors
using stereo.

Unlike our method, [3] is based directly on the framework of Eq. (2), where
α’s for corresponding pixels are assumed not to vary across viewpoint, so in
effect, α is estimated only in the reference view. By contrast, the 3D sub-
pixel boundary curves in our method lead to different α’s across viewpoint in
general. We therefore obtain the revised linear system

{ Ci = αiF + (1 − αi)Bi }
V

i=1 , (3)

consisting is 3V equations in 3 + V unknowns (F and {αi}). Another con-
sequence of viewpoint-varying alpha is that we can potentially resolve the
standard ambiguity where background color is constant over all views. Note
that we do not restrict our calculations to a reference image, as in [3].
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3.1 Boundary curves in 3D with blurring

We model the occlusion boundary of a foreground object as a single (pos-
sibly open) 3D curve. For such a curve to be globally consistent with all of
its projections, we assume that the occluding contours of the foreground ob-
jects are sufficiently sharp relative to both the closeness of the views and the
standoff distance of the cameras (unlike, e.g., [26], which assumes that the
object surface may be smoothly curved). Even for relatively smoother con-
tours, although the boundary curve only approximates a path through the
swept occlusion surface, this approximation may still be accurate enough to
improve our estimation of α. After refinement, our method localizes this curve
to sub-pixel precision.

In our approach, we model the 3D curve as a spline parameterized by control
points, θ. For now we take this curve to be piecewise linear, parameterized
using the (metric) 3D coordinates of the control points. While the extension
to higher-order splines should be straightforward, using linear splines affords us
ease of implementation and a simple way of modeling sharp corners. Moreover,
linear splines can model arbitrarily complicated curves given enough control
points. We can write the linear 3D spline in explicit parametric form as

S(t) =
n(θ)
∑

p=1

Bp(t)θp ,

for t ∈ [1, n(θ)], where n(θ) is the number of control points, and the bases
Bp(t) are linear hat functions centered on each knot,

Bp(t) =











t − p + 1, t ∈ [p − 1, p)
p + 1 − t, t ∈ [p, p + 1)
0, otherwise .

In practice, our control points are spaced several pixels apart and therefore
cannot model such extremely fine-scale objects as hair or foliage. Rather,
for such objects, splines can only approximate partial pixel coverage along
occlusion boundaries.

Given the camera projection matrix, Πi, for a particular view, we construct
a signed distance function from the projected curve, d(Πi, θ), defined to be
positive on the foreground side and negative on the background side. In the
ideal case, with a Dirac point spread function, the continuous alpha matte for
the i-th view is

αi(θ) =

{

1, d(Πi, θ) > 0
0, otherwise .

(4)

This is a simple 2D step function of the curve parameters (Fig. 3(b)).
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We simulate image blurring due to camera optics and motion by convolving
α with an isotropic 2D Gaussian function N (0, σ):

αi(θ, σ) = αi(θ) ∗ N (0, σ)

= 1
σ
√

2π

∫ d(Πi,θ)
−∞ exp

(

−t2

2σ2

)

dt .
(5)

This modified model gives us a smoothed step function for α (Fig. 3(c)),
parameterized using a single additional variable σ.

For a given pixel j, we can generate the resulting pixel-level α-value by in-
tegrating one of the continuous α functions proposed in Eqs. (4–5) over the
footprint of that pixel. For view i, this gives αij =

∫∫

j αi. For the ideal case
of Eq. (4), this is equivalent to computing the area on the foreground side
of the projected curve, which has a simple form when the curve is piecewise
linear. The blurred model of Eq. (5) is more complicated, so we approximate
the integral by supersampling. More specifically, we supersample by a factor
of 2 in the x- and y-dimensions.

3.2 Objective function

We formulate boundary matting as estimating the 3D boundary curve and
foreground colors that best fit the V input images. Our primary goal is to
minimize inconsistency with the images, according to the matting equation,
Eq. (1). This leads to a basic objective function encoding the total cost of
matting inconsistency:

O(θ, F ) =
∑V

i=1

∑Ni

j=1 [ Cij − αij(θ) Fj − (1 − αij(θ)) Bij ]2 , (6)

where Ni is the number of pixels along the curve in view i. In practice, we
evaluate this objective function over all pixels in a conservatively wide band
around the boundary curve (see, for example, Fig. 6(b)), to ensure that every
mixed pixel contributes to Eq. (6). Any pixel far enough from the boundary
to be purely foreground (α = 1) or background (α = 0) will have no effect
on the optimization, because the matting will have a trivial solution, namely
C = F or C = B.

If we are using the blurred image formation model from Eq. (5), we also need to
determine the optimal value for the blur parameter σ. Currently, we estimate
this parameter using a coarse exhaustive search, as an outer loop separate
from the rest of the optimization (Sec. 5).
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(a) (b) (c) (d)

Fig. 4. Boundary initialization. For a well-known stereo sequence, we show (a) the
reference image, (b) the disparity map calculated using [27], (c) the depth disconti-
nuity map, corresponding to the thresholded gradient of disparity, and (d) the initial
occlusion boundaries extracted from (c).

4 Initialization using stereo data

The starting point for boundary matting is an initialization derived from stereo
and the attendant camera calibration. Boundary matting can use stereo data
from any source; however, we chose to use results generated with [27] because
its performance at occlusion boundaries was reasonable and an implementation
was readily available. This method computes stereo by combining shiftable
windows for matching with global minimization using graph cuts for visibility
reasoning.

While initialization depends on the accuracy of the stereo data, the matting is
later refined using an optimization based on Eq. (6). Moreover, view synthesis
with boundary matting should always constitute an improvement over näıve
view synthesis, regardless of the source of stereo data.

In this section, we describe how to extract initial occlusion boundaries θ0 from
the stereo data, how to estimate the clean-plate background B for pixels near
the occlusion boundaries, how to initialize our estimate of foreground color
F 0, and how to construct a prior favoring strong edges at the boundary that
can be used to tweak the initial guess.

4.1 Boundary initialization and approximation

To extract the initial curves θ0 corresponding to occlusion boundaries, we first
form a depth discontinuity map by applying a manually-selected threshold to
the gradient of the disparity map for the reference view (Fig. 4(b–c)). This
threshold should be chosen conservatively to include all object boundaries of
interest with some possible spurious structure, yet not so high as to identify
many discontinuities across smooth surfaces. For all of our experiments, we
used the same disparity gradient threshold of 2.0 pixels.

Next, we greedily remove the longest four-connected curves from the depth
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(a) (b) (c) (d)

Fig. 5. Spline fitting to an occlusion boundary. (a) Pixel-level occlusion boundary
extracted from a region at the top-middle of Fig. 4(a). We fit a piecewise-linear 3D
spline to this boundary and show it projected into the 2D image, overlaid at sub-pixel
resolution (b–d). (b) Initial fit to the extracted boundary. (c) Adaptive subdivision
in regions of poor matting. (d) Snapping to the strongest nearby edge within 1 pixel.

discontinuity map until no curves longer than some minimum length remain
(Fig. 4(d)):

(1) Partition the depth discontinuity map into four-connected components.
(2) Compute the diameter (the “longest shortest path”) of each component

(e.g., using breadth-first search [28]).
(3) Greedily identify the boundary corresponding to the largest diameter,

and remove it from the depth discontinuity map.
(4) Repeat Steps (1–3) until no diameter of some minimum length remains

(we use a threshold of 70 pixels).

By growing the longest curves possible, we eliminate the small spurs and loops
that are mainly due to inaccurate stereo.

This boundary extraction method is related to more sophisticated techniques
for segmenting range images (see [29] for a review). However, for the purpose
of reducing matting artifacts in view synthesis, our simpler method suffices.
This is because matting artifacts will only occur when sufficient parallax causes
some foreground object to be composited over a new background, i.e., exactly
at the depth discontinuities identified by stereo.

To transform the extracted curves into 3D, we backproject the points along
each curve using the (foreground-side) depth from stereo (Fig. 3). We then fit
a 3D spline curve to these points (Fig. 5), simply by setting the control points
θ0 to be every fifth point along the four-connected curve (Fig. 5(b)).

After initial boundary extraction, we evaluate the curve for consistency with
the matting equation (see Sec. 5 for more details). In regions with high matting
error, we subdivide the curve once (Fig. 5(c)). While we have experimented
with a general adaptive subdivision scheme, the four-connected boundary gives
undesired staircase artifacts with tighter stopping criteria.
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Fig. 6. Estimation of the clean-plate background. (a) The region labelled F is a mixed
pixel in all views. The background colors B2 and B3 can be obtained from view 1, by
following the dashed lines. However, B1 is occluded in all views. (b–c) A region of
Fig. 4(a) is shown, (b) with pixels near the boundary highlighted in black, and (c)
with these pixels filled in using our clean-plate background estimate.

We also modify our initial guess to reflect the fact that occlusion boundaries
tend to coincide with strong edges. To do this we perturb the control points
in the reference image to the local peak of an edge potential field (Fig. 5(d)).
We first apply a multiscale difference-of-Gaussians edge detector to each im-
age, localizing edgels to sub-pixel precision and use this to pre-compute edge
potential fields, {Ei}, quantized to 0.25 pixels. We define these fields as the
sum of “forces” proportional to edgel strength and inversely proportional to
squared edgel distance. Although edges are a strong cue for occlusion bound-
aries in many scenes, this heuristic can also be distracted by spurious internal
texture, so we limit the perturbation to a one-pixel radius neighborhood.

4.2 Background (clean plate) estimation

As discussed in Sec. 3, using stereo data to triangulate the matting prob-
lem requires that the background B be known. A “clean plate” background
refers to an image where foreground pixels are replaced with (unmixed) back-
ground colors, and is specified in many systems using manual interaction at
keyframes [2,3]. However, this process can in theory be made automatic by
exploiting stereo information to grab corresponding background colors from
nearby frames in which the background is exposed (Fig. 6). Note that aside
from specifying the initial 3D boundary curve, the only place our approach
relies on accurate stereo is in warping the background from nearby views.

For a given boundary pixel, we find potentially corresponding background col-
ors by forward-warping that pixel to all other views. This warping is performed
according to the depth on the background side of the boundary, as given by
stereo. If a forward-warped pixel has background depth in the new view, it be-
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comes a candidate source from which to grab the background. We use nearest-
neighbor sampling so that any mixed pixels falsely labeled as background can
be more easily identified, and will not bias the background estimation.

Further to this end, we use a color inconsistency measure to select the cor-
responding background pixel most likely to consist of pure background color.
For each candidate background pixel, we compute its “color inconsistency”
as the maximum L2 distance in RGB space between its color and any of its
eight-neighbors that are also labeled at background depth. We then choose
the background pixel with minimum color-inconsistency out of all views. This
heuristic assumes slowly varying background texture, but seems to work well
in most of our cases.

If a corresponding background pixel cannot be estimated (i.e., it is occluded
by the foreground object in all views), it is marked as such and this pixel is not
used directly in the optimization. In rendering the results, we either highlight
these pixels as unknown, or use the näıve non-matting approach to determine
color (i.e., F = B = C) but still estimate α from the curve.

4.3 Foreground estimation

Given an initial estimate for the curve parameters θ0 (which determines α),
along with the clean-plate background B and input images C, we can obtain a
reasonable initialization for the foreground colors F 0 by simply inverting the
matting equation, Eq. (1):

F 0(α) = (C − (1 − α)B)/α . (7)

The implied correspondence between foreground pixels is determined from
stereo. Analogous to clean plate background estimation, we use the foreground-
side depth from the boundary curve to warp the boundary pixels in the refer-
ence view to all other views.

For each pixel, we aggregate the foreground color estimates of Eq. (7) over all
V views for robustness. To do this we take the weighted average,

F 0 =

∑V
i=1 α2

i F
0(αi)

∑V
i=1 α2

i

, (8)

with the weights constructed to favor foreground color information from pix-
els containing more foreground, based on the curve estimate. Note that this
formula is also the statistically optimal least-squares estimate for F given the
set of V i.i.d. noise-contaminated composite color pixels, Ci = αiF + (1 −
αi)Bi + N (0, σnoise).
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5 Parameter optimization

Now that we have constructed the clean-plate background, B (Sec. 4.2), and
obtained initial estimates for the parameters of each boundary curve, θ0 (Sec. 4.1),
and the foreground colors, F 0 (Sec. 4.3), we are in a position to refine these
estimates to better fit the images.

Note that the objective function, Eq. (6), is highly non-linear, with bilinearity
in the variables, perspective projection, and a complicated form for alpha
as the partial pixel coverage of a projected spline (possibly convolved some
blurring). Therefore we resort to Levenberg-Marquardt nonlinear least-squares
optimization [30] to refine the boundaries and foreground colors.

5.1 Two-stage estimation

In our experience, it is faster and more stable to first optimize the curve
parameters only, dynamically updating our estimate of the foreground colors
based on the alpha values derived from the curve, i.e., F = F (θ) (Sec. 4.3). We
thus suggest a two-stage approach, where the optimized curve from the first
stage is used as an initial guess for the joint estimation of both the curve and
foreground colors. For each boundary curve, we do the following procedure:

(1) Refine the curve parameters by solving

θ1 = arg min
θ

O(θ, F (θ)) ,

using Levenberg-Marquardt optimization, initialized with θ = θ0 (Sec. 4.1)
and F = F (θ0) (Sec. 4.3).

(2) Jointly refine the curve parameters and the foreground colors, by solving

{θ, F} = arg min
{θ,F}

O(θ, F ) ,

using Levenberg-Marquardt optimization, initialized from Step (1) with
θ = θ1 and F = F (θ1).

(3) (optional) Repeat Steps (1–2), for different values of the blur parameter
σ, selecting the one that gives the lowest least-squares error.

We use an implementation of Levenberg-Marquart algorithm based on the
Minpack library [31], where the step size and stopping criteria are both related
to a parameter encoding the predicted accuracy of the objective function (we
set this to 1.0 × 10−4).
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This optimization refines each curve and separates mixed pixels into back-
ground and foreground components. Note that if our initial estimate is more
than one pixel away from the true boundary, we may get trapped in a local
minimum, as differential changes to the curve parameters may not improve
matting consistency. However, even for such gross stereo errors, the control
points may have wide enough support that some pixels may gradually guide
the curve closer to the true solution. The blurred image formation model of
Eq. (5), i.e., σ > 0, is potentially more resilient to these errors than the basic
model, because the control points have a larger support still.

While all gradients can be evaluated analytically, from an implementation
standpoint it is more convenient to calculate the Jacobian for partial pixel
coverage, [ ∂αij

∂Πiθp
]ij, p , using a finite difference approximation. Note that this

Jacobian is very sparse, as the locality of the spline ensures that each control
point θp influences a limited number of pixels. For efficiency we therefore
restrict gradient computation to these salient pixels.

5.2 Adding edge snapping and state damping

We also created a penalty function to bias the optimization to areas with
stronger edges, so the overall optimization can be considered a kind of 3D
snake [32]. This function reuses the edge potential fields, {Ei}, described in
Sec. 4.1, normalized to have a maximum of one. We project all n(θ) control
points, denoted {θp}, into each view using the camera matrices {Πi}, then
calculate a penalty term proportional to inverse edge strength,

P1(θ) =
∑V

i=1

∑n(θ)
p=1 [ 1 − Ei(Πiθp) ]2 , (9)

for the control points over all views.

An additional penalty function is used to discourage the control points from
being displaced too far from their starting positions,

P2(θ) =
∑V

i=1

∑n(θ)
p=1

[

max
(

0, ||Πiθp − Πiθ
0
p||

2 − 4.0
) ]2

, (10)

where θ0
p is the initial location of the p-th control point. The penalty is zero

for displacements of 2.0 pixels or less, but increases rapidly after that. This
function helps avoid degenerate configurations where the curve collapses on
itself.

We add these penalty terms to the original objective function, Eq. (6), and
express this succinctly as:

Onew(θ, F ) = O(θ, F ) + λ1P1(θ) + λ2P2(θ) . (11)
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Moderate values of λ1 and λ2 ensure that neither edges nor initial positions
exert too much influence over the optimization. In practice, the optimization
did not seem overly sensitive to these parameters, so the same setting was
used across all datasets. These parameters were normalized by k = N/n(θ),
and set to λ1 = 0.015k and λ2 = 0.053k.

6 Results

For all datasets, we used five input views, with the middle view designated as
the reference view for initialization. While our prototype system was not de-
signed for efficiency, a typical run for a 300-pixel boundary in five views could
take approximately five minutes to complete, converging within 20 iterations.

For our first experiment, we used a synthetic dataset (448 × 336 pixels), con-
sisting of a planar ellipse-shaped sprite with pure translation relative to the
background, in order to investigate the behavior of boundary matting under
noise. Fig. 7 shows that boundary matting is visually indistinguishable from
the ground truth in the noise-free case, where alpha values over the boundary
pixels have an RMS error of 0.02. Boundary matting demonstrates further re-
silience to artificial noise in the input images, and the shape of the recovered
boundary degrades gracefully as the noise level increases.

Next, we applied boundary matting to insert a new object between the fore-
ground and background layers of three well-known stereo datasets (Fig. 8): the
flower garden sequence (Fig. 4), the Middlebury sawtooth dataset [1] (Fig. 8,
top middle), and the Samsung commercial sequence (Fig. 8, top right). These
sequences are 344 × 240, 640 × 486, and 434 × 380 pixels respectively, with
the calibration accurate to within about 0.5 pixels. For the flower garden and
sawtooth datasets, haloing artifacts from the background layer are clearly re-
duced. Although the matting improvement is less dramatic for the Samsung
sequence, this is mainly because the quality of näıve object insertion is rela-
tively less objectionable, due to the high-quality initial stereo and the similar,
desaturated colors of the foreground and background layers around the main
subject’s head. The similarity of colors between foreground and background
layers is also a source of ambiguity for the matting, particularly in the self-
shadowed regions of the hair.

Not only does boundary matting improve the composites, but the extracted
boundaries can even be sharpened by rendering the curves at sub-pixel resolu-
tion (Fig. 8, bottom row). At close scales this sub-pixel rendering may appear
less desirable for view synthesis due to the apparent resolution mismatch; how-
ever the exact sub-pixel nature of the boundaries allows us to reblur them by
any amount.
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Fig. 7. Boundary matting synthetic data, with the addition of zero-mean Gaussian
noise. Top left: reference image of a planar textured ellipse, with zoomed region in-
dicated. Top right: RMS error of α for pixels on the occlusion boundary. Bottom:
visual comparison of the ground truth foreground and alpha matte with the bound-
ary matting estimates given various levels of added noise. The näıve segmentation
without matting is also shown for comparison.

Finally, the flower garden dataset was also used for a view synthesis task,
for matting both an input view and a novel interpolated view (Fig. 9). In
both cases, boundary matting produces a significant improvement over näıve
view synthesis (i.e., forward warping with a fixed footprint, then feathering
between the warped images). These results also demonstrate some tolerance to
inaccurate stereo, since the initial stereo estimate in the region shown was up
to two pixels off. We also experimented with a variety of settings for the blur
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Fig. 8. Object insertion. The airplane at top left is shown inserted behind the tree
in Fig. 4(a), the foreground in the Middlebury sawtooth dataset (top middle), and
the main figure in the Samsung sequence (top right). Näıve object insertion, without
matting, leads to background spill and haloing artifacts. However, boundary mat-
ting significantly improves the composite. The underlying boundaries are also shown
sharpened to sub-pixel resolution (although the mismatch in resolution may appear
artificial). Regions of interest are highlighted for each dataset.
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(a) (b) (c) (d) (e)

Fig. 9. Boundary matting for view synthesis. The first row corresponds to the refer-
ence view, and the second row corresponds to an interpolated view. (a) Input image
(ground truth interpolated view). (b) Zoomed-in region. (c) Näıve foreground sepa-
ration without matting shows significant spill from the background layer. (d) Using
the boundary matting method reduces this artifact. (e) Boundary matting with a
blurred edge model (σ = 0.4 pixels) better matches the blur in the input images.

parameter. While the addition of blur did not appear to improve the matting
for this case, the optimal blurred boundary better matches the appearance of
the input images.

For this portion of the dataset, some degree of blue spill from the sky remains
even after performing boundary matting (Fig. 9(d–e)). This may be due to the
optimization being trapped in a local minimum because of poor initialization.
Another explanation is that the object curves smoothly enough that it cannot
be accurately modeled using a single 3D boundary curve, and the boundary
shown truly represents the global best-fit approximation.

Our method broke down completely for the upper-left region of the tree con-
taining many twigs (Fig. 10), yet still performs no worse than näıve view syn-
thesis ignoring matting. The reason for failure was not an inability to localize a
consistent 3D curve, but rather that inaccurate stereo led to an initial bound-
ary up to 30 pixels off. Without additional color-based priors, our matting
method is content to accept depth discontinuities across untextured regions
of sky, trapping the optimization in spurious local minima with F = B.
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(a) (b)

Fig. 10. Boundary matting failure case. (a) Inaccurate stereo leads to a poor ini-
tial boundary estimate in a mainly untextured region, which cannot be refined suc-
cessfully by locally optimizing the matting. Very thin structures such as the small
branches may also pose difficulties. (b) Object insertion highlights the severity of the
problem, although view synthesis is less objectionable in this region.

7 Concluding remarks

For seamless view interpolation, mixed boundary pixels must be resolved into
foreground and background components. Boundary matting appears to be a
useful tool for addressing this problem in an automatic way. Using 3D curves
to model occlusion boundaries is a natural representation that provides several
benefits, including the ability to super-resolve the depth maps near occlusion
boundaries.

A current limitation of our approach is its lack of reasoning about color sta-
tistics, which has proven very useful in natural image matting [9,2]. Such an
ability might enable us to resolve boundaries even in areas where stereo gives
grossly incorrect depths, as in the upper-left region of the tree in Fig. 4(a).
By integrating boundary matting with complementary aspects of pixel-based
matting methods [9,3], we hope to extend the generality of boundary matting
while retaining its superior view synthesis.

In the future, we would also like to adapt boundary matting to a dynamic
stereo framework, where disocclusions over time may reveal additional infor-
mation to improve the matting.
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