
Solving Substitution Ciphers

Sam Hasinoff
Department of Computer Science, University of Toronto

hasinoff@cs.toronto.edu

Abstract

We present QUIPSTER, an experimental system for the automatic solu-
tion of short substitution ciphers (Cryptoquotes). The system operates
using an � -gram model of English characters and stochastic local search
over the space of

�������	��

�������
possible keys. Experimental results

show a median of 94% cipher letters correctly decoded, which is typi-
cally good enough for an unskilled human to finish decoding the cipher
with minimal additional effort. Extensions incorporating a dictionary
with word frequencies and a database of word patterns are also discussed.

1 Introduction

In Arthur Conan Doyle’s short story “The Adventure of the Dancing Men” (1903), the pro-
tagonist Sherlock Holmes solves a murder mystery by realizing that a series of unusual stick
figure drawings (Figure 1) are actually messages encoded using a substitution cipher [5].
The substitution cipher is a well-known classical cipher in which every plaintext character
in all its occurrences in a message is replaced by a unique ciphertext character.

Figure 1: Dancing men ciphertext from “The Adventure of the Dancing Men” (1903).

Thus, each permutation of the 26 letters of the English alphabet (there are
����������
���� ���

in total) gives a unique key for encrypting a message. If a particular permutation is used to
encrypt a message, then the inverse of that permutation can be used to decrypt it. A worked
out example of a substitution cipher is given in Figure 2.

Decoding substitution ciphers is a popular activity among amateur cryptographers and peo-
ple who enjoy word puzzles. Substitution ciphers of famous quotes appear in many news-
papers (near the crossword puzzle and the jumble) under the title of Cryptoquotes or Aris-
tocrats. For the purposes of this paper, we assume that punctuation is given (spaces and
apostrophes are particularly helpful) and that capitalization is not preserved. While it is
an unwritten rule of Cryptoquotes that no character encrypts to itself, for the sake of gen-
erality we do not make this assumption. Note that Cryptoquotes typically contain 50–250
characters of ciphertext.

ABCDEFGHIJKLMNOPQRSTUVWXYZ alphabet
ZKLYQPNIFJDCUTVWSXMAGOEBHR encryption key, �
TXLKWIUYHJBCSGVFEZQNMOPRDA decryption key,

��� �����
plaintext
THE MAN WHO DOES NOT READ BOOKS HAS NO ADVANTAGE
OVER THE MAN THAT CAN NOT READ THEM. --MARK TWAIN

ciphertext
AIQ UZT EIV YVQM TVA XQZY KVVDM IZM TV ZYOZTAZNQ
VOQX AIQ UZT AIZA LZT TVA XQZY AIQU. --UZXD AEZFT

Figure 2: Example substitution cipher.

In principle, substitution ciphers can be solved by exhaustively searching through the (as-
tronomically large) key space for the key that produces the decrypted text most closely
resembling meaningful English. Instead, human cryptographers exploit patterns and re-
dundancy in the English language to greatly narrow their search. The information content
of an English character has been estimated by various methods to be about

�	��

bits [10].

Hence the redundancy of English is about ��
 ����� ���
 ����� �
bits per character.

As the amount of available ciphertext increases, solving substitution ciphers becomes eas-
ier. The unicity distance, defined as the entropy of the key space divided by the per-
character redundancy, is a theoretical measure of the minimum amount of ciphertext re-
quired by an adversary with unlimited computational resources. For substitution ciphers,
the unicity distance is ��
�� ����� ������� � � �	�

characters, which is roughly in agreement with the
abilities of skilled human cryptographers [12].

Redundancy in English text manifests itself in a variety of forms:

� The statistics of characters strings are highly non-uniform. For example, NT is
more frequent than BT, and JX never seems to occur.� The vowels AEIOUY and consonants associate with special patterns.� English text is constructed from limited vocabulary and words appear with highly
non-uniform frequencies. Indeed, about half of all English text belongs to a minia-
ture vocabulary consisting of the 135 most frequently occurring English words [7].� The statistics of word strings are also non-uniform. For example, the string LORD
OF appears more frequently than LORD ELBOW.� Finally, there are constraints due to higher level semantics distinguishing mean-
ingful English from nonsense. Human cryptographers excel at using this sort of
information, but representing this for a computer is extremely difficult.

To give a concrete example of redundancy in English, single character frequencies (includ-
ing the apostrophe) are shown for a sample corpus in Figure 3.

2 The QUIPSTER System

We developed an experimental system called QUIPSTER for automatically solving Crypto-
quotes. The solver consists of two main components, a generic stochastic local search
(SLS) method for navigating the key space, and a scoring function for evaluating the
goodness of various keys. The scoring function for a particular key is defined as the log-
likelihood of an � -gram language model applied to the ciphertext decrypted using that key.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z ’
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

re
la

tiv
e

fr
eq

ue
nc

y

Figure 3: Relative character frequencies from Great Expectations (1860-1861).

2.1 Search Method

Our search method, given in Algorithm 1, is a simple form of stochastic local search [8]
over the key space. The stochastic local modification step we use is to swap two letters
of the key at random. To avoid being trapped in bad local minima, we restart from the
beginning a fixed number of times and keep track of the best key overall. For future work,
more sophisticated search strategies like tabu search, which explores several hypotheses
simultaneously, may prove beneficial.

Algorithm 1: SOLVER(��������� � , � �	�
���
������ , � ��� ��������� , ��������
 ����� � � ��
�
�� �)
input : substitution cipher ��������� � , parameters � ���
���
���� � and � �	� �!�"����� control-

ling the amount of computation, and scoring function ��������
 ����� � � ��
�
�� �
output : best decryption key found # �$�!
 % ��& and its corresponding score # �$��
 ��������� , lo-

cally maximizing the scoring function

�$��
 ���!��� �(' �")
for
*' �

to � �	�
���
������ do
% ��&+' random permutation of the alphabet
�$��

���
���� ���������(' �")
for ,-' �

to � �	� ��������� do
� ��� % ��&+'.% ��& with two of its letters swapped randomly
���������/' score ��������� � using ���!����
 ����� � � ��
�
�� � after decrypting it with � ��� % ��&
if ���������102# �$��

���
���� ��������� then

% ��&+' � ��� % ��&
�$��

���
���� ���������/'3���!��� �

endif
end
if # �$��

���
���� ���!��� �405# ����
 ��������� then

�$��
 %���&6'.% ��&
�$��
 ���������('.# �$��

���
���� ���������

endif
end
return 7�# �$��
 %���&�89# �$�!
 ����������:

2.2 � -gram Model

In computational linguistics, an � -gram model refers to an � � � � � -th order Markov model
of language [10, 3]. Here we consider � -gram models of characters, but such models can
also be constructed on the level of words. Most practical systems employ bigrams (�

� �
)

or trigrams (�
� �

).

By the Markov model assumption, the probability of a character depends only on the pre-
vious �

� �
characters. Using � � �

to denote the string �
�������

� � we have:

� � � �
�
� � ���
	

�
� � � ���

� �
�����

�
�
� �
� � ��
 ����	

�
� � � ���

�
�
����
���
 �

� �
(1)

To make � � � ���
�
�
����
���
 �

�
meaningful for
�� � , we pad the beginning of every word with

� � �
distinguished symbols ($). We also pad every word with a distinguished symbol (ˆ)

at the end. For example, RINGS is padded to become $$RINGSˆ for a trigram model.

The maximum likelihood estimate for the probability � � � � �
�
�
����
���
 �

�
is simply the relative

frequency:

����� � � ���
�
�
����
���
 �

� � � � �
��
���
 �

�
����� � � �

��
���
 �

� 8 (2)

where �	� �
��
���
 �

�
is the raw count of the � -gram �

��
���
 � over some representative corpus

of English text. Our vocabulary of characters � includes the alphabet, the apostrophe, and
the two distinguished symbols, for a total of

� � � � � �
. The lexer picks out all valid words

from the corpus, possibly with internal apostrophes.

We can use an � -gram model to evaluate the likelihood of a novel piece of text (generated
independently of the training corpus), and obtain a rough measure of its English-ness. Thus,
we define the scoring function for a particular key as the log-likelihood of our � -gram
model applied to the ciphertext decrypted using that key. Note that the � -gram model
can also be used generatively to produce English-like text, but this will produce mainly
nonsense words.

2.2.1 Smoothing techniques

One problem with standard � -gram models is that low-frequency � -grams may be missing
entirely from the training corpus. Thus, the occurrence of even one such zero-frequency
� -gram would cause the entire test set to be assigned a likelihood of zero.

Smoothing addresses this problem by re-estimating the probabilities of all
� � � � � -grams,

shifting some of the probability from the higher-frequency � -grams to the low- and zero-
frequency � -grams. A thorough survey of smoothing techniques for � -grams (on the level
of words) was presented in [3] and we have adopted their notation.

For this project, we implemented three different smoothing methods: Witten-Bell smooth-
ing, absolute discounting, and a simple ad hoc smoothing method.

Witten-Bell smoothing (method C, as originally described in [16]) is an elegant smooth-
ing technique first developed for text compression. The key concept is to use a count of
� -grams seen at least once to re-estimate the count of the unseen � -grams. Witten-Bell
smoothing is defined recursively as a linear interpolation of the maximum-likelihood esti-
mate and the lower-order � � � � �

-gram model. As a base case, for the 0-gram model, we
take the uniform distribution.

In absolute discounting [13], instead of multiplying by some discount factor, we subtract
a fixed discount !#" �

from every non-zero count. We estimate the optimal fixed ! as! � �%$� $
 � �'& , where �)(is the number of � -grams seen % times.

The ad hoc method we devised doesn’t even form a proper Markov transition matrix, as the
conditional probabilities do not sum to 1. For zero-frequency � -grams we take the proba-
bility as ����� � � ��� ��� , otherwise we simply take the original maximum-likelihood estimate.

3 Experimental Results

QUIPSTER was written entirely in C++ and the � -gram scoring function was somewhat
optimized. Execution speed is about 2 seconds per puzzle (with 15 trials of

� ���
swaps) on

a mid-level Pentium 4.

The � -gram model was trained on the text of Great Expectations (1860-1861) by Charles
Dickens [4] with smoothing as previously described. All substitution ciphers were gener-
ated from Faisal Jawdat’s large personal collection of quotes [9]. This eclectic collection
comprises 5236 quotes, not all suitable as official Cryptoquotes because of their highly
varying lengths and occasional vulgarity. The collection is a good mixture of popular say-
ings as well as classic, political, and literary quotes. It contains plenty of wordplay and
jokes (many of which might be classified as geek humour).

As shown in Figure 4, the effect of the different smoothing methods was almost negligible.
Moreover, there appear to be no benefits to using high order � -gram models with � 0 �

.
For the remainder of this paper, the smoothing method was set to absolute discounting and
a trigram model was used.

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

order of n−gram model

m
ea

n
cr

os
s−

en
tr

op
y

ad hoc smoothing
Witten−Bell smoothing
absolute discounting

Figure 4: Mean cross-entropy (lower is better) measured over a test set of 1250 puzzles,
for different orders of � -grams and different smoothing methods. Error bars indicate 95%
confidence intervals.

The search method is controlled by parameters that determine how much computation time

to spend. We investigated the sensitivity of performance to these parameters, as shown in
Figure 5. Performance levels off sharply with increasing numbers of swaps per trial (with
the number of trials fixed at 15), and there appears to be little benefit in performing more
than

� � �
swaps per trial. Increasing the number of trials (with the number of swaps fixed at��� �

) was more fruitful, but the performance beyond 80 trials seems to level off, and results
that are nearly as good can be obtained with only 30-40 trials.

3 4 5
0

0.2

0.4

0.6

0.8

1

log10(number of swaps per trial)

fr
ac

tio
n

co
rr

ec
t

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

number of trials

fr
ac

tio
n

co
rr

ec
t

words correct
letters correct

Figure 5: Performance as a function of compute time on a test set of 1250 puzzles (�
� �

).
In the left plot the number of trials is held fixed at 15, and in the right plot the number of
swaps is fixed at

� � �
.

In Figure 6 we show performance as a function of ciphertext length. Beyond 200 characters
of ciphertext, the method performs almost perfectly, and with as few as 75 characters of
ciphertext the method is still typically usable. Over a test set of 1250 puzzles, a median of
94% of cipher letters and 65% of cipher words were correctly decoded.

4 Discussion and Future Work

A preliminary investigation was undertaken into modifying the scoring function to incor-
porate a dictionary of English words. We must be careful not to give too much weight
to words appearing in the dictionary, otherwise the search could easily get trapped in bad
local minima. To give a specific example, if 85% of the decrypted words appear in the
dictionary, the search is probably on the right track, but if only 15% appear in the dictio-
nary, these words could just as easily be nonsense. Moreover, we should probably give less
weight to less common words (e.g. TORSEL) as well as shorter words more likely to have
been generated at random (e.g. TAM).

Another approach to improving performance is to better exploit our knowledge about the
problem. Since the subsitution ciphers we consider are always quotes, the last few words
often represent an attribution (which we may want to discount if proper names tend not to
appear in our dictionary). Sometimes this structure is even made explicit with the conven-
tion of the em-dash (“—”) punctuation at the end of the puzzle. For that matter, we may

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ciphertext length (characters)

fr
ac

tio
n

co
rr

ec
t

letters correct
words correct

Figure 6: Performance as a function of ciphertext length on a test set of 1250 puzzles
(�

� �
, 15 trials,

��� �
swaps per trial). Error bars indicate 95% confidence intervals.

wish to seach a large reference like Bartlett’s Quotations to see if any common quotations
match the pattern of the ciphertext as a whole (or in part).

Perhaps the most promising unexplored avenue is to more narrowly direct the search by
exploiting internal word patterns. For example, the only dictionary words consistent with
the pattern ABCADECFCG are CONCERNING, CRUCIBULUM, and AQUASCUTUM. Fur-
thermore, only the first of these words is common enough to appear in our corpus. To give
another example, 178 words in the dictionary are consistent with the pattern ABCA, but
only 16 of these appear in the corpus. This method entails a large combinatorial search,
but many possibilities can be pruned because certain combinations of word choices will be
mutually inconsistent.

5 Previous Work

There are perhaps a dozen publications on on the automatic solution of substitution ciphers
scattered over the last twenty-five years. Some of the authors working on this problem
do not appear to be aware of the work of their predecessors and most only achieve good
results on the far easier problem where lots of ciphertext (over 300 characters) is available.
Possibly the area has not garnered more interest because substitution ciphers are known to
be insecure, and automatic methods take the fun out of solving these for yourself.

Carrol and Martin [2] developed an expert system approach to solving substitution ciphers
using hand-coded heuristics, but their results were marginal. Forsyth and Safavi-Naini re-
cast the problem as combinatorial optimization and tackled it with a simulated annealing
algorithm [6]. The automated solution of very long texts (5000 characters) is straightfor-
ward with their method, but performance is much worse with less ciphertext.

Perhaps closest to our method, Spillman et al. used character bigram and unigram statistics
to evaluate the goodness of a key, and developed a genetic algorithm approach analogous
to our stochastic local search method [15]. Unfortunately, they only present results in terms
of their goodness function and do not describe any characteristics of their test set.

Another pair of papers use character trigram statistics and a relaxation scheme to iterate to-
wards the most probable key [14, 1]. Both methods appear to require at least 200 characters
of ciphertext for good results.

Lucks based his approach on searching over a word pattern dictionary with the constraint
that all ciphertext characters must decrypt to the same plaintext character [11]. Hart later
improved on this method by directing this combinatorial search towards more frequent En-
glish words [7]. Neither of these methods typically give complete (or unique) solutions
because some words may not appear in the dictionary and others may decrypt to multiple
possibilities. However, both methods do perform well at decoding small amounts of ci-
phertext and giving a human cryptographer a good foothold to complete the task. Given a
word pattern solution as a starting point, an automated system like QUIPSTER would likely
also be able to fill in any remaining gaps.

References

[1] D. Bahler and J. King. An implementation of probabilistic relaxation in the cryptanalysis of
simple substitution systems. Cryptologia, 16(3):219–225, 1992.

[2] J. Carrol and S. Martin. The automated cryptanalysis of substitution ciphers. Cryptologia,
10(4):193–209, 1986.

[3] S. F. Chen and J. Goodman. An empirical study of smoothing techniques for language model-
ing. In Proceedings of the Thirty-Fourth Annual Meeting of the Association for Computational
Linguistics, pages 310–318, 1996.

[4] C. Dickens. Great Expectations. Project Gutenberg Release #1400 (July 1998), 1860–1861.
http://www.gutenberg.org.

[5] A. C. Doyle. The adventure of the dancing men. The Strand Magazine, 26, December 1903.

[6] W. S. Forsyth and R. Safavi-Naini. Automated cryptanalysis of substitution ciphers. Cryptolo-
gia, 17(4):407–418, October 1993.

[7] G. W. Hart. To decode short cryptograms. Communications of the ACM, 37(9):102–108,
September 1994.

[8] H. H. Hoos. Stochastic Local Search - Methods, Models, Applications. PhD thesis, Technische
Universität Darmstadt, 1998.

[9] F. Jawdat. Personal collection of quotes, 1991–2002. http://www.faisal.com/quotes.

[10] D. Jurafsky and J. Martin. Speech and Language Processing. Prentice Hall, 2000.

[11] M. Lucks. A constraint satisfaction algorithm for the automated decryption of simple substitu-
tion ciphers. In CRYPTO 1988, pages 132–144, 1988.

[12] A. J. Menezes, P. C. van Oorshot, and S. A. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1997. http://www.cacr.math.uwaterloo.ca/hac.

[13] H. Ney, U. Essen, and R. Kneser. On structuring probabilistic dependences on stochastic lan-
guage modelling. Computer Speech & Language, 8(1):1–38, 1994.

[14] S. Peleg and A. Rosenfeld. Breaking substitution ciphers using a relaxation algorithm. Com-
munications of the ACM, 22(11):598–605, November 1979.

[15] R. Spillman, M. Janssen, B. Nelson, and M. Kepner. Use of a genetic algorithm in the crypt-
analysis of simple substitution ciphers. Cryptologia, 17(1):31–44, January 1993.

[16] I. H. Witten and T. C. Bell. The zero-frequency problem: Estimating the probabilities of novel
events on adaptive text compression. IEEE Transaction of Information Theory, 4(37):1085–
1094, 1991.

