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ABSTRACT 
In this paper we report on some recent improvements on the 
acoustic modeling in a segment-based speech recognition sys-
tem.  Context-dependent segment models and improved pronun-
ciation modeling are shown to reduce word error rates in a tele-
phone-based, conversational system by over 18%, while the 
technique of Gaussian selection reduces overall computation by 
more than a factor of two. 

1. INTRODUCTION 

Since its deployment in 1997 [1], the number of calls made to the 
Jupiter telephone-based conversational weather information sys-
tem has been steadily increasing.  Currently, an average of about 
200 calls, yielding 1000 new utterances, are made each day.  This 
continuous influx of real data from a wide variety of users and 
channel conditions is an invaluable resource for our research in 
robust speech recognition and understanding.  In this paper we 
report on recent refinements in acoustic modeling which have 
improved performance, and reduced computational requirements. 

The SUMMIT segment-based speech recognition system [2] is 
capable of handling two rather different types of acoustic models: 
segment models, and boundary models.  Segment models are 
intended to model hypothesized phonetic segments in a phonetic 
graph, and can be context-independent or context-dependent.  
The observation vector for these models is of fixed dimensional-
ity, and is typically derived from spectral vectors spanning the 
segment.  Thus, we only extract one segmental feature vector, 
and thus one likelihood, for a phone, regardless of its duration.  
This is in contrast to frame-based methods such as Hidden 
Markov Models (HMMs), which compute likelihoods at a fixed 
frame-rate. 

In contrast to segment models, boundary models are intended to 
model transitions between phonetic units. The observation vector 
for these diphone models is also of fixed dimensionality, and is 
centered at hypothesized phonetic boundary locations, or land-
marks.  Since some landmarks will in fact be internal to a phone, 
both internal, and transition boundary models are computed, 
either in context-independent, or -dependent fashion. 

 Because the observation spaces of segment and boundary mod-
els differ significantly, they contribute different information to 
the search and ranking of hypotheses.  It should be noted that 
different segmentation hypotheses typically contain different 
numbers of segments (although all segmentations contain the 
same number of landmarks).  This is potentially a problem be-

cause it makes the comparison, and ultimately ranking, of differ-
ent hypotheses more difficult.  A solution is to normalize the 
segment probabilities.  In this study the “anti-phone” [2] nor-
malization method has been used, but we have experimented 
with other methods in the past as well [3].  

In the early development of the Jupiter system, context-
independent segment models were used.  As more data became 
available context-dependent boundary models were added.  The 
log probability model scores of the boundary and segment mod-
els were linearly combined to produce the total acoustic score for 
each hypothesis.  Ideally, the combination of the models should 
provide more accurate results than either of the individual mod-
els.  However, the boundary models, with their higher degree of 
context dependency, benefited more from the increasing training 
data than the segment models. Thus, as more training data be-
came available, the use of the context-independent segment mod-
els actually began to degrade the overall recognition accuracy.  
For this reason, only boundary models were used in [4].  This 
study investigated context-dependent segment models to see if 
they could improve the boundary models. 

In a real-time conversational system, improved (i.e., more de-
tailed and therefore more computationally demanding) acoustic 
models are a mixed blessing.  To keep the total amount of com-
putation constant, the increased phonetic modeling accuracy 
must be accompanied by the adjustment of other parameters, 
such as the number of paths searched in the beam.  In our case, 
the introduction of context-dependent segment models more than 
quadrupled the number of acoustic models in the system.  To 
deal with the increased amount of computation we use a tech-
nique called Gaussian selection to greatly reduce the number of 
probability densities that are computed [5,6]. 

In comparison to standard HMM approaches, an idiosyncrasy of 
segment modeling is that it is not very forgiving of discrepancies 
between the pronunciation models of the system and user’s pro-
nunciations.  While HMMs are capable of absorbing mismatched 
pronunciations within a few poorly scoring frames, it is not as 
easy to hide pronunciation mismatches using segments, which 
may span multiple frames.  It is therefore necessary to accommo-
date, at the very least, the most common pronunciation variations 
for words in the vocabulary.  In SUMMIT, a set of phonological 
rules is used to generate alternate pronunciations from the base-
forms of the lexicon.  In general these rules have a tendency to 
overgenerate, allowing many unlikely variants.  Therefore, in this 
study we examine the effect of applying likelihoods to the arcs in 
the pronunciation network.  ML estimation is used to find the 
likelihoods from forced transcriptions of the training data. 



2. SYSTEM DESCRIPTION 

2.1 Acoustic Features 

The acoustic observation vectors for both segment and boundary 
models are based on the first 14 MFCCs. The features used for 
each landmark are identical to those used in [4].  The feature 
vectors are derived by computing averages and derivatives of 
MFCC frames over several fixed duration regions surrounding 
each landmark. This is similar to the feature extraction typically 
used in a standard HMM except that the width of the window 
over which the features are derived, 150ms, is relatively large.  
Another difference is that the landmark ‘rate’ is not constant like 
the frame rate of an HMM.  The dimensionality is reduced to 50 
using principal component analysis. 

For segment modeling, segments are divided into three regions: 
initial 30%, middle 40%, and final 30%.  In each of these re-
gions, averages and derivatives of the MFCCs are computed.  In 
addition, the logarithm of the segment duration is used.  Not all 
averages and derivatives are used in all three regions; more em-
phasis is on the averages in the middle region, and on the deriva-
tives in the beginning and end [7].  The resulting 40-dimensional 
vector is rotated using principal component analysis. 

2.2 Probability Density Functions 

Mixtures of Gaussian probability density functions with diagonal 
covariance matrices were used.  To combat sparse data problems, 
the number of Gaussians per model is dependent on the number 
of training observations n and the size of the observation vector 
m.  Thus, the number of mixture components is set to n/m, but 
not greater than a constant N.  In these experiments, N = 50 for 
boundary models, and N = 25 for segment models.  There is no 
sharing of Gaussians between models. 

2.3 Maximum Likelihood Training 

Both boundary and segment models were trained by iteratively 
alternating segment alignment and parameter estimation.  This is 
sometimes called Viterbi training in contrast to embedded seg-
mentation training schemes such as Baum-Welch.  The initial 
segmentation was computed using a boundary-only recognizer.  
Boundary models were trained in the same manner as in [4], but 
we currently have about twice the amount of training data 
(50,000 utterances).  Each context-dependent segment model was 
trained on all applicable segments.  Thus some segments appear 
in the statistics for multiple models (e.g., the monophone ‘ae’ 
and the triphone ‘k-ae+tcl’). 

2.4  Unit Selection 

For boundary modeling, over 2200 different context-dependent 
diphone boundaries and 61 context-independent phone-internal 
boundaries were possible based on the lexicon. The entire group 
of transitions was semi-automatically collapsed into 715 classes 
for which boundary models were trained. The semi-automatic 
procedure utilized phonetic and acoustic properties of the pho-
nemes, as well as their frequency in the training data, to derive 
the final set of classes. 

The context-dependent segment models were selected by count-
ing the occurrences of all triphones, left and right diphones, and 
monophones in the initial segmentation of the training utterances.  
Any such unit with a count greater than N was selected.  Initial 
experiments indicated that N = 250 is a reasonable tradeoff be-
tween acoustic modeling accuracy and computation in this case.  
This gave 935 triphones, 1190 diphones, and the 61 monophones 
(i.e., a total of 2186 segment models).  When we apply this 
model set to the pronunciation network of the 1957 words in the 
Jupiter lexicon, 71% of all arcs have triphone models, and the 
remaining 29% are backed off to diphones or monophones.  Be-
cause of a small computational advantage in the search, the di-
phone with left context specified is always chosen when both 
types of diphones are trained but the triphone is not. 

2.5 Finite-State Transducers and Search 

SUMMIT now makes use of finite-state transducers (FSTs) to 
represent context, phonological, lexical, and language model 
constraints [4].  In particular, the first pass utilizes a single FST 
encompassing all these constraints.  In this work, this FST is the 
minimized composition of a context-dependency transducer (re-
writes labels to be context-dependent) [8], a lexicon with phono-
logical rules applied, and a word-class bigram.  Thus, we are 
using context-dependent models in the first pass.  Boundary, 
segment, lexical, and bigram scores are synchronized at the 
phone level. 

In a second pass, we incorporate a word-class trigram to compute 
N-best.  (We have had difficulty using a trigram directly in the 
first pass due to FSTs becoming too large during determiniza-
tion.)  We do this by computing an intermediate word graph with 
the bigram constraint and then compose this with the inverse 
bigram composed with the trigram.  This results in a word graph 
with trigram scores.  We then compute the A* heuristic for every 
node of this graph, and finally compute the N-best list with an 
admissible phone-based A* search.  All of these operations are 
performed after an utterance is complete, yet overall latency is 
typically well under 1s.  Our previous A* heuristic was based on 
bigram scores, which could cause thrashing when bigram and 
trigram scores differed significantly, leading to larger latencies. 

3. RECOGNITION ACCURACY 

The test data consist of 2506 utterances randomly selected from 
the corpus, of which 1806 utterances were considered “in do-
main.”  Table 1 summarizes the error rates for these “in domain” 
data using a 1957 word lexicon, and class bi- and trigram lan-
guage models [4]. As can be seen, the segment-only case is 
worse than the boundary-only condition, but linearly combining 
them yields a significant relative improvement of 13%.  We also 
found improvements on the “out of domain” data, where the 
word error rate of the combined models was reduced from 60% 
to 48.8% compared with the boundary-only recognizer of [4]. 

Table 2 contains results obtained after ML estimated pronuncia-
tion likelihoods are applied to the arcs of the pronunciation net-
work.  The likelihoods do not significantly effect the results 
when using only boundary models.  However, a significant re-
duction in error rate from 10.4% to 9.6% is obtained when using 
only segment models.  This is expected because the segment 



modeling approach is more sensitive to pronunciation variants 
than the boundary modeling approach. Like the HMM approach, 
boundary models, when used by themselves can absorb pronun-
ciation mismatches within a few poorly scoring landmarks. How-
ever, because the landmark rate is considerably less then the 
frame rate of typical HMMs, accurate pronunciation models are 
still more important for boundary models than for HMMs.   Fi-
nally, an error rate reduction from 6.5% to 6.1% is obtained in 
the combined segment and boundary system when the pronuncia-
tion likelihoods are used. 

4. COMPUTATIONAL ISSUES 

4.1 Computational Complexity of Boundary 
Modeling versus Segment Modeling 

Although segments typically span multiple landmarks, the num-
ber of segments examined in the search may be significantly 
larger than the number of landmarks.  The reason is that seg-
ments have two time attributes.  Thus, the number of segments to 
consider is a quadratic function of the frame rate, while the num-
ber of landmarks is a linear function.  Furthermore, in the current 
system, the boundary models utilize less context dependency 
than the segment models.  In particular, the internal boundary 
models, which typically make up more than half of the landmarks 
of a hypothesis, are context-independent. 

Figure 1 quantifies how much more computation the segment 
models require with equal number of Gaussian mixtures per 
model.  Clearly, the boundary models only condition is the only 
one operating in real time.  However, note that the accuracy deg-

radation is rather small when, for segment models, the maximum 
number of Gaussians is reduced from N = 25 to 10 (‘♦ ’ versus 
‘+’).  Therefore, in the following experiments of this section we 
are using N =10 for segment models. 

4.2 Use of Gaussian Selection 

Because well over half of the time is consumed by the calculation 
of Gaussian probability densities, we use Gaussian selection to 
reduce the number of Gaussians that are evaluated [5].  To evalu-
ate a model, the feature vector is quantized using binary VQ, and 
the resulting codeword is used to look up the reduced list of 
Gaussians to evaluate, often resulting in a large reduction in 
overall computation. 

We select the Gaussians for a particular model m and codeword k 
as follows: (1) Keep all Gaussians for which the distance from 
the Gaussian mean to the codeword center is below some thresh-
old Θ.  (2) Keep a Gaussian if its mean quantizes to k.  (3) If a 
given model has no Gaussians associated with codeword k, select 
its closest Gaussian.  Note that (2) means that every Gaussian 
will be selected for at least one codeword k, and (3) ensures that 
at least one Gaussian is evaluated for every model/codeword pair 
(m, k). 

As for the distance criterion used in (1) above, we use the 
squared Euclidean distance normalized by the number of dimen-
sions D.  Thus, for (1), we select a Gaussian iff 
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We have tried the more complex weighted distance criteria de-
scribed in [6] (e.g., distance weighted by inverse average vari-
ance or weighted by the inverse of the geometric mean of average 
variance and codeword-specific variance), but these did not offer 
any advantages in our system.  Perhaps this is due to the fact that 
we apply principal component analysis to our feature vectors to 
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Figure 1. Word error rate versus computation time for 
boundary models only, segments models only and linear 
combination. Varying the aggressiveness of the beam prun-
ing controls the computation time. The fourth series, ‘+’, 
shows the case of 10 Gaussians per segment model, linearly 
combined with the boundary models. Timing performed on 
a 500MHz Pentium III.  

 Word 
Error Rate 

Sentence 
Error Rate 

Sub Ins Del 

Boundaries 7.5 21.0 4.1 1.0 2.5 

Segments  10.4 27.7 5.3 1.9 3.3 

Combination 6.5 18.8 3.5 1.3 1.7 

Table 1. Recognition results (in percent) for only bound-
ary models, only segment models, and linear combination 
respectively. Since computational issues are covered in 
section 4, the numbers shown here are for very conserva-
tive beam pruning (i.e., the results are close to the case of 
no pruning). 

 Word 
Error Rate 

Sentence 
Error Rate 

Sub Ins Del 

Boundaries 7.6 20.7 4.1 1.0 2.5 

Segments  9.6 25.7 4.6 1.3 3.7 

Combination 6.1 17.4 3.1 1.2 1.8 

Table 2. Recognition results (in percent) with pronuncia-
tion weighting for only boundary models, only segment 
models, and linear combination respectively.  The effect 
of beam pruning is negligible here.  



whiten the feature space prior to creating Gaussian mixtures.  We 
also unsuccessfully tried to use Gaussian log probability in place 
of squared distance, thinking this was the most meaningful crite-
rion, but without improvement.  We further tried to set a limit on 
the size of the Gaussian lists as in [6], but were unable to im-
prove upon the accuracy/speed tradeoff. 

The number of codewords used is 512, but the accuracy and 
speed are not terribly sensitive to this setting in our system.  We 
used Θ = 0.6 as our selection threshold.  Note that this is signifi-
cantly smaller than that used in [6], where values between 1.0 
and 1.9 were used. 

Figure 2 shows the accuracy/speed curves for the boundary-only 
system and the combined boundary/segment system with Gaus-
sian selection in use.  Since the combined system, with triphones 
in the first pass evaluates considerably more Gaussians than the 
boundary-only system, it benefits more from the Gaussian selec-
tion.  Note that the boundary-only and combined curves are 
closer than those of Figure 1.  With Gaussian selection, the per-
formance curves cross over at about 1.35 times real time.  Below 
that point, the boundary-only system performs better, above that 
the combined system is preferable. 

5. CONCLUSIONS AND FUTURE WORK 

By making the segment models context-dependent, we have 
shown that the SUMMIT framework, combining boundary mod-
els and segment models, is scalable to a much larger training 
corpus than we have used in the past.  Both the word error rate 
and the sentence error rate were significantly improved. 

The increased computation for segment modeling was greatly 
reduced by the use of Gaussian selection.  This allowed a 
speedup by a factor of about two with maintained recognition 
accuracy.  Nevertheless, with current hardware, rather aggressive 
beam pruning thresholds are necessary to achieve real-time op-
eration, and the recognition accuracy at this operating point is 
not better than that of system based on landmarks only.  How-
ever, as can be seen in Figure 2, the slope of the RT/WER curve 

is rather steep at the current real-time operation point indicating 
that further reductions of computation may pay off significantly 
in terms of accuracy.  In the near future we plan to add mixture 
tying to our system and hope to further reduce the number of 
Gaussians evaluated.  This tying should also reduce the problem 
of sparse data when training context-dependent models. 

There are many parameters of the segment modeling that were 
not investigated nor optimized in this study.  For example, it is 
likely that using a different acoustic feature vector can further 
increase the recognition accuracy, because the current features 
were not selected to optimize performance of context-dependent 
models.  The simple method of unit selection can also be refined.  
For example, the context dependency of landmark models is 
based on phonetic knowledge combined with statistics from the 
corpus.  The same method could be applied to segment models, 
which would reduce problems due to sparse data and increase the 
coverage of phonetic contexts. 

We have recently applied aggregation of multiple models with 
heterogeneous acoustic features and achieved significant accu-
racy improvements [9,10].  In the future we plan to combine this 
with the techniques reported on in this paper.  
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Figure 2. Word error rate versus computation for the 
boundary/segment model combination (with 10 mixtures 
per segment model) compared to the boundary models only 
system. Timing performed on a 500MHz Pentium III. 


