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Abstract

In this paper we present an approach to recognition confidence scoring and
a set of techniques for integrating confidence scores into the understanding
and dialogue components of a speech understanding system. The recog-
nition component uses a multi-tiered approach where confidence scores
are computed at the phonetic, word, and utterance levels. The scores
are produced by extracting confidence features from the computation of
the recognition hypotheses and processing these features using an ac-
cept/reject classifier for word and utterance hypotheses. The scores gen-
erated by the confidence classifier can then be passed on to the language
understanding and dialogue modeling components of the system. In these
components the confidence scores can be combined with linguistic scores
and pragmatic constraints before the system makes a final decision about
the appropriate action to be taken. To evaluate the system, experiments
were conducted using the jupiter weather information system. An eval-
uation of the confidence classifier at the word-level shows that the system
detects 66% of the recognizer’s errors with a false detection rate on cor-
rectly recognized words of only 5%. An evaluation was also performed
at the understanding level using key-value pair concept error rate as the
evaluation metric. When confidence scores were integrated into the under-
standing component of the system, a relative reduction of 35% in concept
error rate was achieved.

1. Introduction

The Spoken Language Systems Group conducts research leading to the develop-
ment of conversational systems for human-machine interaction. These systems
must not only recognize the words which are spoken by a user but also under-
stand the user’s query and respond accordingly. To achieve this goal, accurate
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automatic speech recognition is a necessity. The presence of incorrectly recog-
nized words may cause the system to misunderstand a user’s request, possibly
resulting in the execution of an undesirable action.

Unfortunately today’s speech recognition technology is far from perfect and
errors in recognition must be expected. For example, let us consider the perfor-
mance of the jupiter weather information system (Zue, 2000). On a randomly
selected test set of 2388 utterances, the recognizer for jupiter achieves a word
error rate of 19.1%. On utterances which contain no out-of-vocabulary words
and are clean of other artifacts that make recognition difficult (i.e., background
noise, partial words, etc.) the error rate is only 9.9%. However, these “clean”
utterances constitute only 75% of the test data. The error rate on the remaining
25% of the data is over 50%! It is this type of performance which motivates
the development of confidence scoring techniques. Because recognition systems
cannot yet (and may never) completely avoid recognition errors, it alternatively
becomes desirable for a system to be able to detect when recognition errors have
occurred and take appropriate actions to recover from these errors.

One simple approach to deal with recognition errors is to reject entire ut-
terances which the system is having trouble recognizing. In cases where the
recognizer is unable to produce a likely recognition hypothesis which conveys a
clear and obvious semantic meaning it may be better for the system to reject
the entire utterance rather than provide a response which is inconsistent with
the user’s actual request. In this circumstance a variety of strategies could be
employed to guide the user. One approach is to provide informative “help” mes-
sages which instruct the user about the system’s capabilities thereby steering
the user towards queries that the system can handle. Another approach is to
fall back into a strict directed dialogue paradigm where the system asks the
user very specific questions in order to constrain the user to the vocabulary and
knowledge domain of the system.

The primary difficulty with utterance-level rejection strategies is that the user
is not informed about the specific portions of the utterance with which the
recognizer had difficulty. A lack of feedback about what portions of an utterance
the system did and did not understand could lead to increased confusion about
what the user can and cannot say to the system. For example, suppose a user
asks this question:

is there a flood warning for harper’s ferry

If the system completely rejects this request at the utterance level the user
does not know if the system couldn’t recognize the concept of a flood warning,
the city of harper’s ferry, or both. Without more information about why the
system rejected this utterance, the user may be unsure about what to say next.

Ideally, the system should be able to detect word-level recognition errors. With
knowledge about the confidence the recognizer had in each of the specific words
that it hypothesized, the system could tailor a response to the user which is more
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informative about what it did and did not understand from the user’s request.
For example, suppose a user asks jupiter the following question:

what is the forecast for paramus park new jersey

For this example, the jupiter speech recognizer does not have the word para-
mus in its vocabulary. As such, the recognizer will provide its best guess using
the words it knows. Thus, it might hypothesize the following query:

what is the forecast for paris park new jersey

Using confidence scoring techniques jupiter should be able to determine that
the word paris was not a reliable hypothesis. It could then mark this word as
a potentially misrecognized word when passing the utterance on to the under-
standing component of the system. At that point the understanding component
would need to be able to determine that the user is looking for the forecast for
some place in New Jersey, but that the name of the place was misrecognized.
Using this information the system could then prompt the user with the list of
places in New Jersey for which it knows forecasts. The system might also prompt
the user to spell the name of the city and learn it for future use.

To develop a system capable of the actions described above, two specific re-
search goals must be addressed. First, a recognition confidence scoring technique
which accurately determines when a recognizer’s output hypothesis is reliable
or unreliable must be developed. Second, confidence scores must be integrated
into the back-end components of the system (e.g., language understanding and
dialogue modeling) thereby enabling these components to make an informed
decision about the action that should be taken when a confidence score indi-
cates that a hypothesis may be incorrect. It is these two goals that our research
strives to address. In this paper, we will present the details of our approach to
this problem and present experimental results demonstrating the capabilities of
our techniques.

2. Recognition Confidence Scoring

2.1. Overview

An accurate method for determining confidence scores for the speech recognition
process must take into account two primary difficulties inherent in typical speech
recognition systems. First, the models used in the recognition process may be
inadequate, for any number of reasons, for discrimination between competing
hypotheses. Second, recognizers are typically developed for closed set recognition
(e.g., recognition using a pre-determined fixed vocabulary) and are thus not
entirely appropriate for open set recognition problems where unknown words,
partial words, and non-speech noises may corrupt the input.

Thus, an accurate confidence scoring technique should take into account the
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various factors which can contribute to misrecognitions. First, the scoring tech-
nique must be able to determine whether or not the recognizer has many compet-
ing hypotheses which could cause confusions. Recognition errors are less likely
to occur when one hypothesis easily out-scores all other competing hypotheses.
Likewise, errors are far more likely to occur when multiple competing hypothe-
ses all have similar scores (Hetherington, 1994). Second, the recognizer must be
able to determine if the input speech is actually a good fit to the underlying
models used by the system, regardless of the relative scores of the competing
hypotheses. Errors are more likely when there is a poor fit between the input
test data and the training data. This can be the case when unknown words or
non-speech sounds are present in the input data.

When examining the results of the recognition process, confidence scores for
the recognition output can be computed on various levels, including the phonetic
level, the word level, and the utterance level. In this paper we will refer to
confidence at the phonetic level as the reliability of the individual acoustic model
scores. In standard hidden Markov model (HMM) systems, this would correspond
to the acoustic scores at the frame level. In our system we generate phonetic-level
confidence scores only as an intermediate step towards generating word-level and
utterance-level confidence scores. We utilize the same basic approach, as outlined
below, for computing both word-level and utterance-level scores.

To attack this problem we start by extracting a set of confidence features from
the computations performed during recognition. The extraction of multiple con-
fidence features has been investigated in many recent research efforts (Chase,
1997; Sui, Gish & Richardson, 1997; Schaaf & Kemp, 1997; Weintraub, 1997;
Pao, Schmid & Glass, 1998) providing us with a wide variety of potential features
to examine. These features can be selected based on their correlation with the
correctness of the recognition hypotheses from which they are extracted (Schaaf
& Kemp, 1997). In our case, we selected a subset of the many potential confidence
features to utilize in our system using a greedy search over many candidate fea-
tures. This search iteratively adds features to the feature set by choosing the one
feature from the candidate set which most improves the confidence prediction
results when used in conjunction with previously selected features. The algo-
rithm stops adding features when the addition of new features fails to improve
performance. The final set of selected confidence features are combined together
into a single confidence feature vector.

After the confidence feature vector for each particular hypothesis has been
computed, it can be passed through a confidence scoring model which produces
a single confidence score based on the entire feature vector. In past research
efforts, a variety of different methods for generating a single confidence score
from a multi-dimension feature vector have been explored. These methods in-
clude the use of Fisher linear discriminant projection (Schaaf & Kemp, 1997;
Pao, Schmid & Glass, 1998), mixture Gaussian modeling (Kamppari, 1999),
neural networks (Schaaf & Kemp, 1997; Wendemuth, 1999) and support vector
machines (Ma, Randolph & Drish, 2001).
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Once a score for each hypothesis has been determined, a variety of possible
actions can be taken. In very basic system designs, a discrete set of actions
such as “accept”, “reject” or “confirm” can be applied to a hypothesis based
on its confidence score. In more complicated systems, the recognizer can gener-
ate a full graph of hypotheses augmented with confidences scores which can be
passed along to the understanding and dialogue modeling components of the sys-
tem (Rose, et al, 2000; Hazen, et al, 2000). These components can combine the
recognizer’s confidence scores with linguistic scores and pragmatic constraints to
arrive at a final hypothesis and determine the appropriate action.

2.2. Phonetic-Level Scoring

Many confidence scoring techniques focus on an examination of the scores pro-
duced by the recognizer’s acoustic models at the phonetic level. Because the raw
acoustic scores are usually not particularly useful as confidence measures (Bergen
& Ward, 1997), various methods exist to normalize these scores (Lleida & Rose,
1996; Williams & Renals, 1999; Cox & Dasmahapatra, 1999; Kamppari & Hazen,
2000). In this work all of the acoustic scores produced at the phonetic level are
normalized against a catch-all model. The normalization of the acoustic score
does not affect the outcome of the recognition search but does allow the score
produced for each phone to act as a phonetic-level confidence feature. Mathe-
matically, the phonetic-level confidence score for a hypothesized phone u given
an acoustic observation, ~x, is:

c(u|~x) = log
p(~x|u)

p(~x)
(1)

This normalization process produces a score which is zero-centered with respect
to the log of p(~x), allowing the scores to be consistent across different observa-
tions. In practice, the catch-all model that is used is an approximation of the
p(~x) model that would result from the weighted summation of the p(~x|u) mod-
els over all u. The approximation of p(~x) is created by performing a bottom-up
clustering of the full set of components in p(~x) and approximating large clusters
of components with single Gaussian densities (Kamppari, 1999). All references
to acoustic scores in the remainder of this paper refer to the normalized acoustic
scores described above.

Phonetic-level acoustic confidence scores can be useful for a variety of tasks.
For example, these scores can be used to locate mismatches between the acoustic
models dictated by a word’s given pronunciation and the acoustic observations
for that word, thereby helping identify missing alternate pronunciations for any
given word. In a similar vein, an examination of these scores during recognition
could be used to help identify words that the user has mispronounced. In this
work, we are primarily interested in identifying recognition errors at the word
and utterance levels. In this scenario, examination of the individual phonetic
confidence scores is performed only as an intermediate step towards producing
higher-level confidence scores.
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2.3. Utterance-Level Features

For each utterance, a single confidence feature is constructed from a set of
utterance-level features extracted from the recognizer. For this work 15 different
features which have been observed to provide information about the correctness
of an utterance hypothesis were utilized. These utterance-level features are:

1. Top-Choice Total Score: The total score from all models (i.e., the acous-
tic, language, and pronunciation models) for the top-choice hypothesis.

2. Top-Choice Average Score: The average score per word from all models
for the top-choice hypothesis.

3. Top-Choice Total N-gram Score: The total score of the N -gram model
for the top-choice hypothesis.

4. Top-Choice Average N-gram Score: The average score per word of the
N -gram model for the top-choice hypothesis.

5. Top-Choice Total Acoustic Score: The total acoustic score summed
over all acoustic observations for the top-choice hypothesis.

6. Top-Choice Average Acoustic Score: The average acoustic score per
acoustic observation for the top-choice hypothesis.

7. Total Score Drop: The drop in the total score between the top hypothesis
and the second hypothesis in the N -best list.

8. Acoustic Score Drop: The drop in the total acoustic score between the
top hypothesis and the second hypothesis in the N -best list.

9. Lexical Score Drop: The drop in the total N -gram score between the top
hypothesis and the second hypothesis in the N -best list.

10. Top-Choice Average N-best Purity: The average N -best purity of all
words in the top-choice hypothesis. The N -best purity for a hypothesized
word is the fraction of N -best hypotheses in which that particular hypothe-
sized word appears in the same location in the sentence. The N -best purity
is sometimes referred to as the “N -best Score” (Gillick, Ito & Young, 1997).

11. Top-Choice High N-best Purity: The fraction of words in the top-choice
hypothesis which have an N -best purity of greater than one half.

12. Average N-best Purity: The average N -best purity of all words in all of
the N -best list hypotheses.

13. High N-best Purity: The percentage of words across all N -best list hy-
potheses which have an N -best purity of greater than one half.

14. Number of N-best Hypotheses: The number of sentence hypotheses in
the N -best list. This number is usually its maximum value of ten but can
be lower if fewer than ten hypotheses are left after the search prunes away
highly unlikely hypotheses.

15. Top-Choice Number of Words: The number of hypothesized words in
the top-choice hypothesis.
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2.4. Word-Level Features

For each hypothesized word in each N -best hypothesis, a set of word-level fea-
tures are extracted from the recognizer to create a confidence feature vector. For
this work 10 different features, which have been observed to provide information
about the correctness of a word hypothesis, were utilized. These features are:

1. Mean Acoustic Score: The mean log-likelihood acoustic score across all
acoustic observations in the word hypothesis (where the acoustic score is a
zero-centered log-likelihood ratio and not a raw density function score).

2. Mean Acoustic Likelihood Score: The mean of the acoustic likelihood
scores (not the log scores) across all acoustic observations in the word hy-
pothesis.

3. Minimum Acoustic Score: The minimum (or worst) log-likelihood score
across all acoustic observations in the word hypothesis.

4. Acoustic Score Standard Deviation: The standard deviation of the
log-likelihood acoustic scores across all acoustic observations in the word
hypothesis.

5. Mean Difference From Maximum Score: The average difference be-
tween the acoustic score of a hypothesized phonetic unit and the acoustic
score of the highest scoring (or best) phonetic unit for the same observation
across all acoustic observations in the word hypothesis.

6. Mean Catch-All Score: Mean score of the catch-all model across all
observations in the word hypothesis.

7. Number of Acoustic Observations: The number of phone-level acoustic
observations within the word hypothesis.

8. N-best Purity: The fraction of the N -best hypotheses in which the hy-
pothesized word appears in the same position in the utterance.

9. Number of N-best: The number of sentence-level N -best hypotheses gen-
erated by the recognizer.

10. Utterance Score: The utterance confidence score generated from the ut-
terance features described above.

2.5. Classifier Training

2.5.1. The Training Data:

To train the confidence scoring mechanism and the accept/reject classifier, a set
of training data must be used which is independent of the training data used to
train the recognizer. The independence is required to insure that the confidence
scoring mechanism accurately predicts the recognizer’s performances on unseen
data. In our experiments, which were conducted using the jupiter system, the
confidence training data consists of 2506 jupiter utterances. Each utterance is
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passed through the recognizer to produce a set of N -best hypotheses (where N =
10) which are used to train the confidence scoring mechanism. When training the
model for word confidence scoring, only the hypothesized words in the top-choice
of the N -best list are used.

2.5.2. Data Labeling:

The first step in the training process is to label the data. Each training token
must be labeled either as correct or incorrect. The correct label is for tokens which
should be accepted by the classifier, while the incorrect label is for tokens which
should be rejected. This step must be taken for both the word and utterance-
level classifiers. In both cases, each correct/incorrect label is associated with the
confidence feature vector extracted from the recognizer for that hypothesis.

For word-level scoring the labeling scheme is obvious. Correctly hypothesized
words are labeled as correct and incorrectly hypothesized words are labeled as
incorrect.

For utterance-level scoring the concept of correctness is not as clear. We have
elected to use a set of heuristics to define the labels of correct and incorrect such
that only utterances which the recognizer has extreme difficulties recognizing
will be marked as incorrect. In this labeling scheme, we mark utterances in
which the correct orthography is one of the top four sentence hypotheses as
correct. Utterances in which at least two out of every three words in the top-
choice hypothesis are correctly recognized are also marked as correct. All other
utterances are labeled as incorrect.

2.5.3. The Classifier Model:

The same confidence scoring technique is used for both word and utterance-level
confidence scoring. To produce a single confidence score for a hypothesis, a simple
linear discrimination projection vector is trained. This projection vector reduces
the multi-dimensional confidence feature vector from the hypothesis down to a
single confidence score. Mathematically this is expressed as

r = ~p T ~f (2)

where ~f is the feature vector, ~p is the projection vector, and r is the raw confi-
dence score.

Because the raw confidence score r is simply a linear combination of a set of
features, the score has no probabilistic meaning. Ideally, we prefer to generate
scores which have a probabilistic meaning in order to make these scores more
compatible with other probabilistic components of our entire system. To this
end, a probabilistic confidence score based on maximum a posteriori probability
(MAP) classification is created using the following expression:

c = log

(

p(r|correct)P(correct)

p(r|incorrect)P(incorrect)

)

− t (3)
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In this expression, the p(r|correct) and p(r|incorrect) terms are modeled with
Gaussian density functions for r for correct and incorrect tokens, the P(correct)
and P(incorrect) terms are a priori probabilities of observing correct or incorrect
tokens, and c is the final probabilistic confidence score expressed in the log
domain. Note that a constant decision threshold t is applied to the score to set
the accept/reject decision threshold to zero. Thus, after the decision threshold
t is subtracted, a negative score for c results in a rejection while a non-negative
score results in an acceptance.

Although various studies have utilized more complicated classification tech-
niques, such as multi-layered perceptrons (Weintraub, 1997) and support vector
machines (Ma, Randolph & Drish, 2001), it is not evident that a more compli-
cated technique is needed for this task. In past work, we were able to achieve
better results with a simple linear projection model than with a more compli-
cated MAP classification approach using mixture Gaussian models (Kamppari,
1999; Kamppari & Hazen, 2000). Other studies have also observed that simple
linear decision techniques work as well as more complicated classifiers, such as
multi-layered perceptrons (Schaaf & Kemp, 1997; Wendemuth, 1999), on this
task. We may return our attention to this open question in future studies.

2.5.4. The Training Method:

The projection vector ~p is trained using a minimum classification error (MCE)
training technique. In this technique the projection vector ~p is first initialized
using Fisher linear discriminant analysis. After the initialization of ~p, a simple
hill-climbing algorithm iterates through each dimension in ~p adjusting its values
to minimize the classification error rate on the training data (Powell, 1964).
The optimization continues until a local minimum in error rate is achieved. The
Gaussian density parameters of the classifier model are trained from the raw
scores generated after applying ~p to the feature vectors in the training set.

The threshold t is determined by setting the operating point of the system
to a desired location on the receiver-operator characteristic (ROC) curve. For
the utterance-level scores, the threshold is set such that 98% of the utterances
which are labeled as correct are accepted. This threshold is chosen to insure a
high detection rate which discourages false rejections. For words, the minimum
classification error rate is chosen as the desired operating point.

2.6. Experimental Test Conditions

To test the confidence scoring techniques, a test set of 2388 jupiter utterances is
utilized. For recognition we utilize the summit speech recognition system (Glass,
Chang & McCandless, 1996) as trained specifically for the jupiter weather do-
main (Glass, Hazen & Hetherington, 1999). The recognizer is trained on over
70,000 utterances collected from live telephone calls to our publicly available
system. The recognizer’s vocabulary has 2005 words. As discussed in the intro-
duction, the recognizer achieved a word error rate of 19.1% on this test set.
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2.7. Utterance-Level Experimental Results

The goal of utterance-level confidence scoring is to reject utterances with which
the recognizer has extreme difficulty. With this in mind the utterance scoring
mechanism rejected 13% of the utterances in the test set. The word error rate
on this 13% of the data was over 100% (i.e., there were more errors than actual
words in the reference orthographies). Closer examination reveals that only 27%
of the reference words in the orthography were actually recognized correctly
and that both substitution errors and insertion errors happened more frequently
than correct recognitions. By comparison, the word error rate on the 87% of
the utterances that were accepted was 14%. These results indicate that the
utterance-level confidence scoring mechanism performs its job as intended.

2.8. Word-Level Experimental Results

To evaluate word-level confidence scoring, there are a variety of metrics that have
been proposed in the confidence scoring community (Sui & Gish, 1999). Of the
wide variety of evaluation techniques available, we have chosen to evaluate our
word confidence models using the ROC curve of the confidence model. We also
examine the “accept/reject” classification error rate of the confidence model at
the operating point along the ROC that our system actually utilizes. We choose
these measures because they offer a clear and obvious interpretation of actual
performance of a confidence model for a given recognizer. All of our evaluations
are performed using the words in the recognizer’s top-choice sentence hypothesis
for each utterance in our test set.

The ROC curve of a confidence model measures the trade-off between the
acceptance of correctly recognized words (i.e., the detection rate) and the false
acceptance of incorrectly recognized words (i.e., the false alarm rate). Figure 1
shows the ROC curves for the three best individual word features (the mean
acoustic score, the N -best purity, and the utterance-level confidence score). As
can be seen in the figure, the ROC curve of the full MCE-trained model based on
all 10 features dramatically improves upon the ROC curves of each of the three
best individual features. When examining the individual features, it is observed
that the relative capabilities of the individual features varies depending on their
exact operating points on the curve.

For speech understanding systems to be useful, the confidence scoring model
cannot be overly aggressive in trying to reject misrecognitions. We typically
operate our word confidence scoring model at the minimum classification rate
of the ROC curve (as determined on development test data). At this operating
point the correct acceptance rate is 94.9% and the false acceptance rate is 34.3%.
In other words, the system correctly rejects 65.7% of incorrectly recognized words
while falsely rejecting only 5.1% of correctly recognized words.

Because we are primarily interested in the confidence model’s performance at
its actual operating point (as opposed to its performance over the entire ROC
curve), we can evaluate the system using a single-valued evaluation criterion: the
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Figure 1: ROC curve produced by three individual word confidence features and by the full
MCE-trained model using 10 word confidence features.

error rate on “accept/reject” classification of the word hypotheses. Using this
evaluation metric, an error occurs if the classifier accepts a misrecognized word
or rejects a correctly recognized word. This error rate is directly related to a
recognition metric we refer to as the hypothesized word error rate (HWER). The
hypothesized word error rate is expressed as follows:

HWER =
(# of substitutions) + (# of insertions)

# of hypothesized words
(4)

The HWER differs from the standard word error rate (WER) in that it only
considers the accuracy of the words observed in the hypothesized word string. It
neglects deletion errors and is normalized by the number of hypothesized words
and not the number of reference words. This metric is related to the accept/reject
error rate because the accept/reject classifier can only operate on words which are
actually present in the hypothesis. At present the confidence scoring technique
has no ability to express the confidence that a word may have been deleted. The
relationship between the accept/reject error rate and the HWER results from
the fact that the HWER acts as an upper bound on the accept/reject error rate.
This can be achieved by instructing the classifier to accept all word hypotheses.
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This assumes that the HWER is less than 50%. In cases where the HWER is
actually greater than 50% the upper bound is based on a system which instead
rejects all hypothesized words. With this in mind, the goal is to achieve an
accept/reject error rate which dramatically improves upon this upper bound.
The system which simply accepts (or rejects) all words will be referred to as the
baseline system against which the accept/reject classifier is compared.

Table 1 examines the accept/reject classification error rate under three condi-
tions: (1) the baseline system, (2) a classifier using each of the 10 word features
on an individual basis, and (3) the system using the complete set of features with
the MCE-trained linear discriminant classifier. These results were computed over
all hypothesized words from only utterances accepted by the utterance-level clas-
sifier. As can be seen in the table, the individual features based solely on the
acoustic scores do not perform particularly well by themselves. In fact, the mean
log-likelihood acoustic score, which is the best of the acoustically-based confi-
dence features, has an accept/reject error rate which is only 3% less than the
baseline system (11.7% vs. 12.1%). By comparison, the utterance-level score,
which is the same for all words in any sentence hypothesis, yields a 7% improve-
ment from the baseline (11.2% vs. 12.1%), and the N -best purity measure yields
an 11% improvement (10.8% vs. 12.1%). When all of the features are combined,
a relative error rate reduction of 22% from the baseline can be achieved (9.4%
vs. 12.1%).

Table 2 shows the performance of the classifier under two different constraints.
First, the table shows the performance of the classifier when tested on accepted
versus rejected utterances. For accepted utterances the baseline system accepts
all words. In this case, the improvement over the baseline achieved by the ac-
cept/reject classifier comes from rejecting as many misrecognized words as pos-
sible while maintaining a low false rejection rate. For rejected utterance (where
over 70% of the hypothesized words are incorrect), the baseline system rejects
all hypothesized words. In this case, the improvement over the baseline system
is achieved by accepting as many correctly recognized words as possible while
maintaining a low false acceptance rate. As can be seen in the table, the classi-
fier shows a larger reduction in classifier error rate from the baseline on rejected
utterances than it does on accepted utterances. This result indicates that the
word confidence scoring technique can be useful for both accepted and rejected
utterances.

Table 2 also shows the performance of the classifier when applied to all hypoth-
esized words as compared to its application to only hypothesized words which
are proper names of geographic locations. This analysis is useful because content
words such as location names are typically more important to the correct un-
derstanding of an utterance than function words. The results indicate that the
confidence scoring technique is more accurate on hypothesized location names
than it is over all words in general. This result is very satisfying since it indicates
that the confidence scoring technique works best on the words which are most
important for understanding.
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Test Condition Accept/Reject
or Feature Error Rate

Baseline (HWER) 12.1 %

# of N -best 12.1 %
Acoustic Score Std. Dev. 12.1 %
# of Acoustic Observations 12.1 %
Mean Catch-All Score 12.1 %
Minimum Acoustic Score 12.1 %
Mean Diff. from Max Score 12.0 %
Mean Acoustic Likelihood 11.9 %
Mean Acoustic Score (log) 11.7 %
Utterance Score 11.2 %
N -best Purity 10.8 %

Combined 9.4 %

Table 1: Accept/reject classification performance of word confidence scoring mechanism on
accepted utterances when each feature is tested independently and when features are combined
using linear combination with Minimum Classification Error training.

Accept/Reject Error Rate
Utterances Words Baseline Classifier

All All words 16.4 % 10.1 %
Accepted All words 12.1 % 9.4 %
Rejected All words 27.2 % 19.1 %

All Locations 17.8 % 9.1 %
Accepted Locations 12.9 % 8.7 %
Rejected Locations 24.3 % 14.5 %

Table 2: Comparison of accept/reject classification performance of word confidence scoring
mechanism over all utterances, accepted utterances only, and rejected utterances only, when
considering all hypothesized words versus geographic location words only.

The performance of the accept/reject classifier can also be examined in several
other interesting ways. When examining accepted utterances only, the system
correctly rejects 51% of the incorrectly hypothesized words while only falsely
rejecting 4% of correct words. These numbers improve to 54% and 3.5% when
considering only words which are location names. Furthermore, across all utter-
ances the combination of utterance and word-level scoring correctly detects 72%
of the errors introduced by unknown words and 85% of the errors introduced by
non-lexical artifacts.

3. Integrating Confidence Scores into Understanding

3.1. Overview

While it is interesting to examine the results of the confidence scoring tech-
niques in the context of recognition, the ultimate goal of this work is to improve
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the understanding accuracy of our conversational systems. To achieve this, we
must integrate the recognition confidence scores into the language understanding
component of the system. For language understanding we utilize the tina natu-
ral language understanding system (Seneff, 1992). Tina utilizes a semantically-
tagged probabilistic context free grammar to parse each utterance. In cases where
tina is unable to generate a full parse, the system may back off to a robust (or
partial) parse of the utterance. For utterances in which either a full or robust
parse is found, a set of semantic concepts, represented as key-value pairs, can be
extracted from the semantic information present in the parse tree. For example,
consider the following query:

what is the forecast for piscataway new jersey

From the semantically-tagged parse tree of this utterance the following key-value
representation is generated:

weather: forecast city: piscataway state: new jersey

In our experiments, language understanding is evaluated by examining the con-
cept error rate from the set of key-value pairs (Polifroni, et al, 1998).

To integrate confidence scores into the understanding component a two-step
process can be utilized. First, if an utterance is rejected at the utterance-level,
the understanding component does not attempt to understand the utterance and
assumes that no useful information for understanding can be extracted from the
recognizer’s output. In this case the system does not generate any key-value pairs.
If the utterance is accepted, the second step is to create an N -best list which is
augmented with confidence scores, and allow the natural language parser to try
to interpret the utterance from the N -best list, given that some words may be
misrecognized. An alternative approach is to ignore utterance-level rejection and
perform understanding on all utterances regardless of how bad their utterance-
level confidence scores are.

3.2. N-best List Augmentation

To handle word confidence scores, only a few modifications to the basic N -
best list are required. First, the N -best list passed to the parser is augmented
with confidence scores. The first list in Table 3 shows an example N -best list
augmented with confidence scores. Two different word rejection strategies can be
applied to the initial N -best list. The second list in Table 3 shows the application
of hard rejection to the N -best list. In this case, any word with a confidence of less
than zero is replaced with a rejected word marker which receives the neutral score
of zero. The third list in Table 3 shows the application of optional rejection. This
list is essentially the combination of the first two lists. Using optional rejection,
poorly scoring words are retained in the final N -best list but must compete
with the rejected word markers they generate, which have a higher score. In this
process poorly scoring words can be selected over their rejected counterparts in
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N -best list without rejection:
what is 6.13 the 5.48 forecast 6.88 for 5.43 paris -0.03 park 4.41 new jersey 4.35
what is 6.13 the 5.48 forecast 6.88 for 4.47 hyannis -0.16 park 4.41 new jersey 4.35
what is 6.13 the 5.48 forecast 6.88 for 5.12 venice -1.49 park 4.41 new jersey 4.35
what is 6.13 the 5.48 forecast 6.88 for 4.28 france -1.76 park 4.41 new jersey 4.35

N -best list with hard rejection:
what is 6.13 the 5.48 forecast 6.88 for 5.43 *reject* 0.00 park 4.41 new jersey 4.35
what is 6.13 the 5.48 forecast 6.88 for 4.47 *reject* 0.00 park 4.41 new jersey 4.35
what is 6.13 the 5.48 forecast 6.88 for 5.12 *reject* 0.00 park 4.41 new jersey 4.35
what is 6.13 the 5.48 forecast 6.88 for 4.28 *reject* 0.00 park 4.41 new jersey 4.35

N -best list with soft rejection:
what is 6.13 the 5.48 forecast 6.88 for 5.43 paris -0.03 park 4.41 new jersey 4.35
what is 6.13 the 5.48 forecast 6.88 for 5.43 *reject* 0.00 park 4.41 new jersey 4.35
what is 6.13 the 5.48 forecast 6.88 for 4.47 hyannis -0.16 park 4.41 new jersey 4.35
what is 6.13 the 5.48 forecast 6.88 for 4.47 *reject * 0.00 park 4.41 new jersey 4.35
what is 6.13 the 5.48 forecast 6.88 for 5.12 venice -1.49 park 4.41 new jersey 4.35
what is 6.13 the 5.48 forecast 6.88 for 5.12 *reject* 0.00 park 4.41 new jersey 4.35
what is 6.13 the 5.48 forecast 6.88 for 4.28 france -1.76 park 4.41 new jersey 4.35
what is 6.13 the 5.48 forecast 6.88 for 4.28 *reject * 0.00 park 4.41 new jersey 4.35

Table 3: Example N -best lists augmented with confidence scores. The first list is the standard
output from the recognizer. The second list shows how hard rejection is applied to poorly
scoring words. The third list is the union of the first two lists allowing for soft or optional

rejection.

cases where the parser’s linguistic probabilistic scores strongly prefer the poorly
scoring hypothesis.

3.3. Word Graph Search

Within tina, the incoming N -best list is collapsed into a word graph. Each arc
in the word graph is augmented with a score for its respective word. Before the
implementation of word-level confidence scores, a heuristic word scoring method
was utilized which generated scores based on the number of N -best hypotheses
each word appeared in and the rank of those N -best hypotheses (Kamppari,
1999). In the new version of the system, each arc in the word graph is instead
augmented with the word-level confidence scores generated from the recognizer.

The parser performs a beam search through the graph combining the word
scores with trained linguistic probabilities to generate a total score for each
parse theory. From a ranked list of parse theories extracted from the word graph
search, tina selects the highest scoring theory that produces a full parse. If no
path through the word graph can be found that generates a full parse, then
the system selects the highest scoring robust parse. The disadvantage of this
approach is that it has the possibility of selecting any word sequence through
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the word graph in order to find a sentence that parses, even if one or more words
in the hypothesis are highly likely to be misrecognitions. When the input N -
best list is augmented with word rejections, the resulting word graph allows the
parser the option of selecting rejected words instead of poorly scoring words.

3.4. Grammar Augmentation

By allowing the words with bad confidence scores to be optionally rejected in the
word graph, it becomes possible for the understanding component to generate
new semantic representations that might not be possible from the original set
of word hypotheses generated by the recognizer. For example, the system can
now ascertain the syntactic and semantic role of a rejected word if there is
enough surrounding context to allow the parser to incorporate the rejected word
marker into a full parse tree. At the moment this is enabled by the author of
the grammar who must explicitly augment the grammar to allow rejected word
markers as terminals in certain locations within some parse tree structures.

For example, in jupiter the grammar was adjusted to allow rejected words
to be parsed as unknown city names in sentence contexts where the rejected
word was almost certainly a city name. In the example in Table 3, for example,
the word sequence “*reject* park” would be parsed as an unknown city name.
This adjustment complemented an existing parsing mechanism which allowed
unknown words (i.e., words not in the vocabulary of the grammar) to parse in a
similar fashion.

A second adjustment to the grammar that can be made is to allow rejected
words appearing anywhere in the sentence to be skipped when the parser is
attempting to find a robust parse. This allows the parser to concentrate on only
the portions of the utterance which were recognized with high confidence and to
perform a partial parse based on these islands of reliability. This modification
is especially useful for eliminating problems that result from spurious sounds or
speech at the beginning and/or end of an utterance.

3.5. Experimental Results

To examine the effects of confidence scoring on language understanding, the
jupiter system can be evaluated on the test data under five different condi-
tions: (1) using the original system which did not utilize word confidence scores,
(2) using the new system which utilizes word confidence scores but does not
perform any rejection, (3) using the new system with utterance rejection, (4)
using the new system with utterance rejection and optional word rejection, and
(5) using the new system with utterance rejection and hard word rejection. As
discussed earlier, these conditions are investigated using key-value pair concept
error rate (Polifroni, et al, 1998). The results are shown in Table 4 in terms of
substitution, insertion, deletion, and total error rates. For these experiments, a
substitution error occurs when a test utterance has a key-value pair where the
key matches a key-value pair in the correct answer, but the value in the pair is



Hazen, Seneff & Polifroni : Recognition Confidence Scoring 17

different. An insertion occurs when a key-value concept is erroneously inserted.
Likewise, a deletion occurs when a key-value concept is erroneously deleted.

An examination of Table 4 yields several important observations. First, the
new system using the probabilistic word confidence scores has an error rate
which is 8% smaller than the error rate of the original system using the heuristic
word scores. However, both the original and new systems suffer from excessive
insertion errors when no rejection is utilized. This is primarily the result of the
understanding component’s aggressive effort to find a reasonable interpretation
of an utterance from any of the hypotheses in the N -best list. Without rejection,
the understanding component can latch onto any hypothesis which produces a
parse regardless of whether or not the recognizer is confident about the hypoth-
esis. This generally produces the correct answer when the user is cooperative,
speaks clearly and stays within domain. However, this approach yields many
insertions when the utterance is out of domain, has unknown words, or has
artifacts which cause difficulty for the recognizer.

Next, when utterance-level rejection is added, the insertion error rate is re-
duced from 18.2% to 12.7% while the deletion error rate is only increased from
6.1% to 7.1%. In other words, the use of utterance rejection removes 5.5 insertion
errors for every deletion error that is added. This translates into a relative error
rate reduction of 17%.

Next, the addition of word rejection to utterance rejection produces another
significant improvement in the total error rate. While the total error rates for
optional word rejection versus hard word rejection are virtually the same, the
nature of the underlying errors is slightly different. Using optional word rejection,
the insertion error rate remains higher than the deletion error rate. However,
hard word rejection produces a result where deletions outnumber insertions. The
relative desirability of each method would thus be dependent on whether or not
insertion errors are more harmful to the user’s interaction with the system than
deletions. The addition of word rejection allows a relative error rate reduction of
14% from the system using utterance rejection only. Overall, the use of utterance
and word confidence scores and rejection within the understanding component
achieved a relative reduction in concept error rate of 35%, from 28.5% to 18.6%.

Experimental Concept Error Rates (%)
Conditions Sub. Ins. Del. Total

Original system 1.9 20.2 6.4 28.5
New system w/o reject. 2.1 18.2 6.1 26.3
+ utterance rejection 1.8 12.7 7.1 21.7
+ optional word reject. 1.3 9.0 8.4 18.7
+ hard word rejection 1.0 7.2 10.5 18.6

Table 4: Concept error rates of the understanding component as confidence scores and differ-
ent levels of confidence rejection are added to the system.
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After running the experiments shown in Table 4, we re-ran the word-level
rejection experiments without using any utterance-level rejection. These follow-
up experiments produced nearly identical results as the experiments that used
utterance-level rejection. In essence utterances that were rejected tended to pro-
duce word-level scores that caused all or most of the individual words to be
rejected as well. This led us to conclude that utterance-level rejection is actu-
ally unnecessary in our system from an understanding point of view, although a
slight amount of computation can be saved by skipping a full natural language
parse when an utterance is rejected.

Additionally a closer examination of the error rate reductions achieved from
word-level rejection reveals that almost all of the reduction is due to the system’s
ability to skip rejected words during the parse and to revert to a partial parse of
the confident portions of the utterance. Only a small handful of the test utter-
ances displayed a full parse containing semantically tagged rejected words. This
is predominately due to our conservative use of this technique in the grammars.
We only attempted to tag rejected words as cities in very constrained grammat-
ical environments in order to avoid ascribing incorrect semantic interpretations
to rejected words. The careful addition of new grammar rules which generate
new semantic interpretations of rejected words in other contexts might allow for
further improvements.

4. Dialogue Modeling Issues

At this time, we are just beginning to consider the dialogue modeling issues
involved in utilizing the confidence scoring techniques that we have presented
here. To be more specific, confidence scoring affects two major components of
the dialogue manager, hypothesis selection and response planning. In our sys-
tem we implement hypothesis selection (i.e., the process of selecting the best
interpretation of the input utterance) as a process controlled by the dialogue
manager. Many different pieces of knowledge should be incorporated into the
hypothesis selection component of a system. This information not only includes
the confidence scores of word hypotheses and the linguistic scores from the un-
derstanding grammar but also the knowledge of any constraints provided by the
current dialogue state or by pragmatic considerations. It is thus important to re-
tain as many plausible hypotheses as possible until all relevant information that
is available is utilized in the final selection of a hypothesis. In our system, the
dialogue manager is the natural place to integrate these many different sources
of information.

To assist in this goal, our system propagates the confidence scores through the
understanding component to the dialogue modeling component. The understand-
ing component is thus capable of generating multiple understanding hypotheses
and creating a semantic representation augmented with confidence scores for
each hypothesis. To provide an example, Table 5 shows a semantic frame (our
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{c wh_query

:topic {q weather

:confidence "4.20"

:pred {p in

:topic {q city

:name "paris"

:confidence "0.14"

:pred {p in

:topic {q state

:name "new jersey"

:confidence "3.45" } } } } }

Table 5: Sample semantic frame augmented with concept-level confidence scores and the key
value representation of this frame.

representation for semantic information) whose topics are augmented with con-
fidence scores generated from the words representing each concept.

Given a semantic frame augmented with confidence scores, the dialogue model-
ing component can then evaluate the semantic frame with respect to the current
dialogue state and a set of underlying pragmatic constraints. For example, the
semantic frame in Table 5, has conflicting city and state information (i.e., there
is no city of “Paris” in the state of “New Jersey”). Because the confidence score
for “New Jersey” is considerably higher than the score for “Paris” the dialogue
manager could assume that “New Jersey” is correct and ignore the city infor-
mation. Alternatively, the dialogue manager could also search other hypotheses
from the understanding component for a more pragmatically plausible hypothe-
sis. A more detailed description of how hypothesis selection is performed in our
dialogue manager can be found in (Seneff & Polifroni, 2001).

Sometimes no pragmatically plausible hypotheses exist within the word graphs
generated by the recognizer. Often the implausibilities are the result of misrec-
ognized words which contain poor confidence scores. As discussed earlier, with
the ability of the understanding component to optionally reject word hypotheses
with bad confidence scores, it becomes possible for the understanding compo-
nent to generate new semantic representations that might not be possible from
the original set of word hypotheses generated by the recognizer. Specifically,
this system might be able to determine the semantic intent of a rejected word
from surrounding context without knowing exactly what word was spoken by
the user. The response planning component of the dialogue manager can take
advantage of this ability by informing the user that it understood the high-level
semantic intent of the utterance, but misunderstood some word or words that
are important for full understanding. Table 6 shows an example of a case where
the system understood that the user was looking for the forecast for some city in
New Jersey but could not recognize which city was actually spoken. In this case,
the dialogue manager then steers the user towards cities in New Jersey that it
actually knows.
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Turn 1: User: What is the forecast for Paramus Park, New Jersey?
Selected Hyp: what is the forecast for *reject* park new jersey
Key-Values: weather: forecast city: *reject* park state: new jersey

System: I may not know the city you’re asking about. I know of the
following places in New Jersey: Atlantic City, Camden, Newark,
Piscataway, Princeton, and Trenton. Please select one.

Turn 2: User: Piscataway.
Selected Hyp: piscataway
Key-Values: city: piscataway

System: In Piscataway today, cloudy, 70 percent chance of rain.
High 60, low 42. Can I help you with something else?

Table 6: Example of dialogue sequence spoken to jupiter demonstrating an action taken
when the selected word string hypothesis contains a rejected word in the place of a misrecog-
nized content word.

Turn 1: User: Will the Yankees game be rained out tonight?
Selected Hyp: will the *reject* *reject* be rainfall tonight
Key-Values: weather: rain date: tonight

System: What city are you interested in?

Turn 2: User: New York.
Selected Hyp: new york

Key-Values: city: new york

System: In New York City tonight, chance of thunderstorms.
Can I help you with something else?

Table 7: Example of dialogue sequence spoken to jupiter demonstrating the understanding
component’s ability to ignore rejected words and perform a partial parse on only the reliably
recognized portion of the utterance.

A second capability that is improved by the use of rejected words in the
understanding component is the ability to perform partial parses which ignore
rejected words and concentrate on the islands of reliability in the word graph.
This allows the understanding component to extract some portion of the user’s
intent from the words that the confidence model feels are reliably recognized. The
system can then prompt the user to supply additional information to complete
the request. Table 7 presents an example demonstrating this capability. In this
example the recognizer is unable to find word hypotheses with high confidence
for the center portion of the utterance. The understanding component ignores
this unreliable portion of the utterance, and focuses on the words rainfall tonight.
Although these words are not exactly what the user said, the semantic concepts
of “rain” and “tonight” are successfully extracted. The system then prompts the
user for the name of a city in order to nudge the user towards a complete query
it can answer. After the user responds with a city name, the system is able to
provide a reasonable response to the user even though the original query was
not completely inside the realm of its domain.
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5. Summary

In this paper we have presented a multi-tiered confidence scoring approach which
is able to produce confidence scores at the phonetic, word and utterance levels.
These techniques have proven to be especially useful when the speech signal
contains unknown words or non-lexical artifacts. This is evidenced by the fact
that the system correctly detects 72% of the errors introduced by unknown words
and 85% of the errors introduced by non-lexical artifacts. By integrating the word
and utterance confidence scoring techniques into the understanding component
of the jupiter weather information system, we were able to achieve a relative
reduction of 35% in the concept error rate of the system. We have also shown
several examples of how these confidence scores are used to help the dialogue
manager guide the user towards a successful completion of their goal.

6. On-Going & Future Work

Currently there are several efforts in our group aimed at improving the robustness
of our recognizer. These efforts include the modeling of out-of-vocabulary (OOV)
words (Bazzi & Glass, 2000; Chung, 2000) and the modeling of non-speech or
noise artifacts (Hazen, Hetherington & Park, 2001). The incorporation of OOV
models and non-speech models into our recognizer will affect the confidence
scoring techniques that we utilize. We have conducted some preliminary exper-
iments to understand how these techniques can be integrated with our existing
confidence scoring module (Hazen & Bazzi, 2001). Early indications imply that
these modeling techniques are complementary. Improvements to our confidence
scoring techniques are also being investigated within our group. This includes
incorporating prosodic features into our confidence scoring model (Wang, 2001),
examining more complex classification techniques, and exploring the use of word-
dependent or word-class-dependent confidence models. We are also continuing
to work on improvements to our hypothesis selection mechanisms within the
dialogue modeling component of our system with the hope of devising an ap-
proach which more tightly couples the various sources of information (acoustic,
linguistic, pragmatic, etc.) to help improve our understanding accuracy.

One aspect of dialogue modeling research that we did not address in this paper
is the issue of user satisfaction. While the end goal of our work is to improve the
usability of the system, we have not yet attempted to determine the effects that
the various methods we have discussed in this paper have on user satisfaction
with our system. A proper comparative user study is the only way to determine
the effectiveness of the various strategies for incorporating confidence scores in
the dialogue modeling process. Unfortunately, we will have to leave this study
to future work.
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