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Abstract

In this paper we examine the integration of speaker
identification/verification technology into two dialogue
systems developed at MIT: the Mercury air travel reservation
system and the Orion task delegation system. These systems
both utilize information collected from registered users that is
useful in personalizing the system to specific users and that
must be securely protected from imposters. Two speaker
recognition systems, the MIT Lincoln Laboratory text-
independent GMM based system and the MIT Laboratory for
Computer Science text-constrained speaker-adaptive ASR-
based system, are evaluated and compared within the context
of these conversational systems.

1. Introduction

Many conversational dialogue systems can be personalized in
order to improve the interaction between the user and the
system. Typically, these systems also require a certain level of
security in order to prevent unauthorized users from gaining
access to sensitive information or services. Speaker
identification technology can be a useful tool for helping
achieve the goals of these personalized dialogue systems.

In this paper we first discuss the issues of incorporating
speaker identification into conversational dialogue systems. In
particular, we have examined the integration of speaker
recognition capabilities into two existing conversational
dialogue systems: the Mercury air travel system [1] and the
Orion task delegation system [2]. These systems share the
property that a user’s identity need not be confirmed
immediately at the onset of a conversation. Instead, the system
can continue to collect speech samples from the user’s
interaction until such time that the user requests an action or
information that requires security.

This paper then discusses two approaches to speaker
identification: a text-independent Gaussian mixture model
(GMM) approach developed at MIT Lincoln Laboratory and a
speaker adaptive automatic speech recognition (ASR)
approach developed at MIT Laboratory for Computer Science.
We examine the strengths and weaknesses of these systems in
the context of conversational interaction. We then evaluate
these systems on data collected from the Mercury system,
which has a set of known registered users whose system usage
varies from occasional to very frequent. We also examine the
potential benefits of combining these two approaches.
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. Integrating Speaker Recognition in
Dialogue Systems

er to ensure both ease of use and security, it is important
sider the nature of typical dialogues within a system
devising its security strategy. For example, for an air
reservation system, such as the MIT Mercury system, it
ot be necessary to confirm the identity of the user until
er requests the execution of a secure transaction (e.g.,
e book this flight and bill it to my credit card”). In

like this, the system could elect to continue on with the
sation, even when it is uncertain of the user’s identity,
g as the user is only performing actions that don’t

security (e.g., browsing flight options or comparing
. This strategy would allow the system to collect
nal speech data, which could be useful in improving the
lity of the speaker identification.
hile security is often the primary consideration when

orating speaker recognition technology, the issue of
ience should not be overlooked. In some systems,
y is desirable but is not as crucial as convenience or
f use. For example, consider the following simple task
tion request that can be handled by the Orion task
tion system: “Hi Orion, it’s Doug. Call me at 4:30 PM
ll me if United flight 43 is on time.” The cost of

ng an imposter to execute this task is not nearly as
as the cost of allowing an imposter to illegally bill

s to a user’s credit card. Additionally, it is an obvious
enience for a known user of the Orion system to have to
d through a login process in order to make this simple,
utterance request. In this case, it is preferable for the
to automatically determine the user without engaging

gin sub-dialogue. Only when the system is uncertain of
ntity of the user should it prompt them for additional
y information such as a password. For a system like
an open-set identification approach can be employed,

y avoiding the use of an explicit login sub-dialogue and
sing the convenience and ease of use of the system.
nother issue that must be addressed when developing a
r recognition approach for a publicly available
sational system is the potential variability in the amount
ning data available for each speaker. A typical system
ave a mix of power users who call the system frequently
ccasional users who call less frequently. Under these
stances, the speaker recognition modeling technique



must be designed to perform adequately for the occasional
user but be capable of steadily improving as the amount of
training data per speaker increases.

Finally, it is important to understand the constraints that
may be placed upon users of a dialogue system. For example,
the Mercury system utilizes a mixed-initiative approach where,
at some points in the dialogue, the system places tight
constraints on what the user can say by asking questions like
“What is your user name?”, while at other points, the system
allows the user to speak in a highly unconstrained manner by
prompting the user with queries such as “How can I help
you?” Under these circumstances, the optimal speaker
recognition strategy may vary (i.e., text-dependent vs. text-
independent) depending on the current state of the dialogue.

3. Overview of Speaker Recognition
Techniques

In this paper we examine the integration of two types of
speaker recognition systems into the dialog system. The first
is the MIT Lincoln Laboratory Gaussian Mixture Model
Universal Background Model (GMM-UBM) system [3]
primarily designed for text-independent recognition. The
second system is the MIT LCS Speaker Adaptive ASR-based
system [4], whose design assumes the presence of an accurate
speech recognizer enabling the use of text-dependent speaker
modeling within constrained applications. It is hoped that by
combining the two systems we can achieve a better tradeoff
between text-dependent and text-independent behavior.

3.1 The GMM Approach

The Lincoln speaker recognition system is designed primarily
for text-independent speaker verification tasks. As such, there
is no explicit modeling of particular speech sounds, but rather
a general distribution is used to implicitly model the
underlying sounds in a person’s speech as found in the
distribution of acoustic observations (or feature vectors)
extracted from the speech signal. Specifically each speaker is

represented by a GMM, sM , over the feature vectors x,
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variances. Since a speaker’s training speech will not generally
cover all sounds in sufficient instances to adequately train a
GMM that is robust to new or unseen sounds, the GMM
model parameters are derived by adapting a well-trained
speaker-independent background model (also called a
universal background model). For example the mean
parameter for mixture i of a speaker’s GMM would be
estimated as

ˆ ( | ) (1 )s b
i i i iE x iµ λ λ µ= + −

where E(x|i) is the expectation of the training data in mixture
i, is the background model mean for mixture i, and

is an adaptation factor for mixture i. In the

adaptation factor, ni is the count of feature vectors in mixture i

and t is a tuning parameter set to 16 in the GMM system.
For this paper, a 2048 mixture background model is used

and, based on previous experiments, only mean parameters
are adapted in the speaker models. Feature vectors of 38
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sions are extracted every 10 ms and consist of 19 mel-
d cepstra, derived from the frequency band 300-3300
d their first order derivatives, estimated with a 5-frame
w. To compensate for linear channel effects (possibly
arying), standard RASTA filtering is applied to the
elements.

or verification, the log likelihood of the input speech
ce is computed against both the background and
r models, the difference taken and compared to a

old to decide whether to accept or reject the putative
r claim.

he Speaker Adaptive ASR Approach

ken utterance can be viewed as a sequence of phonetic
. Although diverse phonetic events can have very
nt acoustic characteristics, the necessity of text
ndence precludes most speaker ID systems from using
-dependent modeling techniques. Thus, text-
ndent systems operate under the assumption that the
tic content of the utterance is unknown. In [4], two
s were described that relaxed this assumption by

g use of ASR output during speaker recognition.
he speaker adaptive recognition approach uses speaker
dent speech recognizers to model each speaker. During
g, phonetically transcribed enrollment utterances are
o train the speaker-dependent context-dependent phone
s for each speaker. During testing, an ASR component
tes a phonetic transcription from the test utterance. This
iption is then used by the system to score each segment
ch against a speaker-dependent phone model.
odeling speakers at the phone level can be problematic
e enrollment data sets are typically not large enough to
robust speaker-dependent models for every context-
ent phone model. To compensate for this difficulty, we

adaptive scoring approach in which the speaker-
ent score is interpolated with a speaker-independent

athematically, if the word recognition hypothesis
s each feature vector x to phone j, then the score for

r Si is given by
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equation, ni,j is the number of training tokens of phone

rved for speaker Si, and t is a global tuning parameter
set empirically using a separate development set.
his scoring strategy results in models that capture the
d phone-level characteristics of a speaker when
ent training data is available, but relies more on speaker
ndent models for phones with sparse training data. In
words, the system backs off to a neutral score, as
ed by the speaker-independent model, when limited
g data is available.



4. Experiments

The experiments presented in this paper were conducted using
calls collected from users of the Mercury air travel reservation
system and the Orion task delegation system. These systems
allow new users to register through an enrollment process to
create an account that is accessed when the user calls the
system. Information stored within the user’s account is used
to personalize various constraints and models used during the
dialogue. Mercury also allows unregistered users to utilize the
system anonymously in a speaker independent mode to
browse flight schedule information.

When a new call is placed to the system, the caller is first
prompted to provide their name or specify that they are not a
registered user. If a caller provides a name, the system then
prompts for the user’s password (which is in the form of a
month-day combination). Thus, the first two user utterances
within each call made by a regular user are usually
constrained to be the user’s name and password.

4.1 Mercury/Orion Speech Corpus

For our experiments, the 44 most frequent registered users of
Mercury and Orion were selected to represent the set of
“known” users. Each of these users spoke a minimum of 48
utterances within the calls representing the training set for our
experiments. As would be expected in real-world
applications, the amount of training data available for the
known users varied greatly based on the frequency with which
they used the systems. Of the 44 speakers, 15 had less than
100 utterances available for training, 19 had between 100 and
500 training utterances, and 10 speakers had more than 500
utterances for training. The most frequent user of the system
contributed 2550 utterances for his training set. Within the 44
speakers, 21 were females and 23 were males.

In addition to the training data for each known user, an
additional set of 20,491 Mercury utterances was used to train
the universal background model in the Lincoln Laboratory
GMM system. The speech recognition system used by the
speaker adaptive ASR approach was trained on over 130,000
utterances collected from a variety of publicly available
systems deployed at MIT.

For the test set, all calls made to the Mercury system
during a 10-month span were held out for our evaluation set.
Only calls containing at least five utterances were included in
the evaluation set. Additionally, to remove the issue of
accurate speech/non-speech detection, only utterances that
were manually determined to contain at least one spoken word
were included in the evaluation.

The evaluation set is further broken down into two sub-
sets: a set of 304 calls containing 3705 utterance from
members of the set of 44 known users and a set of 238 calls
containing 2946 utterances from speakers not in the known
speaker set. Each call has a variable number of utterances
with an average of 12 utterances per call (stdev=6 utts) where
the average utterance duration is 2.3 sec (stdev=1.4 sec). This
evaluation data allows us the freedom to evaluate the system
in a variety of ways, such as closed-set speaker identification,
open-set speaker identification, and speaker verification.

Because our data collection effort was not engineered to
achieve any pre-specified goals, the distribution of calls from
specific speakers was not controlled by any means other than
the users’ own desire to use the system. As such, the
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ution of calls over the known set of users is widely
. Only 21 of the 44 speakers in the known set made
o Mercury during the period of time in which the
tion data was collected. Because a small subset of
were highly frequent users of the system, 46% of the
rom known users came from only 3 members of the

speaker set. Despite the uneven distribution of
rs, we feel the evaluation set is reflective of the type of

ublicly deployed systems could expect to encounter.

xperimental Results

ur first experiment, we elected to use an open-set
r identification paradigm, i.e., for an input utterance (or
ce of utterances) determine whether the speaker is one
et of enrolled speakers or an unknown (imposter)1

r. This gives rise to three types of errors:
alse-accept: the system accepts an imposter speaker as
ne of the enrolled speakers.
alse-reject: the system rejects a true user.
onfusion: the system correctly accepts a true user but
onfuses him with another enrolled user.
e speaker recognition systems we plot the trade-off
n these errors as a function of a decision threshold.
gh more sophisticated decision logic may be deployed,

ystems operate by selecting the highest scoring speaker
for an input and comparing its score to a threshold to
ine whether to accept or reject.
o simulate two manners in which speaker identification
be used in the Mercury system, we examine the

mance on the first utterance of each call (which is the
ating their user name) and over the entire length of the
his allows us to examine the advantage of delaying the
r identity decision until the user has selected a flight
ry and requests that it be “booked”. Figure 1 and Figure

the error tradeoff for the GMM and ASR systems for
st utterance and the complete call from the Mercury
he equal error rate between misses and false alarms is

r with the two systems, at approximately 7% for the first
ce and 5% for the whole call.
he ASR-based system does appear to have an advantage
uced confusion rate within the known speaker set,
f), for the first utterance case, where the ASR-based
’s confusion rate is 1.6% (5 errors in 304 calls) while
M system has a confusion rate of 5.6% (17 errors in

lls). This disparity is likely because the first utterance is
ained to be the user stating their user name. This
es a tight constraint on the phonetic content of this
ce in both the training and evaluation calls, which
the phonetic modeling of the ASR-based approach.
owever, if we examine the in-set confusion rate over
urse of the call, the ASR-based system fails to achieve
rther improvement while the confusion rate of the
system improves to 2.3% (7 errors in 304). While the

number of errors in each case prevents any definitive
sions, the trend implies that the text-independent GMM
etain a higher level of robustness in the face of the
strained data that is typically encountered by the
ry system after the first two user utterances.

is data there were no dedicated imposters attempting to break
other’s account. Thus effects like an imposter saying a known
ame during login are not evaluated.
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Figure 1 Tradeoff of false-rejection rate, Pr(Miss),
against false acceptance rate, Pr(FA), and in-set
confusion rate, Pr(Conf), as a function of acceptance
threshold for the GMM system for the first utterance
only (top) and over the entire call (bottom).
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Figure 2 Tradeoff of Pr(Miss) against Pr(FA) and
Pr(Conf) as a function of acceptance threshold for the
ASR-based system.

To examine the benefit of fusing the two speaker ID
techniques, we employed a 10-fold cross-validation paradigm
over the test set for determining optimal linear fusion
weights. The fusion weights were learned using multi-layered
perception (MLP) training with no hidden layers. Initial
experiments implementing fusion for the first utterance and
whole call cases produced modest but statistically
insignificant improvements, likely because the test set size at
the call level is small and the number of errors is few. To
examine the issue further we examined the performance over
all individual utterances in the test data. This evaluation is
much harder than the per-call evaluation because many of the
utterances in the data are either very short (as little as a single
word) or highly spontaneous (unlike the first utterance of
each call which is tightly constrained).
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stem and a fused system on the tasks of closed-set
eaker recognition and speaker verification.

Closed-Set ID
Error Rate

Verification
Equal Error Rate

MM System 10.4% 6.07%
SR System 9.5% 6.72%
sed System 7.3% 4.83%

able 1 shows the performance of the GMM system, the
based system and the fused system on the task of per-
nce closed-set speaker recognition over the 3705
nces in the known-speaker set, and on the task of per-
nce speaker verification over the full test. On these
fusion provides clear improvements in performance,
strating the advantage of merging our two
ementary techniques. In future work we would like to
igate a fusion algorithm that can be adapted to account
ntextual factors, such as the local dialogue state, and
g data considerations, such as the amount of available
g data for the current speaker.

5. Summary

aper has investigated the issues of integrating speaker
ition into spoken dialogue systems. In some dialogue
s, like the Mercury air travel system and the Orion task
tion system, the constraints of the system allow the final
n on the identity of a user to be delayed until a secure
requiring confirmation of the user’s identity is

ted. The determination of the speaker recognition
ing point and confirmation strategy is highly dependent
goals of each individual system. Developers must find

timal trade-off between security and convenience.
e also evaluated two speaker recognition systems, the
incoln Laboratories GMM-UBM system and the MIT
peaker adapted ASR system, on data collected by the
ry system. Both systems performed comparably on a
ll open-set identification evaluation within the Mercury
vel system achieving an equal error rate of 5% between
rejections of known users and false acceptances of
ters. We have also demonstrated on a closed-set speaker
ition evaluation and a speaker verification evaluation,
e two complementary speaker recognition techniques
fused to provide additional performance improvements.
s a final note, the authors wish to thank Chao Wang and
nie Seneff for their efforts and help on this project.
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