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Abstract—This paper examines a query-by-example approach
to spoken term detection in audio files. The approach is designed
for low-resource situations in which limited or no in-domain
training material is available and accurate word-based speech
recognition capability is unavailable. Instead of using word or
phone strings as search terms, the user presents the system with
audio snippets of desired search terms to act as the queries. Query
and test materials are represented using phonetic posteriorgrams
obtained from a phonetic recognition system. Query matches in
the test data are located using a modified dynamic time warping
search between query templates and test utterances. Experiments
using this approach are presented using data from the Fisher
corpus.

I. INTRODUCTION

In recent years, spoken term detection for spoken audio
data has received increasing attention in the research and
development communities [3]. Systems employing a large
vocabulary continuous speech recognition (LVCSR) approach
are common and have been shown to be very accurate for a
variety of well-resourced tasks [6], [10]. However, concerns
over the computational requirements and vocabulary coverage
of LVCSR systems have been raised, leading some researchers
to focus on systems that employ a phonetic approach to spoken
term detection [8], [14]. In fact, for some tasks a phonetic ap-
proach may be the only feasible approach. This is particularly
true when the available training data for learning a vocabulary
and language model is severely limited, thus impeding the
development of an LVCSR system that can provide adequate
lexical coverage. In this case, phonetic modeling is needed to
combat the out-of-vocabulary word problem.

Another difficult scenario involves audio search for data
impoverished languages or accents. In this case, it may not be
possible to adequately train language specific acoustic models
and the system may need to rely on a cross-language or
language-independent modeling approach. If there are pho-
netic differences between the phonetic recognition system
and the language or accent of the test data, it can also be
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assumed that an accurate lexical dictionary mapping words to
the recognizer’s phonetic units may not be available.

In this paper, we focus on spoken term detection for
the situations discussed above where standard techniques for
spoken term detection are inadequate. For these cases we
explore a query-by-example approach to spoken term detection
in which the user has found some data of interest within their
data pool (through random browsing or some other method)
and they wish to find more data like it in their data pool. In
the query-by-example approach the user selects audio snippets
containing a keyword (or key-phrase) of interest. These audio
snippets then become the queries for the user’s search. The
system must then search the pool of test audio for segments
that closely resemble these query examples.

Query-by-example search has been applied in a variety
of audio applications including sound classification [15] and
music retrieval [13], but audio-based query-by-example re-
trieval of speech has received little attention in the speech
community. However, the speech community does have a rich
history of applying template matching techniques to the speech
recognition problem. Thus, the approach that we employ in
this work borrows heavily from the basic ideas of template-
based speech recognition using dynamic time warping [7],
[9]. Most of the early speech-based template matching work
relied on direct acoustic similarity measures when matching
templates to test data. However, acoustic similarity measures
can suffer from mismatches in speaker and/or environment.
Alternatively, some recent work has examined the use of
symbolic features within a template matching approach [1],
[2]. Our work similarly uses a phonetically-based symbolic
representation within a template-based approach to query-by-
example spoken term detection. In our previous work, we
have explored the query-by-example problem using a hidden
Markov modeling approach based on phonetic confusion net-
works [12]. In this work we examine a template matching
approach based on a phonetic posteriorgram representation.

II. QUERY-BY-EXAMPLE USING POSTERIORGRAMS

A. Phonetic Posteriorgram Representation
Many spoken term detection systems rely on a network or

lattice representation of phonetic recognition hypotheses for
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Fig. 1. An example posteriorgram representation for the spoken phrase
“basketball and baseball”.

capturing speech recognition output information. When using
lattice representations it is typically assumed that the phonetic
string of a query term is known and can be found within a
lattice using standard search techniques.

In our query-by-example scenario, we wish to find similarity
between the query example and matching segments in test
utterances even though the underlying phonetic content of the
query is unknown. Our approach uses a representation that is
often referred to as a phonetic posteriorgram, which is a time-
vs.-class matrix representing the posterior probability of each
phonetic class for each specific time frame. Posteriorgrams
can be computed directly from the frame-based acoustic
likelihood scores for each phonetic class at each time frame.
Alternatively, a full phonetic recognizer, using both acoustic
and phonetic language model scores, can be run to generate a
lattice, and the posteriorgram can be computed directly from
this lattice.

Figure 1 shows a posteriorgram for an audio segment
containing the spoken words “basketball and baseball”. The
horizontal axis represents time in seconds and the vertical
axis represents the individual phonetic classes. The level of
darkness in the figure’s posteriorgram signifies the posterior
probability of the class at a given time; posterior probabilities
near 1 are black and posterior probabilities near 0 are white.

B. Similarity Matching of Posteriorgrams
To locate audio segments that are similar to a query sample

using posteriorgrams, we first define a measure for comparing
individual posterior distributions. Let us represent the pos-
teriorgram for a speech segment Q as a series of vectors
containing phonetic posterior probabilities for N frames in
the speech segment as:

Q = {�q1, . . . , �qN} (1)

We will use Q to refer to the posteriorgram for a query
segment, and X to refer to a posteriorgram for a test utterance
containing M frames. The goal is thus to determine if there
is a similarity match between Q and any region in X .

In work by Aradilla et al [1], [2], the Kullback-Leibler
divergence metric has been used as a similarity measure
between posterior distributions. However, the underlying goal
is to identify speech regions in a test utterance that match
the phonetic content of the query. Divergence measures may
capture the similarity between distributions but they do not
model the likelihood that two posterior distribution estimates
could have resulted from the same underlying phonetic event.

Given two posterior distributions �q and �x, the probability
that these distributions resulted from the same underlying
phonetic event is easily represented by their dot product:

P (phone{�q} = phone{�x}) = �q · �x. (2)

We can reinterpret this probability as a distance-like measure
by converting it into the log probability space as follows:

D(�q, �x) = − log(�q · �x) (3)

Here, values close to zero represent strong similarity between
�q and �x while large positive values represent dissimilarity. In
practice, this expression could fail in the situation where many
of the values of �q and �x are zero, leading to �q · �x = 0 and
hence D(�q, �x) = ∞. To compensate, we can smooth each
posteriorgram distribution as follows:

�q ′ = (1− λ)�q + λ�u (4)

Here �u is a vector representing a uniform probability dis-
tribution and λ > 0 assures a non-zero probability for all
phonetic posteriors in �q ′. This smoothing can be applied to
the posteriorgrams for both the query and test material.

To compare the posteriorgrams of a query example and a
test utterance, we compute the similarity measure between the
individual posterior distributions for all N frames in the query
against the individual posterior distributions for all M frames
in test utterances. This results in an N ×M similarity matrix.

C. Dynamic Time Warping Search
When comparing a query posteriorgram against a test

posteriorgram, our goal is to find a region of time in the
test posteriorgram with high similarity to the query sample
posteriorgram. For example, Figure 2 shows a posteriorgram
similarity matrices between a test utterance (along the x-axis)
and a query term (along the y-axis). The dark regions represent
strong similarity between frames of the test utterance and
frames of the query example, while the light regions represent
dissimilarity. Ideally, a match between a query segment and
a segment of a test utterance would be represented by an
upper-left to lower-right diagonal sequence of highly similar
regions (or blocks) within the similarity matrix. The matrix in
Figure 2 shows an example of a valid match between the query
and a test utterance with the green line representing the best
matching alignment of the query sample against its matching
region in the test utterance.
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Fig. 2. An example posteriorgram similarity matrices between a query lasting 0.9 seconds (along the y-axis) and a test utterance lasting 2.4 seconds (along
the x-axis). The matrix shows the superimposed results of a DTW search for a valid match of the query within the test utterance.

In order to search for a well matched path between a query
example and a test utterance, as exemplified by the path found
in Figure 2, we use a modified dynamic time warping (DTW)
search. The DTW search employs two primary constraints.
First the DTW search accumulates similarity scores along path
extensions in the search space. A path which has progressed in
the DTW search to index i in the query and index j in the test
can be extended to index i+n in the query and index j+m in
the test, subject to the constraint that either n = 1 or m = 1.
In other words, the search disallows simultaneous multiframe
path extensions in both the query and test segments.

Our second constraint is to favor path extensions with sim-
ilar durations by scaling the similarity score along individual
extensions of a hypothesized path by an alignment slope factor
defined as:

γ = max(n, m) (5)

This alignment slope factor is further exponentially weighted
by a factor ϕ which is designed to control the strength of the
alignment slope constraint.

With these constraints we express the score for any path
extension in the DTW where m = 1 as:

Sext(�qi → �qi+n, �xj → �xj+1) = γϕ
n∑

k=1

D(�qi+k, �xj+1) (6)

Similarly, the score for any path extension where n = 1 is:

Sext(�qi → �qi+1, �xj → �xj+m) =
γϕ

m

m∑

k=1

D(�qi+1, �xj+k) (7)

Within these expressions the distance score for the path
extension is normalized by the number of frames m absorbed
by the test side of the extension. This insures that the total
score of any final path receives equal contribution from each
query frame regardless of the total number of test frames
absorbed in the path. Also note the contribution of the duration
constraint variable ϕ; when ϕ = 0, no diagonal alignment
constraint is enforced, while larger values of ϕ will force the
search to strongly favor perfectly diagonal path alignments
(i.e., one for one matching of query and test frames).

The final score S(X |Q) for any full path through the
posteriorgram is the sum of the scores of the full set of path

extensions taken in that path during the search, normalized
by the total number of frames in the query. The DTW search
finds the minimum scoring path through the similarity matrix.

D. Using Multiple Queries
Our query-by-example approach can also be used when

multiple examples of a query term are available. There are
two basic approaches that can be taken to combine multiple
templates. The first approach would be to combine the tem-
plates through some process into a single template combining
the characteristics of the multiple queries. A second simpler,
but more computationally expensive approach, is to use all
available query templates to generate scores, and to then
combine the scores from these templates. In this work we
use the second approach for combining scores. We leave an
examination of the first approach (i.e. combining queries into
a single template) for future work.

Our system currently employs a flexible score “averaging”
expression for score fusion. We consider the case where
NQ queries (labeled Q1, . . . , QNQ) are used to generate NQ

different scores for an input utterance X . The total score for
X for the fusion of query scores can be computed using this
expression:

S(X |Q1, . . . , QNQ) = − 1
α

log
1

NQ

NQ∑

i

exp(−αS(X |Qi))

(8)
The value of α in this expression determines the relative con-
tribution of the scores within the averaging that is performed.
When α = 0 the fusion expression computes the average of
the scores in the log probability space. A value of α = 1
represents an average of the scores in the probability space
and α = ∞ returns the maximum score.

E. User-Driven Relevance Feedback
Because our approach allows for the combination of results

from multiple queries, it becomes straightforward to imple-
ment user-driven relevance feedback. After returning a ranked
list of potential utterance hits to a user, the user can listen
to an individual utterance and provide feedback to the system
indicating whether the desired word was or was not present
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TABLE I
THE COLLECTION OF QUERY TERMS USED IN THE EVALUATION WITH

THEIR OCCURRENCE COUNTS IN THE EVALUATION DATA.

age (11) money (21) married (21) basically (12)
war (12) always (36) business (22) different (20)
down (36) couple (15) children (18) important (13)
food (18) family (31) happened (12) sometimes (14)
nice (23) pretty (40) problems (11) definitely (29)
agree (15) school (12) remember (16) especially (17)
funny (14) exactly (15) supposed (15) everything (27)
never (42) talking (14) thinking (18) government (17)
t. v. (11) parents (20) together (14) understand (14)
years (30) started (14) whatever (21) interesting (15)

in that utterance. Newly observed positive examples can be
scored against the remaining utterances in the returned list. The
new scores can then be factored into the previously computed
scores and the list can be reordered. This process can be
repeated after each new observation of the desired word in
the returned data, hopefully improving the accuracy of the
rankings in the remaining unseen portion of the data being
searched by the user.

III. EXPERIMENTAL RESULTS

A. Phonetic Recognition
For our initial evaluations we evaluate using the output of a

phonetic recognition system developed at the Brno University
of Technology (BUT) [11]. The recognizer is trained on
only 10 hours of English data from the Switchboard cellular
corpus [4]. The recognizer generates a lattice of phonetic
hypotheses which is then post-processed into a posteriorgram.
Pruning is employed during recognition such that only a
sparse subset of phones in the posteriorgram yield a non-
zero posterior score at any frame. This serves to reduce
the memory requirements of the posteriorgram representation.
During the DTW search the smoothing operation in Equation 4
is employed to approximate the probability mass lost due to
the pruning of the recognition results.

B. Experimental Data
We evaluate our system on a set of 36 conversations

contained in the Fisher English development test set from
the NIST Spoken Term Detection Evaluation in 2006 [5].
The evaluation data was automatically segmented into 3501
utterances of 8 seconds duration or less.

For query terms, we have selected 40 words that have
occurrence counts within the evaluation set of between 11 and
42. For these terms, the prior likelihood of observing a term
in one of the 3501 test utterances varies between 0.003 and
0.011. In other words, these selected terms are relatively rare
in comparison to the most common English words, but are not
so exceedingly rare that we have only a few examples of each
for our experiments.

Table I shows the full collection of query terms with
the number of times they appear in the evaluation data. To
serve as the query examples of these terms we have excised
posteriorgram representations of examples of these terms from
conversations in the Fisher English Phase 1 corpus [4]. Five

randomly selected examples of each query term are used
for our experiments with their start and end times being
determined from independently generated forced alignments.

C. Evaluation Metrics

For our evaluation, we examine three different evaluation
metrics: (1) the average precision of the top ten utterance
hits returned by a search (P@10), (2) the average precision
of the top N search hits (P@N), where N is the number of
occurrences of the term in the evaluation data, and (3) the
average detection equal error rate (EER) where the rate of
missed detections is equivalent to the rate of false alarms on
a standard detection error trade-off curve. Our evaluation is
conducted on a per utterance basis and not on a per term
basis, i.e., a correct hit occurs if a returned utterance contains
the desired search term and a false alarm occurs if a returned
utterance does not contain the search term. In this evaluation,
long and short utterances are treated as equivalent, and the
resulting EER scores will be higher that those reported using
the term-based NIST STD evaluation tools [5]. It is also worth
noting that the P@N measure represents the point on the
precision-recall curve where precision and recall are equal.

D. Primary Experimental Results

In our primary experiments, we evaluated our posterior-
gram DTW (PG-DTW) system under three different query-
by-example evaluation cases (described below). In each of
these three cases, we have set the posteriorgram floor variable
from Equation 4 to λ = 10−5 (based upon preliminary
experiments on an independent development test set). We
also evaluate using two different settings for the duration
constraint variable. In the first setting, the duration constraint
is completely ignored by setting ϕ = 0. In the second setting,
the duration constraint is employed by setting ϕ = 1.

In our first evaluation case, we assume that only one query
example is available for each search. Under this assumption we
evaluate each of the 40 terms using each of the five examples
of that term yielding 200 different trial searches.

In our second evaluation case, we assume that we have five
query examples available for each search term. We fuse the
results from the five query examples for each term into a single
search result to yield a total of 40 different term searches. For
these experiments we set the fusion variable to α = 0 such
that our fused scores are a simple average of the scores.

Our third evaluation case is the oracle case where we
construct the queries directly from a lexical dictionary entry.
Because we do not have any duration information available
to accompany our dictionary entry, each phoneme receives
a single frame in the query posteriorgram and the PG-DTW
duration constraint is set to ϕ = 0. Each phoneme in the dictio-
nary entry receives a weight of 1 in the query posteriorgram.
When alternate pronunciations are provided for a phoneme
slot, each alternate phoneme is given a weight of 1.

Table II shows query-by-example retrieval results that com-
pare our new PG-DTW approach against our pre-existing
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TABLE II
QUERY-BY-EXAMPLE TERM DETECTION RESULTS USING DIFFERENT

QUERY CONSTRAINTS FOR TWO DIFFERENT MODELING APPROACHES.

Duration EER
System Queries Scale P@10 P@N (%)
DHMM 1 Example N/A .351 .279 20.1

PG-DTW 1 Example ϕ = 0 .335 .269 18.2
PG-DTW 1 Example ϕ = 1 .363 .293 17.1
DHMM 5 Examples N/A .610 .456 11.2

PG-DTW 5 Examples ϕ = 0 .570 .447 12.8
PG-DTW 5 Examples ϕ = 1 .633 .528 10.4
DHMM Dictionary N/A .712 .548 9.6

PG-DTW Dictionary ϕ = 0 .708 .560 10.5

TABLE III
RESULTS FOR THE PG-DTW SYSTEM USING FIVE QUERY EXAMPLES

BROKEN DOWN BY THE PHONETIC LENGTHS OF THE QUERY TERMS.

# Phones P@10 P@N EER (%)
2-4 0.533 0.462 13.7
5-6 0.633 0.514 9.0
7-9 0.706 0.588 9.0

discrete hidden Markov model (DHMM) approach (as de-
scribed in [12]). The DHMM models phonetic sequences
using a segment-based or column-based confusion network
representation of the lattice rather than using the fine-grained
frame-based posteriorgram. A column-based HMM containing
one state per confusion network column is constructed for
each query term. The emitting observation function for each
state is a phonetic unigram distribution based on the phonetic
posteriors for the corresponding column in the confusion
network. As such the DHMM can be viewed as a compact
approximation of the full posteriorgram used by the DTW ap-
proach. The DHMM accumulates segment-level scores while
PG-DTW accumulates frame-level scores. Thus, the PG-DTW
scoring mechanism inherently gives more weight to the longer
phonemes in the query than the shorter ones, while the DHMM
weights all phonetic segments equally regardless of length. In
its current form, the DHMM approach does not account for
phoneme durations while PG-DTW incorporates a duration
constraint through the variable ϕ.

In comparing the query-by-example systems, the PG-DTW
system with a duration constraint gives the best performance
for both the 1-query and 5-query conditions. Removing the
duration constraint harms the performance of the PG-DTW
system by a modest amount in both experimental cases. The
DHMM performs slightly worse than the PG-DTW system that
employs the duration constraint, but better than the PG-DTW
system with no duration constraint.

For all systems, the single query example results suffer from
poor precision. The best system (the PG-DTW system using
the duration constraint) achieves an average precision at 10
of only 0.36, while the precision at N is less than 0.3 for all
three systems. When using 5 query examples, the results are
significantly better with a top 10 precision of 0.63 for the PG-
DTW system using a duration constraint. By comparison, the
oracle systems using the known dictionary entry both achieve
a precision at 10 of 0.71. When examining the systems using
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Fig. 3. Effect of score fusion parameter α on EER of PG-DTW term detection
using five query examples.

the EER measure, the 5-example PG-DTW system using the
duration constraint actually performs marginally better than
the oracle PG-DTW system, though it is still worse than the
oracle DHMM system. To be fair, though, the oracle systems
do not use any duration information.

Table III shows the 5-example PG-DTW results (with the
duration constraint) sorted into bins of short, medium, and
long query terms based on their phonetic counts. As expected,
better performance is observed on the longer terms.

E. Experimental Results with Variable Score Fusion
Figure 3 shows the results for the PG-DTW system using

5 query examples as the fusion parameter α in Equation 8 is
varied. While there is a slight advantage to setting the value to
α = 0.2 for this test set, this advantage is minimal and may
not hold for other test sets. Because performance degrades
significantly for α > 0.2, using a setting of α = 0 appears
to be the wisest solution for score fusion using the method
presented in Equation 8.

F. Experimental Results Using Relevance Feedback
When performing query searches in an interactive mode,

one would expect improved performance by employing user-
driven relevance feedback. We simulate this scenario experi-
mentally using the following procedure.

1) Using a set of query examples, compute the scores for
all queries against all unexamined test utterances and
return the ranked list of test utterance candidates.

2) Examine the highest ranked previously unexamined ut-
terance from the ranked list and determine if it is a
positive example of the desired search term. If the
utterance contains a positive example of the term, add
the example into the query set and return to step 1;
otherwise, repeat step 2.

We repeat the procedure above until 10 test utterances have
been examined by the simulated user. For our evaluation,
we compute P@10, P@N, and EER for the ranked list after
each new candidate utterance has been examined. To simulate
actual usage, each examined utterance from the ranked list that
retains its rank position in the list, and only unexamined utter-
ances are reranked. Thus, if 10 utterances have been examined
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TABLE IV
IMPROVEMENTS OBSERVED IN QUERY-BY-EXAMPLE SPOKEN TERM

DETECTION WHEN USING RELEVANCE FEEDBACK TO RESCORE AND

RESORT THE RANKED LIST OF CANDIDATE HITS VIA THE INCORPORATION
OF NEW POSITIVE EXAMPLES OBSERVED IN THE RANKED LIST.

# of Candidates EER
Examined P@10 P@N (%)

0 0.633 0.528 10.4
1 0.643 0.514 10.4
2 0.653 0.526 10.4
3 0.665 0.535 10.2
4 0.665 0.541 10.1
5 0.663 0.545 10.0
6 0.665 0.546 9.9
7 0.658 0.548 9.9
8 0.663 0.548 9.9
9 0.663 0.547 9.8

during the relevance feedback process, P@10 represents the
precision of the actual 10 utterances examined.

Table IV shows the improvements in performance that are
obtained when employing relevance feedback to an initial
system using five query examples as up to nine test utterances
returned by the system are examined. We see continued
improvements in performance as additional positive examples
are discovered and added into the example query set for each
term. After feedback from the first nine examined utterances
has been provided, the P@10 and P@N metrics move closer
to the results obtained from the oracle pronunciation system,
while the EER obtained by the query-by-example system
(9.8%) is now significantly better than the EER of the oracle
PG-DTW pronunciation system (10.5%).

IV. CONCLUSION

In this paper we have presented a query-by-example ap-
proach to the spoken term detection problem for situations
where data resources and knowledge are limited and word-
based recognition is unavailable. In this approach phonetic
posteriorgram templates are constructed from audio examples
and then compared against test utterances using a dynamic
time warping approach. Our experiments have verified the
viability of this approach. The accuracy of our new PG-DTW
approach compares favorably with both our previous DHMM
query-by-example system and with systems which have access
to the known dictionary pronunciations of the search terms.

One aspect of our approach that has not yet been discussed
is its computational needs. While the offline recognition costs
are similar to other phonetic retrieval systems, the online
search and retrieval costs could be prohibitively expensive for
low-latency online searches of large corpora. Currently, the
DTW search time increases linearly with both the amount
of data to be searched and the number of query examples
available for search. The DTW search time is not insubstantial
and is significantly higher than the index look-up approaches
employed by standard search engines. While there are methods
we can employ to improve the computational efficiency of
our system, we envision that the practical application of this
technique is to serve as a search refinement tool and not as the
initial retrieval mechanism, i.e., this technique could be used

to rescore and reranked a small subset of results containing
the most probable candidate hits (on the order of hundreds
to thousands) returned by a standard phonetic indexing and
retrieval mechanism. This could allow for improved accuracy
with only modest added latency from with the DTW rescoring.

In future work we will examine ways to improve the
accuracy and efficiency of our system. In particular we believe
the computation can be reduced by combining multiple query
templates into a single query template, and by merging similar
sequential frames in a posteriorgram into a single multi-
frame segment. In essence, we seek to build a system whose
computational requirements are more in line with those of our
DHMM approach but which also provides a mechanism for
modeling the durational information of the observed terms. We
will also extend this approach to cases where labeled training
data in the target language is not available by employing cross-
language phonetic recognition, potentially with unsupervised
adaptation to unlabeled target language data.
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