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ABSTRACT

A segment-based Automatic Language Identi�cation (ALI) sys-
tem has been developed. The system was designed around a formal
probabilistic framework. This framework forms the basis for inves-
tigating the ALI approach proposed by House and Neuburg which
utilizes phonotactic constraints of languages. The system incorpo-
rates di�erent components which model the phonotactic, prosodic,
and acoustic properties of the di�erent languages used in the system.
The system was trained and tested using the OGI Multi-Language
Telephone Speech Corpus. An overall system performance of 47.7%
was achieved in identifying the language of test utterances.
Keywords: Automatic language identi�cation.

INTRODUCTION

With recent increased research activities in multi-lingual
spoken language systems, interest in Automatic Language Iden-
ti�cation (ALI) has grown. The goal of an ALI system is to
accurately and e�ciently determine the language of a spoken
utterance. To date a majority of the research in ALI has fo-
cused on frame-based statistical approaches which are trained
in an unsupervised manner [1, 2, 3, 4, 5]. While some of these
approaches have performed quite well, the work of House and
Neuburg suggests that an approach which models the phonotac-
tic constraints of languages could prove extremely e�ective [6].
Speci�cally, they proposed that languages can be di�erentiated
strictly based on sequential constraints on phonemes. In fact,
the constraints are so strong that they can be captured even if
phonemes are described in terms of broad phonetic classes. To
provide empirical evidence to their claim, they hand-labeled a
corpus of sentences, and showed that high performance lan-
guage identi�cation can be achieved based on the resulting
broad phonetic strings. House and Neuburg's work provides
a strong base upon which a segment-based approach to ALI
can be built. Despite their compelling demonstration, albeit
on hand-labeled data without error, only a few studies have
utilized the ideas they introduced [7, 8, 9].

In this paper a segment-based approach to ALI is presented.
To provide a solid theoretical foundation for the approach, a
probabilistic framework which builds upon House and Neuburg's
ideas is �rst formulated. Based on this framework, a system
that incorporates separate models to capture the phonotactic,
prosodic, and acoustic information of each language is devel-
oped. While our primary goal is to understand the relative
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merits of each model as system parameters are varied, we will
nevertheless measure overall system performance using a pub-
licly available multi-language corpus. Interested readers are re-
ferred to a more detailed description of this work in [10].

PROBABILISTIC FRAMEWORK

Before designing the segment-based ALI system, a proba-
bilistic framework describing the ALI problem was derived. To
begin, let L = fL1; L2; : : : ; Lng represent the language set of
n di�erent languages. An ALI system's basic objective is to
determine which of the n languages in L was used for a par-
ticular spoken utterance. The acoustic information of the ut-
terance will be represented by two sets of feature vectors. Let
~a = f~a1;~a2; : : : ;~amg represent the frame-based set of m feature
vectors which encodes the wide-band spectral information of the
utterance. Let ~f = f~f1; ~f2; : : : ; ~fmg represent the frame-based
set of m vectors which represent the voicing and fundamental
frequency information of the utterance. With these representa-
tions, the probability that an utterance was spoken in language
Li, given the acoustic sequences ~a and ~f , is represented by the
expression Pr(Li j ~a;~f). The maximum likelihood approach to
the problem is to choose the language which is most likely given
the acoustic signal. Viewing this as a maximization process the
most likely language can be found using the expression

argmax
i

Pr(Li j ~a;~f): (1)

The expression in (1) is the most general expression de-
scribing the ALI problem. Because every spoken utterance con-
tains an underlying sequence of linguistic events, a probabilistic
framework which incorporates linguistic information is appro-
priate. To incorporate this information into the framework, let
C represent the set of all possible linguistic sequences which can
represent a spoken utterance. Since phonologically motivated
elements such as phonemes or broad phonetic classes are the
most obvious choices for representing the linguistic sequence,
C will be assumed to contain strings of phonetic elements. In
a segment-based approach it is necessary to specify how a par-
ticular phonetic string C aligns with the acoustic information.
To represent this information let S represent all possible seg-
mentations of the acoustic input. For a particular string with
k phonetic elements, C = fc1; c2; : : : ; ckg where each c is a par-
ticular phonetic label and S = fs1; s2; : : : ; sk+1g where each s

is a segment boundary. To incorporate the phonetic informa-
tion into the framework, the maximization process in (1) can



be expanded as

argmax
i

X

S

X

C

Pr(Li; S;C j ~a;~f): (2)

This expression can be rewritten as

argmax
i

X

S

X

C

Pr(Li j C;S;~a;~f)Pr(C j S;~a;~f)Pr(S j ~a;~f):

(3)

With the tremendously large set of possible segmentations
and phonetic sequences it would be impractical to perform the
summations in (3) over all S and all C. The required computa-
tion can be greatly reduced if only a single S and C are used.
If it is assumed that the single best hypotheses for S and C can
be found independent of the language, it can be shown that (3)
can be reduced to

argmax
i

Pr(Li j Cb; Sb; ~a;~f): (4)

where Sb and Cb are the most likely segmentation and phonetic
sequence. The expression in (4) can be shown to be equivalent
to

argmax
i

Pr(~a j Cb; Sb;~f ; Li)Pr(Sb;~f j Cb; Li)Pr(Cb j Li)Pr(Li)

(5)
The four probability expressions in (5) are considerably easier
to model separately than the single probability expression in
(4). Additionally, the expression is now organized in such a
way that prosodic and phonetic information are contained in
separate terms. In modeling, these terms become known as:

1. Pr(~a j Cb; Sb;~f ; Li) ! The acoustic model.

2. Pr(Sb;~f j Cb; Li) ! The prosodic model.

3. Pr(Cb j Li) ! The language model.

4. Pr(Li) ! The a-priori language probability.

Within this framework, the language model can be used to cap-
ture phonotactic information contained in strings of phonemes
or broad phonetic classes. The prosodic model can be used to
model the prosodic information available in the fundamental
frequency contours and segment durations. The acoustic model
can capture the manner in which speci�c phonemes or broad
phonetic classes are produced acoustically. The di�erences that
exist within these models from language to language can thus
be exploited for the purpose of language identi�cation. Note
that if the utterances are evenly distributed amongst the lan-
guages, then Pr(Li) is the same for all languages, and thus can
be ignored in the maximization process.

SYSTEM DESCRIPTION

Corpus

The ALI system described below was trained and tested
using the OGI Multi-Language Telephone Speech Corpus [11].
The OGI database consists of utterances spoken in 10 di�er-
ent languages that were collected over the telephone lines. The
ten languages are English, Farsi, French, German, Japanese,
Korean, Mandarin, Spanish, Tamil, and Vietnamese. Each
language contains utterances from 90 di�erent speakers. The
database was divided into three sections; 50 speakers per lan-
guage for the training set, 20 speakers per language for the
development test set, and 20 speakers per language for the �nal

test set. For this paper the reported results were obtained by
training on the training set and testing on the development test
set. Only the text-independent utterances of the corpus where
used in training and testing. The �nal test set has been set
aside for future use and was not used for these experiments.
The training set contained a total of 2715 utterances while
the development set had 1120 utterances. The utterances are
roughly evenly distributed amongst the ten languages although
the number of utterances per speaker varies from 2 to 6. The
male to female ratio of the speakers is roughly 7 to 3. The
average duration of each utterance was 13.4 seconds.

Preprocessing

The spectral information of the utterance was represented
with 14 mel-frequency cepstral coe�cients (MFCC) and 14 delta
cepstral coe�cients sampled every 5 ms. The voicing informa-
tion was extracted from the waveform using the formant pro-
gram in Entropic's ESPS package. The pitch tracker returns
an estimated F0 value and probability of voicing score every 5
ms. In an attempt to remove speaker dependencies, the log

2
of

each F0 value was taken for each voiced frame, and the mean
of log

2
F0 over the entire utterance was then subtracted away

for each frame. A delta F0 value was then computed for each
voiced frame from the transformed F0 sequence.

Determination of Segments and Classes

To obtain a broad phonetic string for an utterance, we must
�rst devise a mechanism to determine how an utterance should
be segmented, and how these segments can be characterized
by a set of broad phonetic classes. In other words, one must
develop a phonetic recognizer. Because the OGI corpus was un-
labeled at the time of our experiments, the phonetic recognizer
could not be trained in a fully supervised fashion. To circum-
vent this problem, two alternatives were investigated. The �rst
option was to train the recognizer in an unsupervised manner.
For this option, all of the utterances were automatically seg-
mented using an adaptation of Glass's multi-level acoustic seg-
mentation algorithm [12]. A threshold was used to obtain a sin-
gle segmentation from a dendrogram of possible segmentations.
For each segment a feature vector of 14 MFCC coe�cients aver-
aged over the length of the segment was created. From the set
of all segment-based feature vectors in the training set, a code-
book was generated using the k-means clustering algorithm. It
was our hope that each codeword would roughly correspond to
a broad phonetic class (i.e., fricative, vowel, nasal, etc.). How-
ever, we found empirically that this assumption may not have
been entirely appropriate.

The second option was to train a phonetic recognizer in a
supervised manner using other corpora that have been labeled.
Since such corpora do not exist for all the languages of interest,
we were forced to make a simplifying assumption: While lan-
guages di�er in their detailed phonetic realizations, the broad
phonetic characteristics are nevertheless quite similar. There-
fore, we may be able to determine the segments and phonetic
classes using a recognizer trained on data from one language.
In our case, we used the summit phonetic recognizer [13, 14]
trained on the NTIMIT corpus. The recognizer was then ap-
plied to all of the utterances in the OGI corpus to provide the
best transcription of English phones for each utterance.

The detailed phonetic labels produced by summit were then
collapsed into broad phonetic classes. Speci�cally, phone labels
with the most similar left and right contexts in the training
set were clustered in a hierarchical manner. The hierarchical



0

10

20

30

40
B

ig
ra

m
 A

cc
ur

ac
y 

(%
)

0

1
0

2
0

3
0

4
0

5
0

6
0

# of Classes in Bigram

VQ codebook labeling

SUMMIT labeling

Figure 1: Bigram performance

clustering allowed the number of broad phonetic classes to be
varied for our experiments. The similarity measure used for
the clustering was the divergence of the probability distribution
describing all possible left and right contexts for each phone.
Additionally, we also experimented with a few sets of manually
selected broad phonetic classes.

Language Modeling

The language model part of (5), Pr(Cb j Li), can be modeled
simply with an n-gram model. Figure 1 shows the performance
of the bigram model for the two di�erent phonetic recognizers
as the number of broad phonetic classes is varied from 2 to 58.
This �gure shows that the best performance using the automat-
ically selected broad phonetic classes from the summit phonetic
recognizer was a language identi�cation accuracy of 39.5% (with
22 phonetic classes). Although not shown in this �gure, a slight
improvement in performance was observed (41.5% with 23 pho-
netic classes) when the broad phonetic classes were manually
selected. In contrast, the best performance using the unsuper-
vised VQ recognizer was 32.1% accuracy with 47 codewords.
Our experiments indicate that the bigram model consistently
outperformed the unigram and trigram for sequences of broad
phonetic classes. This is presumably due to the fact that the
bigram o�ers more constraints than the unigram, and its prob-
abilities can be estimated more reliably than the trigram. For
example, the best performance using a trigrammodel was 34.5%
accuracy with 7 manually selected broad classes.

Prosodic Modeling

In (5) the quantity Pr(Sb;~f j Cb; Li) represents the prosodic
model. If we assume that the fundamental frequency contours
are independent of the phone durations and the phonetic string,
then the prosodic model can be rewritten as

Pr(~f j Sb; Cb; Li)Pr(Sb j Cb; Li) (6)

and further as
Pr(~f j Li)Pr(Sb j Cb; Li) (7)

The expression Pr(Sb j Cb; Li) can represent a segment du-
ration model. For our experiments, we further assume that the

segments are independent of one another. Probability distri-
butions were created to model the number of frames within a
segment for each phonetic class of each language. With the
23 broad classes used for the best bigram model, the duration
model alone achieved an accuracy of 25.8% in identifying the
language of an utterance.

The expression Pr(~f j Li) represents a fundamental fre-
quency contour model. For our experiments, the frames were
assumed to be independent. Additionally the F0 and delta F0
measurements were assumed independent. The F0 and delta F0
measurements for all voiced frames were scalar quantized into
150 bins and probability distributions were created for F0 and
delta F0 for each language. Using this approach, the F0 model
achieved an accuracy of 18.6% in identifying the language of
utterances. The delta F0 model achieved an accuracy of 19.7%.

Acoustic Model

The acoustic model Pr(~a j Cb; Sb;~f ; Li) can be represented
with a continuous probability density function which models
independent segment-based acoustic feature vectors. For the
present experiments the segment-based feature vector consisted
of 14 MFCC coe�cients and 14 delta MFCC coe�cients aver-
aged over all the frames in each segment. To model the feature
vector a full covariance Gaussian density function was created
for each of the 23 broad classes for each language. The acoustic
model alone performed with an accuracy of 33.3%.

System Integration

When the entire set of probabilistic model scores for a single
utterance were combined to form one score for each language, it
was discovered that the scores for the F0 and delta F0 models
were dominating the overall score. Closer examination of each
of the individual probabilistic models showed that the top choice
probability estimates may have been in
ated, as indicated by
the fact that the average a posteriori probability for the top
choice language was larger than the actual language identi�ca-
tion accuracy for each of the models. To compensate for this
discrepancy, a scaling factor was applied to the log probability
scores of each of the models. For each model, the scaling factors
were selected to compress the range of a posteriori probabilities
so that the average top choice language probability was equal
to the language identi�cation accuracy. This accuracy was ob-
tained from the training data through a jackkni�ng procedure.

RESULTS

The performance of each model is summarized in Figure 2,
together with the overall system performance. Our experimen-
tal results suggest that, individually and in descending order,
language, acoustic, and prosodic models can achieve some de-
gree of language identi�cation. We view the fact that the lan-
guage model contributes the most to system performance as
supportive of the claim made by House and Neuburg. When all
three models are incorporated, the overall system achieved an
accuracy of 47.7%. This result is computed by pooling all the
utterances in the development set, regardless of length. How-
ever, closer examination of the data reveals that the perfor-
mance improves with the length of the utterance, as shown in
Figure 3. The performance of the system improved by almost
10% as the length of the utterances increased from 10 to 45
seconds.

Although the top-choice language identi�cation accuracy
was only 47.7%, the correct language was the second and third
choice 15.9% and 10.8% of the time, respectively. In other
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