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Abstract
This paper details our work in developing a technique which
can automatically generate class n-gram language models from
natural language (NL) grammars in dialogue systems. The pro-
cedure eliminates the need for double maintenance of the recog-
nizer language model and NL grammar. The resulting language
model adopts the standard class n-gram framework for compu-
tational efficiency. Moreover, both the n-gram classes and train-
ing sentences are enhanced with semantic/syntactic tags defined
in the NL grammar, such that the trained language model pre-
serves the distinctive statistics associated with different word
senses. We have applied this approach in several different do-
mains and languages, and have evaluated it on our most ma-
ture dialogue systems to assess its competitiveness with pre-
existing n-gram language models. The speech recognition per-
formances with the new language model are in fact the best
we have achieved in both the JUPITER weather domain and the
MERCURY flight reservation domain.

1. Introduction
The Spoken Language Systems group at MIT has been devel-
oping spoken conversational systems for well over a decade. In
order to process and understand user queries, these systems re-
quire a domain-relevant statistical language model (LM) to sup-
port the initial recognizer search, as well as a natural language
understanding (NLU) component to derive a meaning represen-
tation. Typically, the NLU system parses a word graph gener-
ated by the recognizer, and chooses the solution that produces
the most plausible hypothesis, taking into account both linguis-
tic and acoustic scores, as well as dialogue context.

We have long believed that the natural language (NL) gram-
mar should play a strong role in the specification of the statis-
tical language model used during speech recognition. Such a
tight coupling should lead to higher performance, because the
system will be more likely to understand the proposed hypothe-
ses. Furthermore, eliminating the need for double maintenance
of language models would ease the burden of system develop-
ment. Perhaps most significantly, the NL grammar could be
used to create a functional language model for the recognizer in
the absence of any training data, at the critical initial phase of
development of a new domain.

In the past, we have explored several options for integra-
tion. An early attempt [9] used the full parsing mechanism as
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le language model for the recognizer. While this was fea-
for limited domains, the computational cost of parsing is
gh for the real-time demands of conversational interaction
ctical applications. Another possibility is to fully expand

ontext-free component of the NL grammar into a recur-
ransition network (RTN), which could then in theory be
porated directly into the finite-state transducer (FST) based
h space of the recognizer. This too proved to be impractical
t for very small domains. A more promising approach was
ect a subset of the categories in the NL grammar as classes
lass n-gram, and to expand those classes using RTN’s, as
plified by [4, 11]. While this approach gives a performance
ompares favorable to that of a standard class n-gram, it too
s computationally, in part because our FST technology for
h recognition has been optimized for performance on tra-
al class n-gram’s. An alternative approach, used by the
CHBUILDER [2] utility, is to generate both an NL gram-
nd a class n-gram from a set of annotated sentences.

his paper details our work in developing a technique
satisfies all of the required constraints: computational ef-

cy, ease of maintenance, and high performance. It is sim-
the approach in [4, 11], except that the RTN is precom-

into an automatically generated set of multi-word units,
that the resulting n-gram is very similar to a standard class
m. An important difference is that there is the opportunity
ne multiple classes for a single word. For example, “to”

e encoded as an infinitive or a preposition, and “first” can
tinguished among several different meanings, as in “first

” “the first flight,” and “on March first.” Thus the dis-
ve statistics associated with different word senses can be
rved in the language model. Furthermore, this is achieved
process that is transparent to the system developer. The
oper need only specify which categories in the NL gram-
hould be considered to be n-gram classes; the NLU system
utomatically tag words for word sense disambiguation and
the training sentences accordingly.

ll our experiments are conducted using the SUMMIT

h recognition system [1], which utilizes FST’s to repre-
ts search space. In Section 2, we first describe a reorga-
on in SUMMIT’s FST constraints, namely the introduction
ew component FST to model word reductions and con-

ons, that facilitated the work described in this paper. In
n 3, we describe in detail the automatic process of gen-
g an enhanced class n-gram language model from the NL
mar. Section 4 provides some speech recognition experi-
l results. In Section 5, we conclude with a summary and
out some additional applications of this technology.
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Figure 1: The set of distinct FST components which are com-
posed to form the full FST search network within the SUMMIT

recognizer.

2. SUMMIT

The SUMMIT recognizer utilizes a finite-state transducer repre-
sentation for its phonological, lexical and language modeling
components. The FST representation allows the various hierar-
chical components of the recognizer’s search space to be rep-
resented within a single parsimonious network through the use
of generic FST operations such as composition, determination
and minimization [5]. The full search network used by SUM-
MIT is illustrated in Figure 1. The figure shows the six primary
hierarchical components of the search space: the class n-gram
language model (G), the multi-word unit constructor (M ), the
set of word-level rewrite rules for reductions and contractions
(R), the lexical pronunciation dictionary (L), the phonologi-
cal rules (P ), and the context-dependent (CD) model mapping
(C). Each of these components can be independently created
and represented as an FST. By composing the FST’s such that
the output labels of the lower-level components become the in-
puts for the higher-level components, a single FST network is
created which encodes the constraints of all six individual com-
ponents. The full network can be represented mathematically
with the following expression:

N = C ◦ P ◦ L ◦ R ◦ M ◦ G

This hierarchical structure allows the language modeling
components M and G to be buffered from issues of pronun-
ciation variation caused by word reductions and contractions.
For example, the reductions FST R will map the contraction
“what’s” to its canonical form of “what is”, allowing the lan-
guage model to share the statistics of these syntactically and se-
mantically identical forms. Our earlier solution to this problem
was to define a vocabulary item “what is” in the lexicon, which
could support both the contracted and non-contracted pronunci-
ations. However, this solution relied on the language model to
include “what is” in its vocabulary as well, which, as verified
by an experiment, hurt the recognition performance.
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      idaho_falls<cn> on          may<dt> twenty_third<dy>

SENTENCE

CLARIFIER

DESTINATION DATE

CITY_NAME MONTHON DAY

CARDINAL_DATE

        idaho falls              on            may       twenty third

e 2: Example of a parse tree for the sentence “to
falls on may twenty third.” The grammar categories
Y NAME”, “MONTH”, and “CARDINAL DATE” (itali-
in the parse tree) are selected to be n-gram classes. The
under those selected categories form entries to the n-

classes, and multiple words are “underbarred” to form
-word units. Words in the input sentence are automatically
d with the grammar category information for word sense
biguation.

3. Methodology
s section, we describe the procedure for obtaining the class
m model using the NL component, which involves auto-
ally creating M and G from a pre-existing context-free
mar and a set of training utterances.

The TINA Framework

atural language understanding component of our dialogue
s makes use of the TINA framework [6], which utilizes

of context-free rules to define allowable utterance patterns
n each domain-dependent grammar, along with a feature
ation mechanism to enforce agreement constraints and
e movement phenomena. The system supports a proba-
model which is acquired by tabulating frequency counts
arge corpus of parsed data. The model predicts each word
roduct of trigrams progressing up the parse column; each

m represents the conditional probability of a child given
rent and left sibling in the parse tree.

he context-free grammar used by TINA distinguishes be-
preterminal and non-preterminal categories. Expansions
preterminal categories are restricted to vocabulary items,
as other categories expand only into non-terminals, to

fy sentence and phrase patterns. Many grammar categories
natural word classes, for example, a list of city names,

hs, weekdays, etc. A developer need only select a set of
ories to serve as classes in the class n-gram. At present, the
s are restricted to be either preterminal or one layer above.
ve enhanced the TINA framework to support the automatic
on of the appropriately formatted input files to the SUM-
-gram tools. The procedure expands the sub-grammar un-
ch category to a class exhaustively to all supported word
nces, to establish the class assignments and the vocabulary
multi-word units at the output of the multi-word mapping
M . TINA is also tasked with producing a corpus of n-
training utterances, with the words appropriately tagged
eir class, as determined by parsing.

igure 2 illustrates how the procedure works. A corpus



of transcribed user utterances is parsed and then relabeled ac-
cording to the designated n-gram classes, so that different word
senses can be disambiguated according to the parse analysis.

3.2. Sentence Tagging through FST Transduction

The sentence tagging procedure outlined above works well for
sentences that can be successfully parsed by the NLU system.
However, there exist a significant number of training sentences
that can not be parsed. Sentences may fail because they con-
tain disfluencies, are incomplete, or are otherwise outside of the
grammar’s domain. Nevertheless, they are realistic representa-
tives of utterances that the recognizer is expected to encounter.
It is important that they be included in the language model train-
ing. Otherwise, the language model will be biased towards hy-
pothesizing only well-formed sentences during recognition.

In order to be used for training, the words in the unparsed
sentences need to be tagged for their class membership. This
could be done by transducing them through the multi-word con-
structor FST, M , which defines mappings from canonical words
to tagged multi-word units. However, such a simplistic solution
is inadequate in dealing with ambiguities in word senses, for
example, “one” as a numeral or a pronoun. We have devised
a procedure that involves a single iteration, where we obtain
an initial class n-gram model, G1, from the parsable utterances
only, and compose that with M to provide probability support
for the disambiguation step. The procedure works as follows.
First, the full training corpus is parsed and all parsable sentences
are entered into an initial n-gram training corpus. An initial ver-
sion of the language model G1 is then obtained by processing
the resulting tagged sentences through standard n-gram creation
tools. This language model also includes backoff probabilities
for an “<unknown>” word, to support sentences with out-of-
vocabulary (OOV) words. The failed sentences are then trans-
duced through M ◦ G1, with OOV words pre-mapped to the
“<unknown>” tag. The corpus can then simply be augmented
with these additional tagged sentences, and the final language
model, G, is created from the complete corpus.

This framework can also be utilized to reduce the language
model compilation time, which is almost entirely accounted for
by the computation involved in parsing a large training cor-
pus. This is especially important when delay becomes an issue,
for example, in an interactive environment such as SPEECH-
BUILDER [2]. An interesting solution is to parse only a small
subset of the corpus to bootstrap the mapping transducer, and
use FST operations outlined above to label the remaining sen-
tences, i.e., treating them as if they failed to parse. We have
conducted an experiment in the JUPITER weather domain to as-
sess the feasibility of this solution, and to evaluate the labeling
performance of the FST transduction algorithm. If we parse
only 10% of the data to train G1, and label the rest by transduc-
ing the sentences through M ◦ G1, then more than 99% of the
unparsed sentences are tagged correctly. In contrast, only 60%
of the sentences would be tagged correctly if only M were used
for the transduction. With this procedure, we reduce the pars-
ing time by a factor of ten, from twenty minutes for the 120,000
training sentences down to just two minutes for 12,000.

3.3. Additional Features

Although one can simply equate the recognizer vocabulary to
the NL grammar’s vocabulary, there are situations in which one
may want to introduce differences, both in terms of adding and
removing words. First of all, there may be words in the gram-
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hat are inappropriate for the recognizer. An obvious ex-
is abbreviations, such as “Apr” for “April”, or “St” for

t,” which are included to cover typed input. We have pro-
the capability for the system developer to enumerate such
as excluded words.

second issue is to account for non-speech events, such
ghter, coughing, and various fill words such as “um” and
etc. Our SUMMIT recognizer includes explicit models for
ll set of such “words”. In fact, they have been carefully
ribed in the training corpus. Since it is difficult to develop

mar rules to cover them in all the situations where they
occur, it is tempting to simply remove them from the hy-

ses, prior to parsing. However, they need to be preserved
ce for n-gram training. Hence, we modified the parsing
dure to support the capability to skip over a selected set
rds, as specified by the developer, during parsing, but to
them in the output tagged sentences.

third issue is the possibility of defining additional multi-
units, not because of a class membership, but because it

lead to improvements in language model perplexity. Ob-
examples would be phrases like “good bye”, and “thank
We designed a data-driven procedure to identify promis-
ndidates based on mutual information measures on a large

ng corpus [3]. These candidates are pruned based on
nition experiments on development data. Once a set is
fied, they are simply entered as a list of extra words, and
ill be automatically incorporated into M and G.

inally, there may be situations where the recognition per-
nce could benefit from the addition of words not sup-

d by the grammar. A case where this idea is well-motivated
e demonstrated by the ORION task delegation system [8].
N allows a user to leave a recorded message for later de-
. Such a message is unrestricted in content, but must be
dded in a meaningful carrier phrase, such as “remind me
. The NL server pays no attention to the content follow-
e carrier phrase, and therefore, does not necessarily cover
words in its vocabulary. A generic OOV model in the rec-
er is able to get through the unrestricted message region;
ver, explicit support for commonly occurring words in the
ges would likely lead to improvements. Such words can
y be added to the “extra words” list.

Summary of the LM Training Procedure

mmarize, the process of generating the language model
a natural language grammar works as follows:

Identify grammar categories appropriate for n-gram
classes. Files containing extra or excluded words may
also be provided.

Use TINA to generate formatted files specifying n-gram
classes, a list of multi-word units, and mappings from
multi-word units to canonical words. Also use TINA to
parse the training corpus.

Use SUMMIT FST tools to generate M from the mapping
file.

Use SUMMIT LM tools to train an initial class n-gram G1

from the parsed and tagged sentences, which includes
support for a catch-all tag “<unknown>” for all un-
known words.

Map any OOV words in the failed sentences to the
“<unknown>” marker. Tag the failed sentences by FST
transduction through M ◦ G1.



Baseline TINA n-gram

JUPITER 18.3 % 18.0 %
MERCURY 15.6 % 15.0 %

Table 1: Comparison of word error rates between a speech
recognition system using standard class n-gram (baseline) and
a system that uses enhanced class n-gram derived from the NL
grammar (TINA n-gram), on the JUPITER weather domain and
on the MERCURY flight reservation domain.

6. Retrain a class n-gram G from all training sentences.

4. Evaluation Results
We have implemented the approach outlined above in several
different domains and languages, and have evaluated it on our
most mature systems to assess its competitiveness with pre-
existing n-gram language models. The baseline system uses di-
phone models as well as context-independent segment duration
models for acoustic modeling, and standard class n-gram mod-
els (with hand-crafted word classes) for language modeling.
The “TINA n-gram” system uses the same configuration, except
that the language models use vocabulary and word classes gen-
erated from the NL grammar, but are trained on the same set of
sentences as used in training the baseline LM models.

Table 1 summarizes the recognition word error rates of the
baseline system and the TINA n-gram system, on the JUPITER

weather domain [12] and the MERCURY flight reservation do-
main [10]. The baseline JUPITER system has a vocabulary size
of 2150 “spoken” words, and the baseline MERCURY system has
1725. The TINA n-gram version of the JUPITER recognizer is
carefully crafted to match the vocabulary of the baseline system;
i.e., given the FST specification of the recognizer search space
as depicted in Figure 1, they differ only in the FST’s above the
canonical words output of R. As indicated in Table 1, the “TINA

n-gram” system achieves a slightly better performance than the
baseline. The comparison in the MERCURY domain is less rig-
orous – the development of the baseline recognizer and the NL
component were out-of-sync, and we did not try to match the
vocabularies of the two systems. The NL grammar of the MER-
CURY domain produced an expanded lexicon of 1850 “spoken”
words. This may account for the greater performance gain for
the MERCURY domain. The “TINA n-gram” performances are in
fact the best we have achieved on both the JUPITER and MER-
CURY domains.

5. Summary and Future Work
In this paper, we have implemented a technique to automati-
cally obtain enhanced class n-gram language models from NL
grammars. We evaluated this approach in both the JUPITER

weather domain and the MERCURY flight reservation domain,
and confirmed that the recognition performance is competitive
with, and, in fact, slightly better than, the baseline performance.
We have migrated many of our dialogue systems, encompass-
ing several different domains and languages, to make use of
this new technique for creating recognizer language models.
These include the ORION system in both English and Mandarin,
a Mandarin weather domain, a city guide and traffic informa-
tion system, and a flight status domain, in addition to JUPITER

and MERCURY. Efforts to integrate this technique for language
modeling into the SPEECHBUILDER toolkit [2] are underway.
This will allow a developer to regenerate the recognizer’s lan-
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his technique also facilitated our research towards en-
end users to personalize a dialogue system by adding

nowledge to the system during a conversation [7]. A user
peak and spell a new word to the system. The system will
e the spelling and the pronunciation of the new words,
fter user verification, update the NL grammar and the rec-
er lexicon and language model. The NLU system was en-
d to enable incremental update of the trained grammar,
e language model can be re-generated accordingly using
ocedure described in this paper.

generalization of this technique can be used to specialize
gnizer to a restricted subset of an NL grammar’s domain.
traightforward to restrict the recognizer vocabulary to just
words that showed up in a domain-restricted training cor-

generalized to all words in any grammar categories that
visited by the corpus. We plan to explore techniques to
atically create a suite of lesson-specific language models
ould be used for distinct lesson plans for computer-aided

age learning applications. In a language learning scenario,
bsolutely critical to restrict the search space as much as

ble in the recognizer, in order to overcome the difficulties
ognition when the speaker is not fluent in the language.
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