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Abstract

Capturing multiple photos at different focus settings is a

powerful approach for reducing optical blur, but how many

photos should we capture within a fixed time budget? We

develop a framework to analyze optimal capture strate-

gies balancing the tradeoff between defocus and sensor

noise, incorporating uncertainty in resolving scene depth.

We derive analytic formulas for restoration error and use

Monte Carlo integration over depth to derive optimal cap-

ture strategies for different camera designs, under a wide

range of photographic scenarios. We also derive a new up-

per bound on how well spatial frequencies can be preserved

over the depth of field. Our results show that by captur-

ing the optimal number of photos, a standard camera can

achieve performance at the level of more complex compu-

tational cameras, in all but the most demanding of cases.

We also show that computational cameras, although specif-

ically designed to improve one-shot performance, generally

benefit from capturing multiple photos as well.

1. Introduction

Recent years have seen many proposals for tightly integrat-
ing sensing, optics and computation in order to extend the
capabilities of the traditional camera. Already, numerous
“computational camera” designs exist for capturing photos
with reduced motion blur [30, 20], post-capture refocus-
ing capabilities [17, 33, 3], and an extended depth of field
(DOF) [4, 11, 23, 17, 33, 19]. Although these designs differ
in many respects, they all adhere to the principle of one-
shot capture: the camera records a single image with a DOF
constrained by the optics and an exposure time constrained
by the available time budget (or by pixel saturation).

In this paper we show that one-shot capture is usually not

optimal for extended-DOF photography, i.e., it does not
produce a well-focused image with the highest signal-to-
noise ratio (SNR) for a desired DOF and time budget.
Moreover, we show that this result applies to standard and
computational cameras [4, 23, 17, 19] alike: image qual-
ity in both cases can often be improved by capturing many
shots within a given time budget, rather than just one.

Our analysis is based on a key insight illustrated in
Fig. 1: by spreading the time budget across several “under-
exposed” shots with different focus settings we can obtain
reduced worst-case blur, at the expense of higher sensor
noise. In particular, read noise leads to a penalty for each
photo we capture, but Poisson-distributed photon noise does

not penalize multiple shots. Since photon noise dominates
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Figure 1. The time-slice advantage for a desired DOF and time

budget T . One-shot capture gives the brightest image, but depths

far from the lens’ DOF (red rectangle) are blurred significantly. A

standard focal stack “spans” the desired DOF: photos are exposed

less but every depth is effectively blur-free in one of them. In this

way, the number of shots acts as a balancing factor between under-

exposure and worst-case blur. When photon noise dominates, the

optimal-SNR capture strategy tilts even further to the right.

read noise under normal photographic conditions, the over-
all SNR usually tips in favor of splitting the time budget. We
call this the time-slice advantage. By contrast, single-shot
photography is only optimal for very limited time budgets,
i.e., when read noise becomes significant, or for cameras
with high per-shot overhead.

In this paper we provide a detailed study of the time-slice
advantage and use it for optimal time-constrained photogra-

phy—creating an all-in-focus image with the highest SNR
for a given camera design, time budget, target DOF, and av-
erage scene brightness. Working from first principles, we
formulate all-in-focus photography as a frequency-based
restoration problem that takes noisy and optically-blurred
photos as input, and outputs a single, all-in-focus image for
the target DOF. This leads to three basic questions:

∙ camera-specific optimal time allocation: given a
camera’s noise model and optical transfer function
[29], how should we allocate the time budget to maxi-
mize the expected SNR of the all-in-focus image?

∙ optics-independent performance bound: what is the
maximum attainable expected SNR for a given sensor
across all possible optical transfer functions?

∙ camera performance characterization: how do the
existing extended-DOF camera designs compare in
terms of their attainable expected SNR, and how do
they fare against the traditional camera?

Our answer to these questions can be viewed as comple-
menting and generalizing several lines of recent work.

Closest to our work, Hasinoff and Kutulakos [10] studied
a related problem in extended-DOF photography: minimiz-
ing the time it takes to capture a given DOF while maintain-
ing ideal exposure. Their work considers multiple photos,
but it ignores the effect of noise and uses a basic view of



DOF that applies only to conventional cameras. By con-
trast, our analysis applies to computational cameras as well,
and is specifically designed to consider the tradeoff between
defocus blur and noise under constrained time budgets.

Although not applicable to extended DOF, synthetic shut-
ter speed imaging [30] is similar in spirit. This approach
used bursts of photos to mitigate motion blur due to camera
shake, but did not investigate the tradeoff between blur and
under-exposure. In another context, multiple photos were
shown to be beneficial compared to using a polarizer for
hazy scenes [31]. In this respect, our work can be viewed
as identifying a similar multi-photo advantage for extended-
DOF photography, with a full theoretical treatment.

Since we take advantage of a new photographic tradeoff, our
work is also related to tradeoffs for other degrees of free-
dom (e.g., changing the aperture [10], the pixel-to-ray map-
ping [24, 18, 19], or lighting [28]). The time-slice advan-
tage is orthogonal to these studies, does not involve modi-
fying optics, and can lead to further quality improvements.

At the heart of our approach lies a derivation for the ex-
pected worst-case SNR of a restored, all-in-focus image
given a camera, time budget, DOF, and number of photos.
We derive analytic formulas for expected restoration error
and characterize our uncertainty in estimating scene depth
using Monte Carlo integration. While computing such an
expectation is novel, our derivation is related to shape-from-
focus [14, 16, 32], and defocus [25, 6, 7], and all-in-focus
restoration [26, 2, 9]. Indeed, our derivation includes a
Bayesian depth-from-defocus and restoration algorithm that
handles any camera design (e.g., [4, 23, 17]) and jointly
considers any number of photos.

Our work offers five contributions over the state of the art.
First, it introduces the time-slice advantage as a powerful
tool for high-SNR imaging over large DOFs. The advan-
tage applies to both conventional and computational cam-
eras, and exploits their noise properties [12, 22] and their
increasing capture rates. Second, our framework enables
derivation of expected SNR for any given sensor/lens com-
bination under geometric optics. Third, this leads to a novel
way of comparing all-in-focus imaging performance: we
fix the time budget and estimate SNR with the number of
photos optimized for each design. This “levels the play-
ing field” across different optical designs and, we believe,
is a more representative performance metric. Fourth, we
show that conventional cameras perform very well when
placed under this new light—for a broad range of time bud-
gets, they match the performance of the best-performing
extended-DOF cameras. Fifth, we confirm the time-slice
advantage experimentally, through controlled tests with real
scenes and high-end digital cameras.

2. Optimal Time-Constrained Photography

Given a camera, a time budget, and a target DOF, we seek
the optimal time slice—the number of photos that maxi-
mizes all-in-focus performance within that DOF. To achieve
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Figure 2. Representing blur and DOFs in the frequency domain.

Top: OTF magnitude for four color-coded scene depths, for var-

ious camera designs. The plots show a 1D frequency slice, ! =
( 1
2
!y, !y), up to the Nyquist limit, Ω. All plots assume an 85mm

focal length, an f/1.2 aperture, and the Canon 1D Mark II sensor.

For comparison, the DOF of the standard camera covers just 1/13th

of the range [110, 114] cm. Bottom: OTF magnitude for the same

depth range, a time budget of 0.1T opt, and each design’s optimal

time slice. Each plot shows ∣�D

d (!)∣ for each of the Nopt photos,

for ! = (0.2, 0.4)Ω. The non-zero regions of ∣�D

d (!)∣ are anal-

ogous to the red rectangles in Fig. 1, but for a specific frequency.

When ! changes, these widths change too.

this, we estimate the expected worst-case performance from
capturing N photos and then optimize it:

Nopt = argmaxN SNR(N) . (1)

The SNR-based measure in Eq. (1), and the optimization
it leads to, forms the core of our approach. We define this
measure below in terms of three models: for the lens, for
idealized image formation, and for sensor noise.

Lens model. Under first-order geometric optics [29], the
optical properties of a lens can be expressed as a convolu-
tion that maps a planar, “blur-free” scene at depth d to a
blurred image on the sensor plane. The kernel of this con-
volution, the lens point-spread function ���D

d , depends on the
plane’s depth as well as the depth of field, D = [d1, d2], for
which the lens is adjusted.

For lenses with complex optical properties, the Fourier

transform of the point-spread function ΦD
d is convenient be-

cause it allows analysis of each spatial frequency indepen-
dently. This representation, also called the optical transfer
function (OTF), describes how the lens attenuates and shifts
a given frequency ! on the scene plane (Fig. 2, top).

Ideal image formation. The relation between exposure
time and pixel intensity is particularly important in our anal-
ysis. To factor out absolute scene brightness, we represent
exposure time as a fraction � of the time required for an
ideal exposure. We also call � a photo’s exposure level.

Guided by auto-exposure criteria [15], we consider a photo
y to be ideally exposed if its mean intensity is 13% of the
maximum possible value ymax. We use T opt to denote the
exposure time required to achieve this level.
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Figure 3. (a) Sensor noise (red) as a function of intensity for the

Canon 1D Mark II at ISO 100 [5], for ymax = 255. Noise is well-

modeled by Poisson-distributed photon arrivals, plus read noise

(dashed). (b) Read noise as a fraction of the overall variance.

Note that spreading a time budget T among N photos leads
to an exposure level of � = 1

N
T

T opt for each photo. If � < 1,
these photos will be under-exposed.

In the absence of noise, the above considerations define our
image formation model as a scaled 2D convolution:

y = � ���D
d ⊗ xd , (2)

where xd is a planar scene at depth d that is modeled as an
ideally-exposed, blur-free image.

Sensor noise model. The benefits of the time slice tradeoff
are greatly enhanced by the fact that the dominant source of
noise in digital cameras is generally not constant read noise
(Fig. 3). To capture the essential properties of noise, we use
the well-known affine noise model [12, 22, 31], which de-
pends on a photo’s exposure level. In particular, we assume
that a captured photo follows a normal distribution with a
mean given by Eq. (2) and per-pixel variance

�2 = � ⋅ (0.13ymax) / g
︸ ︷︷ ︸

photon noise

+ �2
︸︷︷︸

read noise

. (3)

The first term above represents the Poisson distribution of
photon arrivals; it depends linearly on the exposure level,
the ideal mean intensity 0.13ymax, and an ISO-dependent
gain factor 1/g. The second term represents constant read
noise and quantization.

For simplicity, Eq. (3) assumes constant noise variance
over the image, computed using the mean image intensity,
�(0.13ymax). This model is sufficient to determine SNR,
since the linearity of affine noise implies that mean pixel
variance is a function of mean image intensity.1,2

Note that spreading a time budget over N photos incurs
no penalty from photon noise, whose variance falls off ac-
cording to 1/N as well. This significantly increases the
time-slice advantage: for most of the intensity range of real
sensors, photon noise dominates over read noise (Fig. 3b);
within that range, spreading the budget reduces worst-case
blur without a large noise penalty.

Scene-independent restoration error. Our goal is to
spread the time budget in a way that enables optimal restora-

1For an in-focus image, mean pixel variance defines SNR completely.

Even when deblurring (Sec. 3), spatial noise variations have negligible im-

pact on SNR. We initially modeled per-pixel noise [8], but mean intensity

gave the same SNR to ±0.01 dB, with huge computational gain.
2Since we effectively average over ≥ 1 Mpixels, our model for sensor

noise is Gaussian by the central limit theorem, even for low photon counts.

tion of any scene inside a given DOF. This requires answer-
ing two questions: (1) how do we measure the restoration
error from a given set of input photos, and (2) how do we
quantify, in a scene-independent way, the performance of a
strategy that spreads the budget across N of them?

Equations (2) and (3) model the degradation that occurs
in photos of a scene xd at depth d. Given an all-in-focus
restoration, x̂, of this scene, we use ∥xd − x̂∥2 to measure
restoration error. To obtain a scene-independent measure of
performance, we use the peak signal-to-noise ratio (PSNR)
at the worst-case depth:

SNR(N) =
P ⋅ ymax

2

maxd E[ ∥xd − x̂∥2]
, (4)

where P is the number of pixels per image. This measure is
inversely proportional to the expected error over all possible
scenes at the worst-case depth, which we quantify below.

3. The Expected Restoration Error

A key step in our approach is to quantify the error for a
given camera design if we spread the time budget over N
photos. We achieve this by applying a Bayesian analysis in
the frequency domain, which allows us to characterize im-
age restoration in detail. This analysis can be also viewed as
a general depth-from-defocus [25, 7] and restoration [9] al-
gorithm that handles any camera design and jointly handles
any number of photos (including N=1).

Simplified scene model. To make our analysis tractable,
we model the scene as a textured, fronto-parallel plane
whose depth d is uniformly distributed in the target DOF.
We assume its texture follows a gradient-penalizing Gaus-
sian prior [17]: Pr(xd ) ∝

∏

p exp(−
1
2�

[
(xd ⊗ gx)

2 +

(xd ⊗ gy)
2
]
), where gx,gy are gradient filters for the x, y

spatial dimensions, � is a parameter fit to natural images, p
indexes over pixels, and the squaring is element-wise.

Image formation in the frequency domain. Since the
observed photos, y1, . . . ,yN , are modeled by convolutions
and Gaussians, the analysis simplifies greatly in the fre-
quency domain. In particular, this allows us to express com-
pactly Eqs. (2) and (3) over all N input photos, for each
spatial frequency ! independently:

Pr(Y! ∣X!, d ) = N
(
�Φ

d!
X! , �2IN

)
(5)

Pr(X! ) = N
(
0 , S!

)
, (6)

where X! is the Fourier coefficient of xd for frequency !;
the vector Y! = [Y 1(!) . . . Y N (!) ]T collects the obser-
vations at frequency ! across the N input photos; the vector

Φ
d!

= [�D1

d (!) . . . �DN

d (!) ]T collects coefficients of the
OTFs for the input photos, adjusted to capture the depths
of field D1, . . . ,DN respectively; IN is the N×N identity

matrix; and S! =
[
�(∣Gx(!)∣2 + ∣Gy(!)∣2)

]−1
is the per-

frequency prior texture variance, where Gx,Gy are vectors
containing the Fourier-transformed gradient filters.



Bayesian all-in-focus restoration. When depth is known,
the OTF vector Φ

d!
is fully specified by the camera design;

restoration is then equivalent to N -photo Wiener deconvo-
lution.3 In our Bayesian treatment, the restored all-in-focus
image corresponds to the maximum a posteriori (MAP) es-

timate [21], X̂
d!

, defined as the peak of

Pr(X! ∣Y!, d ) = N
(

1
�2 (�Φd!

∗Y!)Vd! , V
d!

)
, (7)

where ∗ denotes the conjugate transpose and the variance of
the MAP estimate is

V
d!

=
(

1
�2 ∥�Φd!

∥2 + 1
S!

)−1

. (8)

For the case of unknown depth, we can express the per-
pixel evidence for a specific depth using the observations,

by evaluating Pr(Y! ∣d ) in the spatial domain:

log Pr({yk} ∣d ) = const− 1
2

[
restoration error

︷ ︸︸ ︷
∑N

k=1(y
k − � ���Dk

d
⊗ x̂

d
)2 +

�
[
(x̂

d
⊗ gx)

2+(x̂
d
⊗ gy)

2
]

︸ ︷︷ ︸

prior term

+ 1
P

∑

! log
(
�2S!V

−1

d!

)

︸ ︷︷ ︸

model complexity

]

, (9)

where squaring in the first two terms is element-wise. This
formula marginalizes over all scenes x exactly, accounting
for all joint information encoded in the N photos [27, 21]
and the volume of scenes explaining those observations.4

The all-in-focus image can then be computed by evaluating
Eq. (9) for a set of depth hypotheses. In particular, we ap-

ply Bayes’ rule to obtain the probability, Pr(d ∣ {yk} ), of
a given depth d; then we apply Eq. (7) to obtain the MAP
restoration using the most probable depth.

Deriving the expected restoration error. When the scene
depth is known, Eq. (7) tells us that the expected error of

the MAP estimate is simply E[∣X! − X̂
d!
∣2] = V

d!
. This

formula connects to SNR(N) in Eq.(4) via Parseval’s rule,
by which E

[
∥xd − x̂∥2

]
=

∑

! V
d!

.

To treat the case of unknown depth, it is possible to show
that the expected error of MAP restoration with an incorrect

depth estimate, d̂, has a closed form

E
[

∣X! − X̂
d̂!
∣2
]

=
(

�2 S!

�2 ∣�∣2 − (�+�∗)
)

�2

�2 Vd̂!
2

︸ ︷︷ ︸

depth estimation error

+ V
d̂!

︸ ︷︷ ︸

known-depth error

, (10)

where the scalar � = Φ
d̂!

∗(Φ
d!

− Φ
d̂!
) measures dis-

crepancy between the true and estimated OTFs, and the true

depth of X! is d. The formula consists of a bias term plus
the basic known-depth restoration error.

To derive a scene- and depth-independent expected error,

3For camera designs that yield approximately depth-invariant blur [4,

11, 23], knowing the scene depth is not necessary for restoration.
4See the supplementary materials [1] for more details.

we take expectation over our depth estimate as well. More
specifically, under the assumption that our depth uncer-

tainty, Pr( d̂ ∣d ), is independent of scene texture, we obtain

E
[
∥xd − x̂∥2

]
=
∑

!

∫

d̂

Pr(d̂ ∣d) E
[
∣X! −X̂

d̂!
∣2
]
dd̂ . (11)

In practice, we compute this expectation using Monte Carlo
sampling, using Eq. (9) to compute the probability of ob-

taining different depth estimates d̂ over a set of sampled

noisy observations of a scene at depthd.

Scenes with depth variation. Fig. 4 shows restoration
results from applying Eqs. (7)-(9) to photos of a simulated
fronto-parallel scene. However, our analysis in Eq. (9) also
lets us handle scenes with depth variations. Assuming a lo-
cally fronto-parallel scene, we can estimate per-pixel depths

using d̂ = argmax
d
Pr(d ∣ {yk} ) and copy pixels from the

corresponding constant-depth MAP restorations. In prac-
tice, we use a Markov random field (MRF) [2] to regularize
this estimate and to favor piecewise smoothness (Fig. 5).

4. Optics-Independent Upper Bound

While restoration error depends greatly on camera design,
we can establish an upper bound on the OTF magnitude
(Fig. 2) for the worst-case depth and spatial frequency. Fol-
lowing [19], the total power useful for reconstructing each
spatial frequency is bounded by 2

3A
3, where A is the diam-

eter of a circular aperture. The desired bound corresponds
to spreading power evenly over the 3D manifold in the fre-
quency domain corresponding to in-focus imaging [24, 19]:

∣�D
d (!)∣

2 ≤ A4 ⋅min
{

�(!)
3∥!∥bmax

, �2

16

}

, (12)

where bmax = A⋅
(
d2−d1

d2+d1

)
is the largest blur diameter over

the target DOF D = [d1, d2], measured at depth 2d1d2

d1+d2
in

the scene; and �(!) is a factor in the range [0.93, 1] [19].

Our bound tightens the result in [19] with a new bound over
the full domain, corresponding to the final term in Eq. (12).
By way of example, the DC component is bounded trivially
by the spatial support, �

4A
2. Other frequencies share this

bound as well, because Fourier coefficients are bounded by
the integral of the modulus of the function; since our func-
tion is real and non-negative, this is simply the DC. More
details are in the supplementary material [1].

5. The Time-Slice Advantage

To characterize the optimal time slices and their effect
on SNR, we simulated several camera designs and esti-
mated the restoration error in Eq. (4) over a large space
of conditions—varying target DOF size, time budget, ex-
posure level, noise parameters, and camera overhead—
representing a wide range of photographic scenarios. This
allowed us to assemble a detailed picture of the time-slice
advantage, and of how these designs compare.
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Figure 4. Image restoration under a time budget. We simulated photos of a street map (at the worst-case depth), and show results for

several camera designs capturing various number of photos. We imposed a time budget of 0.1T opt, and applied the same conditions as in

Fig. 2. The left-most columns correspond to a suboptimal number of photos, leading to excessive defocus blur and noise respectively. Top

row: most in-focus photo of all the observations, scaled for display. The split images show underexposure due to dividing the time budget.

Bottom row: restoration assuming known depth. For this strongly-textured scene the Gaussian prior leads to conservative denoising.
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Figure 5. Image restoration with unknown depth. We simulated capturing 8 photos of a multi-layer scene using a standard camera with

the configuration as in Fig. 4. We estimated depth using our Bayesian depth-from-defocus method, discretizing the DOF into 200 samples.

While our method does not resolve exact per-pixel depth, the image restoration is of good quality, and its SNR (29.9 dB) is actually higher

than when true depth is provided (29.5 dB). This reversal occurs because we ignore occlusion of defocus blur at depth discontinuities [9].

We evaluated the standard camera against the optimal bound
of Sec. 4 and four extended-DOF cameras: focus sweep
[11, 23], wavefront coding [4], coded aperture [17, 33], and
(in Fig. 6 only) an idealization of the recent lattice-focal
lens [19]. Note that although we simulate taking multiple
shots with extended-DOF cameras, besides focus sweep,
these designs may not be easily reconfigurable to handle
different DOFs. See the supplementary materials [1] for
implementation details; we plan to release our source code
so that new designs can be evaluated as well.

5.1. Optimal time slices

Figures 6 and 7 summarize the results of our SNR analysis.
These results show that despite fundamental differences in

design, all cameras we considered share five basic proper-
ties with respect to the time-slice advantage:

A. Nopt is intermediate: When the lens DOF is small rel-
ative to the target DOF, capturing a small number of shots
leads to significant blur at the worst-case depth. This causes
strong frequency attenuation (Fig. 2, bottom), leading to
poor image restoration and significantly reduced SNR (e.g.,
Fig. 6, red curve in left-most plot). On the other hand, tak-
ing too many shots will reduce SNR as well—each shot in-
curs a penalty from additive noise but offers diminishing
returns from blur reduction. By capturing the optimal num-
ber of photos, we can significantly increase SNR across all
designs. Interestingly, this holds even for extended-DOF
cameras designed specifically for single-shot photography
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Figure 6. Restoration performance vs. number of photos for several time budgets. We use the same sensor and target DOF as in Fig. 2. The

leftmost plot represents a time budget large enough to capture an ideally-exposed focal stack that spans the target DOF with the standard

camera (i.e., the budget for traditional extended-DOF photography [2, 10]). The shaded region corresponds to time slices that cause over-

exposure and saturation. Dotted curves show the SNR assuming known depth; solid curves show the SNR computed from Eq. (11), and

account for uncertainty in depth estimation. For reference, we also show the upper bound of Sec. 4 and the SNR in absence of defocus.

(Fig. 6, other curves).

B. Nopt increases when time budget or target DOF is large:

Figure 6 shows SNR behavior for several time budgets.
Larger budgets increase the exposure level, which reduces
the influence of additive noise and tilts the balance toward
more photos. Similarly, as the DOF grows, so does worst-
case optical blur; this leads to more aggressive divisions of
the time budget that accept more noise (Fig. 7, top row).

C. Camera overhead reduces Nopt: We explore the ef-
fect of per-shot overhead in Fig. 7(middle row). This over-
head (i.e., due to mechanical limits or bandwidth) can be
modeled as under-exposure, reducing Nopt. For low time
budgets, overhead may limit Nopt to one photo.

D. Depth estimation penalty negligible for N ≥ 2: Our
simulations indicate that (planar) depth estimation from two
photos is good enough to avoid SNR loss in the all-in-focus
image (Fig. 6, solid vs. dotted curves). The only exceptions
are very small budgets, where the influence of additive noise
increases depth confusion (e.g., T = 0.01T opt for standard
and T = 0.1T opt for coded-aperture camera in Fig. 6).

E. The time-slice advantage: If photons could be counted
perfectly, i.e., with zero additive noise, the optimal time
slice would involve as many photos as overhead allows.
As the relative level of additive noise increases, however,
Nopt decreases because each new photo incurs an additive
penalty. This behavior is explored in Fig. 7(bottom row).
Compared to other designs, the standard and coded aper-
ture cameras are less sensitive to additive noise; their rel-
atively narrow lens DOF (Fig. 2, bottom) forces them to
accept more photos to offset worst-case blur.

5.2. Camera performance evaluation

The major difference between camera designs was in the
value of the optimal time slice, Nopt. Although the actual
effect is more complicated (Fig. 2, bottom), extended-DOF
cameras can be thought of as having a larger DOF than the
conventional camera. Thus they need fewer photos to re-
duce worst-case blur or to “span” a desired DOF.

A. Multi-shot standard camera outperforms single-shot

extended-DOF cameras: For the DOF used in Fig. 6,
the optimal time slice with a standard camera generally
achieves much higher SNR than single-shot photography
with extended-DOF cameras. This advantage holds even
compared to the highly idealized model we use for the
lattice-focal lens. Figure 7(top) shows that this holds for
large DOFs in general; computational cameras have an ad-
vantage only when the time budget is very low (e.g., T ≤
0.1T opt), or overhead is high (Fig. 7, middle).

B. Nopt helps standard camera the most: The relative
ranking of extended-DOF cameras is stable across most
conditions, and agrees with recent theoretical analysis for
one-shot capture [19]: the lattice-focal lens is best, wave-
front coding generally performs better than focus sweep,
and all perform significantly better than coded aperture. In
relative terms, conventional cameras gain more by capturing
Nopt photos. While consistently the worst for N = 1, they
achieve SNRs on par with the best computational designs
by capturing Nopt photos, with only a slight performance
loss at low time budgets.

C. Blocking light reduces SNR: The coded-aperture cam-
era performs poorly because it sacrifices half the available
light. Despite this handicap (up to 6.0 dB), it still achieves
SNR on par with a standard camera in single-shot, large-
DOF conditions.

D. Performance converges with increasing N : As the
target DOF becomes finely divided, lens optics have less
influence and power is more evenly spread. As a result, for
large, suboptimal N , the performance of all designs (except
the coded aperture) converges to the upper bound.

6. Experimental Validation

To test our predictions, we ran preliminary experiments
with a high-end digital camera. We used a fronto-parallel
scene and carried out a wide range of capture strategies,
collecting 345 images to evaluate 13 different candidates
for N , for each of 2 time budgets (without taking camera



overhead into account). This required calibrating the cam-
era for focusing depth, image magnification over focus, and
noise properties [5], then adjusting radiometry to account
for lighting variations. As shown in Fig. 8(left), the restora-
tions compare favorably to the ground truth. To confirm
the time-slice advantage, we computed the actual SNR of
the restored all-in-focus image for each run, and compared
it to those from our model. These comparisons are shown
in Fig. 8(right), and reveal good agreement. Moreover, our
analysis correctly predicted the peaks of these curves, i.e.,
the optimal time slice, for both time budgets we tested.

7. Concluding Remarks

We believe that one-shot photography provides an incom-
plete characterization of a given camera design, and of its
imaging abilities. Our initial study of the time-slice advan-
tage suggests that splitting an exposure budget across many
photos can confer a significant quality advantage—for both
conventional and computational cameras. Toward this goal,
this paper provides the basic tools for (1) making compar-
isons across camera designs, and (2) answering the practical
question of how many shots to take to optimize image qual-
ity within an exposure and DOF budget.

As in previous work on extended-DOF cameras [4, 23, 17],
we pose image formation using a local convolution model.
While this model may suffice to support our conclusions
and to obtain good restorations for simple scenes (Fig. 5), a
more sophisticated approach would explicitly model occlu-
sion at depth discontinuities [9, 18]. Moreover, the question
of how image priors [17] affect the time-slice advantage is
still open. Our intuition is that stronger priors would lead to
more photos, since they would allow us to denoise under-
exposed (but well-focused) photos more aggressively.
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Figure 7. Performance analysis of optimal time-constrained photography. We use the same sensor as in Figs. 2–6. Each point in the plots

represents a specific photography scenario, with more challenging ones going down and left in each plot. Color indicates SNR achieved by

the optimal time slice and iso-contours indicate Nopt. No contours are shown for the optimal bound since it corresponds to one photo. Top

row: varying target DOF size and time budget. We express DOF size by the size of the focal stack required to span it, using the standard

camera of Fig. 2. White stars represent the scenario in Figs. 4–5, and the target DOF in Fig. 6. Middle row: varying per-photo overhead

and time budget. The plots consider conditions identical to those of Fig. 6, with the addition of overhead. Bottom row: varying noise

properties. We consider the same conditions as in Fig. 6, with the time budget fixed to T = T opt, and vary the read noise and photon noise

components of the noise variance. These components are expressed relative to a maximum pixel value of ymax =255. The points on the

rightmost plot show values of sensor noise for the 1D Mark II at different ISO settings.
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Figure 8. Experimental results for photos captured with a Canon 1D Mark III and an 85mm f/1.2 lens. Photos were captured at full

(10MP) resolution in raw mode, with focus adjusted programmatically. The target DOF was [95, 98] cm, corresponding to about 13

shots at f/1.2. A scene (a printed advertisement) was placed at the worst-case depth (d = 95 cm). For ground truth, we captured an

ideally-focused and ideally-exposed image with T opt = 1/20 s. We then tested various time slices for two time budgets. Actual exposure

times ranged from 1/20 s to 1/8000 s. Left: Restorations for the predicted (and confirmed) optimal time slices for each time budget.

Right: SNR predicted by our model, compared to SNR measured against ground truth. The gap between the curves is mainly the result of

demosaicking artifacts, which affects a small number of high contrast edges, but does not reduce perceived image quality.


