Motion Planning with Randomized Roadmaps

CPSC 515 - Term Project Report

Sam Hasinoff, 70735964

Thursday, April 27, 2000

Abstract

This project is an implementation of a recent algorithm due to Kavraki, et al. which builds probabilistic roadmaps to solve (classic) motion planning problems [6]. An efficient distance computation routine is a key building block for this type of planner, and one such routine suggested by Quinlan [10] was also implemented. The system was developed entirely in Java/Java3D and is well-integrated with the subdivision package.

Deliverables (found under ~hasinoff/cs515/project/) include:

· this report (report.doc)

· a related technical presentation (presentation.ppt)

· distance computation source (proximity.jar)

· motion planner source (roadmap.jar)

· geometric models used for testing (models/*)

· [coming soon] demonstration movies (movies/*)

Introduction

Motion planning has emerged as a critical area of research in robotics. While the development of capable autonomous robots hinges on advancement in motion planning, the problem is even more generally applicable. Indeed, a variety of interesting non-robotics applications, including animation, surgical planning, computational biology, and industrial design, have helped motivate much recent research [8].

Broadly defined, motion planning is the ability of a robotic system to plan collision-free motions. In its classic form, this involves determining a collision-free path for a rigid or articulated robot through a field of static obstacles, where all geometry is known a priori. While even this (purely geometric) problem is highly complex in a theoretical sense, the specific instances encountered in practice are usually easy enough to admit solution with a powerful enough incomplete planner [3].

In recent years, some of the most promising work in motion planning has been the development of a number of such powerful, incomplete motion planners based on randomization [3,4,6]. Their success has permitted the practical solution of planning problems much harder than previously thought possible, involving many-DOF robots and complex environments. Some of these randomized planners have be rigorously proven probabilistically complete, meaning that given enough computation, they are able to find a collision-free path (if one exists) with probability approaching one [4,5].

One promising variety of randomized motion planners operates by building a roadmap from points sampled at random from the free space of the robot. Two nodes (milestones) in the roadmap are connected by an edge if there exists a valid local path between them in free space. The original approach of Kavraki, et al. proceeds in two distinct phases. First, a roadmap for the entire configuration space is constructed in a relatively lengthy pre-processing phase. Afterwards, a series of queries can be answered quickly by attempting to connect start and goal configurations to milestones in the same connected component [5]. Others describe how to modify this algorithm so that just the portion of the configuration space relevant to the current query is sampled, making the technique better suited to problem domains that only involve single queries, like part disassembly [4].

Efficient Distance Computation

Background

Since distance computation is the single critical bottleneck for randomized motion planners, a great deal of time was devoted to developing an efficient routine. From the start the design called for integration with the subdivision package, so that it might reach a wide number of potential users in the LCI.

Collision detection and distance computation in three-dimensional space has received a considerable amount of attention in the literature. The most common general approach is to decompose models into a hierarchy of simpler bounding volumes [7, 10], although techniques from linear programming have also been applied with success [2]. Other methods use results from computational geometry to exploit coherence, but require the models to be convex [9].

Several factors led to choosing the sphere-tree method described by Quinlan [10]. By all accounts, the routine seemed competitive with other general methods, and yet fairly straightforward to implement. An excellent feature is the simple way in which relative error can be specified, offering a continuum between exact distance computation and collision detection. Furthermore, Barraquand, et al. described successfully using the method in the context of randomized motion planning [1]. Using spheres undeniably had an aesthetic appeal too.

Algorithm

The algorithm was implemented almost exactly as described by Quinlan, with some code and optimization ideas borrowed from the Proximity Query Package (PQP) developed at UNC Chapel Hill [7].

To build the hierarchical bounding representation tree for a model, its surface is first tiled (at some specified resolution) with many small leaf spheres. These are combined recursively with simple heuristics into an approximately balanced binary tree, as illustrated in Figure 1. Parent spheres are guaranteed to contain all the spheres of leaves which are their descendents.

[image: image1.png]

Figure 1. The bounding tree for a chess piece model (queen). From left to right, (i) the original object, (ii) the root sphere, (iii) level seven of the hierarchy, and (iv) leaf spheres used to tile the surface of the object. All chess piece models are public domain, courtesy Randy Brown.

To compute the distance between two models, a depth-first search is initiated of both of models in parallel. The order in which descendents are explored is determined by simple heuristics. When the search reaches two leaf nodes, the distance between the triangles in the underlying model is computed. The lowest such distance found so far is used in conjunction with the distances calculated between bounding spheres to prune the search. Extending this to incorporate relative error is easy.

Notable differences from the Quinlan method include a more general architecture, the ability to return nearest points, only supporting triangle faces, rejecting the concept of meta-trees, and exploiting coherence by caching the last closest pair of faces. Extensions planned will generalize the distance computation routine even further, allowing each node an arbitrary number of children and giving the user the option to construct the bounding tree directly from the subdivision structure.

Empirical Results

The main benchmark used for testing involved positioning two chess pieces (a bishop and a rook) randomly in three-dimensional space and computing the distance between them. An example is shown in Figure 2. The pieces are non-convex and rather detailed, scaled to roughly 1.0 units high, and consist of about 2,000 triangles each. The models were tiled to a resolution of 0.0375 so that each finished sphere tree consisted of nearly 6,500 leaf nodes. All reported execution times are for a Worldwide AMD K6III-450.

[image: image2.png]

Figure 2. A typical configuration of the chess piece models (bishop and rook) for the benchmark. Coordinate axes and the line connecting nearest points are shown.

The effect of varying relative error is examined in Graph 1. The two chess pieces were positioned randomly in a cube measuring 5.0 units to the side, and for each level of relative error the average of 40,000 trials was taken. Both the number of comparisons between nodes and the number of distance computations between triangles are observed to follow the same trend. With increased relative error, the search size drops dramatically. Indeed, specifying a 20% relative error leads to an improvement on the scale of one and a half orders of magnitude (the two order of magnitude result reported by Quinlan was for a different benchmark).

[image: image3.png]100000

10000 3. LS.

@ —e—nodes
8 1000
@ triangles
- 9
g
£ o —
g

0

.

0o 001 001 01 .

exact calision detection

relative error

Graph 1. Search Size vs. Relative Error.

The current implementation can compute the distance between approximately 40,000 pairs of triangles a second and can examine approximately 550,000 pairs of nodes a second. With a relative error of 20%, the average execution time is 0.72 ms. By comparison, collision detection takes an average of 0.23 ms, and exact distance computation takes an average of 29.8 ms. Thus, with a moderate amount of relative error, the execution time is comparable to collision detection, with the added advantage of having obtained considerable distance information as well.

The relationship between search size and the distance between the models is illustrated in Graph 2. Results are shown with 20% relative error, where configurations were chosen non-uniformly to bias the models to being closer together. The shape of the graph is sigmoid-like, but with considerable variance from the trend. When the models are quite separated, a single triangle-triangle distance computation is enough to prune the rest of the search. As the models get closer, the search size grows and then seems to plateau again, and the algorithm runs much slower.

This is a general problem with distance computation methods, and begs further examination. In motion planning in particular, the problem is highly relevant, as many of the interesting distance computations occur near the free space boundary (and thus in close proximity to the obstacles).

[image: image4.png]search size

100000

10000

1000

100

0

itesest 0001 001 01 .

distance between objects (model units)

+nodes
u triangles

Graph 2. Search Size vs. Distance between Objects.

Conclusions

The hierarchical bounding representation suggested by Quinlan appears to be a good framework for the efficient distance computation between non-convex objects. The notion of relative error helps unify the problems of distance computation and collision detection, and offers a compromise between performance and acceptable error. While the performance of the algorithm degrades when models are very close, this is to be expected of any method for doing distance computation. Distance computation is a key building block for both robot simulation and motion planning, and the implementation described will hopefully find users across the LCI.

Motion Planning with Probabilistic Roadmaps

Background

Due to time constraints, the original goals for the motion planner were scaled back considerably. However, a working prototype was still developed, following a general framework suggested for randomized motion planning algorithms [1] and based on the classic approach of Kavraki, et al. [6]. The prototype is restricted to solving motion planning problems for rigid bodies, but has proven itself successful even in fairly complicated geometric environments.

Algorithm

The classic roadmap planner operates in two distinct phases: constructing the roadmap and answering queries [6]. In the first phase, the configuration space of the robot is sampled randomly. Those configurations which correspond to the robot not colliding with any obstacles are stored as milestones, where the function CLEARANCE is implemented with the distance computation routine from the previous section. Next, the local planner called CONNECT (described below) tries to establish straight-line paths in configuration space between pairs of configurations that are close. The graph established on the milestones is the roadmap. The final step, RESAMPLE, generates additional milestones in an attempt to focus on the more difficult areas, and simple heuristics are used to bias the milestone selection.

Two configurations are said to be adjacent if, following the straight-line path between them in configuration space, the robot collides with no obstacles. Defining the metric MAX_DIST to return an upper bound on the maximum distance traveled by any point on the robot as it moves along such a line, two configurations are adjacent if the greater of the two CLEARANCE values exceeds the value for MAX_DIST.

The local planner CONNECT is built around this idea of adjacency. Two adjacent configurations can be trivially connected by definition. If the configurations are non-adjacent, the straight-line path between them is split recursively. The local planner fails immediately if an endpoint is not in free space, and succeeds if the endpoints of each segment are adjacent [1,4].

BUILD_ROADMAP:

until r milestones are generated {

 pick a configuration q at random

 if (CLEARANCE(q) > 0) store q as a milestone

}

for each pair of milestones m1 and m2 with distance

 less than d call CONNECT(m1,m2)

call RESAMPLE to expand the roadmap by s-r milestones
The query answering phase is more straightforward. To answer a query, CONNECT is used to try to connect the start and goal configurations to milestones in the precomputed roadmap. If this is not possible directly, the neighbourhoods of the start and goal configurations can be searched for intermediate stepping stones that might lead to the roadmap. For the query to be successful, the connector milestones must lie in the same component of the roadmap.

ANSWER_QUERY:

for i={start,goal} do {

 if (for some milestone m, CONNECT(m,q_i)==TRUE) {

 m_i = m

 } else {

 pick q at random in the neighbourhood of q_i, up to

 g times, until q sees both q_i and a milestone m

 if (all g trials failed) return FALSE, else m_i = m

 }

}

if (m_start and m_goal are in the same component) then

 return TRUE, else return FALSE
Since the roadmap algorithm is incomplete, failure might indicate either a non-existent path or simply that there has been insufficient computation. On failure, the motion planning system might expand the roadmap by sampling some additional nodes, only giving up after some time limit has been reached or perhaps when the roadmap has reached a certain density.

Implementation Details

Several simplifying shortcuts were taken to quickly arrive at a working prototype. For example, the configuration space is parameterized in an unusual way, owing to a routine (from Graphics Gems III) that was used to generate rotation matrices from three random variables. The MAX_DIST metric, as a consequence, only bounds the actual distance very loosely. Perhaps a better parameterization for the rotation would be unit quaternions, as described in [4].

In the interest of time, the whole RESAMPLE function was omitted, which likely degraded performance significantly. When answering queries, the search for intermediate stepping stones was also omitted, but with no noticeable consequences.

Finally, a number of very obvious optimizations were not performed, some of which are Java-specific. One might envision a more polished motion planner even employing orthogonal range-searching techniques, for instance, to quickly locate the neighbours of a milestone.

Results

The results presented here are mainly qualitative, since the motion planner is in the rough prototype stage and has not undergone any optimization. The main benchmark used to evaluate the planner, as illustrated by Figure 3, is taken directly from the literature [3,4]. The workspace for the robot contains a single square-shaped obstacle with two holes. The robot is an irregularly-shaped rigid body, bent in several places, and can only achieve its motion planning goal by twisting itself through one of the holes. Varying the dimensions of the holes will change the difficulty of the problem.

For the problem depicted in Figure 3, the holes measure 0.3 units to a side and the robot is composed of segments of length 0.2 units. The prototype solved the problem in 263 s, but an implementation of a state-of-the-art algorithm (on similar hardware) would likely run about five times faster [4].

[image: image5.png](@ (b) ©

Figure 3. Rigid robot fitting through a hole. Coordinate axes are shown, and the space from which configurations are sampled is shown as a wireframe box.

The CONNECT function was found to be extremely slow, recursing to depths of one hundred or more, when configurations were very close to the free space boundary. Possible solutions include using an improved a MAX_DIST function with a tighter distance bound, or rejecting any configuration with CLEARANCE very close to zero in the roadmap construction phase. An even more radical approach would be to re-implement CONNECT by simply discretizing the line between the two configurations and performing collision detection at each point.

It was also discovered that the planner is quite sensitive to the value of the cut-off distance d, the distance beyond which no attempt is made to connect milestones. If d is too low then no path will ever be found, and if d is too high then the planner will be very slow to execute. Complicating the matter, the appropriate value for d changes with the number of milestones sampled. This difficulty in choosing acceptable parameter settings is a problem not addressed by any randomized motion planning literature.

Conclusions

Considerable progress has been recently made using randomized motion planners for robots with many degrees of freedom. However, many areas remain problematic: the quality of the path generated is typically poor, modelling uncertainty is expensive, etc. In short, motion planning remains impractical for complicated autonomous robots in real-world situations.

With that said, the basic roadmap algorithm was straightforward to implement, and surprisingly effective given all of the simplifying shortcuts taken. Indeed, randomized planners do seem highly promising for robots with many degrees of freedom, and industrial applications should continue to motivate research in this area in the short term.

Had time permitted, it would have been interesting to attempt an implementation of a more recent algorithm better suited to single-query processing [4]. Further work could extend the design to handle models of articulated robots, so that the Puma260 (6-DOF) or other some other robot in the LCI might be simulated.

References

[1] Barraquand, J., Kavraki, L., Latombe, J. C., Motwani, R., Li, T. Y., and Raghavan, P. 1997. A random sampling scheme for path planning. Int. J. of Robotics Research 16(6):759-774.

[2] Gilbert, E. G., Johnson, D. W., and Keerthi, S. S. 1988. A fast procedure for computing distance between complex objects in three-dimensional space. IEEE Tr. On Robotics and Automation 4(2):193-203.

[3] Gupta, K. and Pobil, A. P. D. Practical motion planning in robotics: Current approaches and future directions. John Wiley & Sons Ltd. (1998).

[4] Hsu, D., Latombe, J. C., and Motwani, R. 1999. Path planning in expansive configuration spaces. Int. J. of Computational Geometry & Applications 9(4-5):495-512.

[5] Kavraki, L. E., Kolountzakis, M. N., and Latombe J. C. 1998. Analysis of probabilistic roadmaps for path planning. IEEE Tr. On Robotics and Automation 14(1):166-171.

[6] Kavraki, L. E., Švestka, P., Latombe, J. C., and Overmars, M. 1996. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Tr. On Robotics and Automation 12(4):566-580.

[7] Larsen, E., Gottschalk, S., Lin, M. C., and Manocha, D. 1999. Fast proximity queries with swept sphere volumes. Tech. Rep. TR99-018, Dept. of Computer Science, UNC Chapel Hill, NC.

[8] Latombe, J. C. 1999. Motion planning: A journey of robots, molecules, digital actors, and other artefacts. Int. J. of Robotics Research 18(11):1119-1128.

[9] Lin, M. C., and Canny, J. F. 1991. A fast algorithm for incremental distance calculation. In Proc. IEEE Int. Conf. on Robotics and Automation, Sacramento, CA 1008-1014.

[10] Quinlan, S. 1994. Efficient distance computation between non-convex objects. In Proc. IEEE Int. Conf. on Robotics and Automation, San Diego, CA 3324-3330.

