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Abstract—This paper explores both supervised and unsuper-
vised topic modeling for spoken audio documents using only
phonetic information. In cases where word-based recognition is
unavailable or infeasible, phonetic information can be used to
indirectly learn and capture information provided by topically
relevant lexical items. In some situations, a lack of transcribed
data can prevent supervised training of a same-language phonetic
recognition system. In these cases, phonetic recognition can use
cross-language models or self-organizing units (SOUs) learned
in a completely unsupervised fashion. This paper presents recent
improvements in topic modeling using only phonetic information.
We present new results using recently developed techniques for
discriminative training for topic identification used in conjunction
with recent improvements in SOU learning. A preliminary
examination of the use of unsupervised latent topic modeling for
unsupervised discovery of topics and topically relevant lexical
items from phonetic information is also presented.

I. INTRODUCTION

While processing based on word-based automatic speech
recognition (ASR) outputs represents a dominant paradigm
for spoken language processing (SLP), such ASR systems
typically require large amounts of transcribed training data
to yield accurate results. However, not all SLP applications
require word-level ASR outputs to perform adequately. Various
applications exist that have successfully used only phonetic-
level information including spoken term detection [1], au-
tomatic document retrieval [2], topic identification [3], and
automatic language identification [4].

For some tasks, it is not even necessary to possess a phonetic
recognizer in the language(s) of interest. It has been shown
that automatic language identification (LID) can be performed
based on the outputs of multiple language dependent phonetic
recognizers [4] or on the output of a single universal phonetic
recognizer [5]. For accurate LID it is often sufficient to
have training data marked only with language labels without
requiring any additional transcriptions of the training data.

In this paper we examine the problems of topic identifica-
tion (topic ID) and unsupervised topic modeling and lexical
discovery. In the topic ID task, like the LID task, our goal is
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to train an accurate classification system using training data
which only contains topic labels for each audio document
without the benefit of any manually generated word transcripts.
In the unsupervised topic modeling and lexical discovery task,
we seek to automatically learn lexical and topical information
from a collection of audio data that is completely unlabeled.

Various previous studies have investigated the problem of
topic ID using only phonetic speech recognition outputs [6],
[7], [8], [9]. Our own previous work in this area has not
only demonstrated successful topic ID based on the output
of a same-language phonetic recognition system, but also
the viability of topic ID using a cross-language phonetic
recognizer, i.e., a recognizer trained for a completely different
language [3], or topic ID using parametric trajectory mixture
models learned directly from the acoustic signal [10]. In more
recent work, we have shown that topic ID can also be applied
to the output of a phonetic tokenizer constructed from self-
organizing units (SOUs), i.e., phone-like units learned in a
completely unsupervised fashion from untranscribed acoustic
data [11], [12]. These studies have verified the viability of
topic ID based purely on phonetic information, even for
situations where no transcriptions are available to train a same-
language phonetic recognizer in a supervised fashion.

In this paper, we extend our previous investigations of topic
modeling techniques that use only phonetic information. In a
set of topic ID experiments, we compare the use of a same-
language phonetic recognizer, a cross-language phonetic rec-
ognizer, and SOU phonetic tokenizers. We also introduce the
use of new discriminative training techniques that have yielded
improvement on word-based topic ID to the phonetically-based
topic ID problem. Additionally, we examine new modeling
approaches for training a phonetic tokenizer based on SOUs.
Our experiments will show that topic ID performance using
our latest SOU system is approaching the accuracy levels
achievable when using a same-language phonetic recognizer
trained with full supervision. This paper also presents pre-
liminary investigations we have conducted in the area of
completely unsupervised lexical and topic discovery from
unannotated audio data.
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II. PHONETICALLY-BASED TOPIC ID

A. Phonetic Recognition and Feature Extraction

The first stage of our topic ID system is the application
of automatic phonetic recognition to each segment of audio
in each audio document. The phonetic recognizer generates
a lattice of phonetic hypotheses for each audio segment.
Pruning is employed during recognition to remove the highly
unlikely phonetic hypotheses from the recognition lattices.
The posterior probability of occurrence for each phonetic
hypothesis is computed for every arc in every lattice. From
these posterior lattices a posterior probability for any phonetic
sequence through the lattice can also be estimated. A total
estimated occurrence count for each phonetic n-gram sequence
over the course of the entire audio document is then computed
by summing the individual posterior scores over all instances
of each n-gram sequence over all lattices for that document.
In our work we generally use estimated counts of triphone
sequences as the set of features for topic ID.

Mathematically, every audio document d is expressed as:

d = {c1, c2, . . . , cNV
} (1)

Here each cf is the occurrence count of a specific feature f ,
where f is a specific phonetic n-gram from the full set V of
NV unique phonetic n-gram features used by the system.

B. Topic Classification

1) Support Vector Machines: For classification we use a
support vector machine (SVM) classifier in conjunction with
a minimum classification error (MCE) training approach for
discriminatively learning feature weights. Though we will
summarize our classification approach below, full details for
our training algorithms can be found in [13].

In our SVM approach, each document d is represented
by a feature vector �x. Each vector �x is created using term
frequency - log likelihood ratio (TF-LLR) normalization of
the underlying feature counts [14]. This can be expressed as:

xf =
P (f |d)√

P (f)
(2)

Here P (f |d) is estimated from document d as follows:

P (f |d) =
cf∑
i ci

(3)

P (f) is estimated from the full collection of training docu-
ments using MAP estimation as follows:

P (f) =
Nf + 1

NF + NV

(4)

Here, Nf is the estimated occurrence count of feature f over
the entire training set, NF is the sum of estimated occurrence
counts over all features in the training set, and NV is the
number of unique features in the feature vocabulary V .

To create a multi-class SVM for NT different topics, a one-
vs.-rest SVM classifier is independently learned for each topic
t expressed by the following scoring function:

S(�x, t) = −bt + at

∑
∀i

ωi,tK(�vi, �x) (5)

Here, each vector �vi is a unique training vector or support
vector from the set of training documents. Each ωi,t is a
learned support vector weight for training vector i for topic t.
The function K(�v, �x) is an SVM kernel function for comparing
the vectors �v and �x. Our system uses a linear kernel function
which simply computes the dot product between between the
two component vectors:

K(�v, �x) = �v · �x (6)

The at and bt values in Eqn. 5 represent class specific scale and
offset values. In the multi-class SVM scenario, the settings of
the at and bt over all topics t are jointly calibrated to optimize
the multi-class classification error rate. This calibration process
is performed using an MCE calibration procedure described
in [13].

2) MCE Feature Weight Training: The SVM classifier
described above is a linear classifier that defines one linear
separating hyperplane per class in the vector space. For each
individual topic t, the binary SVM can be expressed as:

S(�x, t) = �rt · �x − bt (7)

Here, �rt is a linear projection vector and bt is a score
offset. The set of projection vectors �rt over all t can be
concatenated to form a matrix R, and the score offsets bt can
be concatenated to form a vector �b, thus creating a multi-class
linear classifier expressed as:

�s =

⎡
⎢⎣

S(�x, t1)
...

S(�x, tNT
)

⎤
⎥⎦ = R�x −�b (8)

This linear classifier can be augmented to include a discrimi-
natively trained set of feature weights as follows:

�s = R(�λ ∗ �x) −�b (9)

Here, the ∗ operator performs a term-wise multiplication of
vectors �λ and �x where each element λf of �λ is a feature
weight applied to the corresponding feature xf . In our previous
work we have demonstrated how these feature weights can be
learned with a leave-one-out version of minimum classification
error (MCE) training to improve the performance of a trained
multi-class SVM [13].

III. SELF ORGANIZING UNITS (SOUS)

A. Unsupervised HMM

For supervised training of an HMM for speech recognition,
its parameters are typically specified by the acoustic model
parameters, θam, and the language model parameters, θlm.
For notational conveniences in this paper, we group them as a
single parameter set θ = [θam, θlm]. Then, the ML parameter
estimation finds the parameter set, θ̂sup, that maximizes the
joint likelihood, p(A, W |θ), of acoustic observation sequence
A and the label sequence W . That is,

θ̂sup = arg max
θ

p(A, W |θ). (10)
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In the case of unsupervised training in which the label
sequence W is not known, we maximize the joint likelihood
by searching not only over the model parameters but also
all possible label sequences. That is, W becomes a variable
to be optimized. The unsupervised ML parameter estimation
becomes,

θ̂unsup = argmax
θ

max
W

p(A, W |θ), (11)

= argmax
θ

max
W

p(A|W, θ)p(W |θ) (12)

The maximization over both the label sequence and the
acoustic model likelihood in Eqn. 12 balances the acoustic
likelihood and label sequence structure.

Eqn. 11 maximizes over two sets of variables, θ and W ,
which can be performed using iterative maximization. At each
iteration, one set of variables is fixed while the other set is
maximized. Then we alternate between them. So, at the i-th
iteration, the two maximization steps are:

1) find the best parameter set θi on the previously found
label sequence Wi−1.

θi = arg max
θ

p(A, Wi−1|θ). (13)

2) find the best word sequence Wi by using the previously
estimated parameter set θi.

Wi = argmax
W

p(A, W |θi), (14)

Comparing Eqns. 10 and 13, it is obvious that Step 1
(Eqn. 13) is simply the regular supervised HMM training
(both acoustic and language models) using the newly obtained
transcription Wi−1 as reference. Finding the best word se-
quence in the second step would suggest a Viterbi recognition
pass. Although recognition is usually viewed as finding the
most likely label sequence over the posterior probability,
p(W |X, θ), it is easy to show that the same sequence also
maximizes the joint likelihood p(X, W |θ) as in Eqn. 14. So,
Eqn. 14 expresses the recognition of a new transcription using
the updated parameters θi.

B. Initialization

We explored two different SOU initializations: phoneme
recognition based, and unsupervised segmental Gaussian mix-
ture model (SGMM) based. For phoneme recognition based
initialization, an off-the-shelf phoneme recognizer (potentially
from a different language) transcribes the training data with the
resulting recognition outputs used as the initial transcription
for HMM training. For SGMM-based initialization, audio is
first segmented based on its spectral discontinuities which
are learned without supervision from the audio signal [15].
It is followed by fitting each audio segment with a polyno-
mial (quadratic) trajectory in the cepstral space. The audio
segments are then grouped into clusters of similar acoustics
based on the distance between their polynomial trajectory
parameters [16], [17]. The distance measure currently used
on a pair of segments is the area between their polynomial
trajectories. These segment clusters represent collections of

sound units. Any individual cluster is a collection of variants of
a particular sound and forms the basis for generating a SGMM
with each mixture component representing a segment cluster.
The SGMM is trained with the EM algorithm. The SGMM
becomes a speech tokenizer when, for an audio segment, it
returns the mixture index by which the segment likelihood is
maximized. After building the SGMM, it is used as a tokenizer
for the training segments. These segment labels form the initial
transcription for HMM training.

C. SOU HMM Training

We use the state-of-the-art BBN Byblos recognizer [18]
for HMM training. Byblos includes advanced signal pro-
cessing techniques, such as Vocal Tract Length Normaliza-
tion (VTLN), Heteroscedastic Linear Discriminant Analysis
(HLDA) feature transformation, context-dependent triphone
and quinphone models, multi-pass recognition, speaker adap-
tive training etc. Byblos uses “flat start” HMM training that
does not require token time marks. Instead, iterative alignment
and model estimation are carried out. While discriminative
training is part of Byblos, our current experiments used only
the maximum likelihood training. Details about the Byblos
training can be found in [18]. In addition to acoustic models,
initial bigram and trigram language models are constructed us-
ing the label sequences generated by the segmental tokenizer.
Following Eqns. 13 and 14, we iteratively maximize the model
likelihood and find the best label sequence.

Non-crossword models trained with SOU as words does not
capture any contexts but these are used in our first two passes
of tokenization. This limits the resolution of the acoustic
models in these early passes. To remedy this, we generate
multi-unit compound words by combining frequent bi- and
tri-units into compound words during each iteration of the
HMM training. This effectively builds up long multi-unit
SOUs progressively.

D. Tokenization

With the trained acoustic models and language models, the
tokenization of audio into SOU sequences is no different from
regular phoneme recognition. To create context dependent
models in Byblos, we need to create “phoneme” classes to
drive the decision-tree based phoneme-state clustering. To
produce “linguistic questions” to drive the decision tree-based
state clustering, We cluster the 64 SGMM’s into 16 classes to
act as “phoneme classes”. Because we used the phonemes (or
SOUs) as words, true context modeling occurs only in cross-
word models. To use context-based model, recognition lattices
are re-scored using cross-word models.

E. Different SOU Systems

For our experiments, we have built 3 SOU systems using
different initializations and amounts of training data. The first
two systems used single SOUs as units and were trained
with 15 hours of data from the Fisher Corpus [19]. The first
system, denoted as SGMM-15, was initialized with SGMM.
The second system, denoted as BUT-15, was initialized with
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recognized Hungarian phonemes generated by a phonetic
recognition system created at the Brno University of Technol-
ogy (BUT) [20]. The third system, denoted as SGMM-120,
was initialized with SGMM and trained with 120 hours of
Fisher data. In addition to more data, a set of 1106 frequent
multi-SOU sequences up to 6 units long, which we refer to
as pseudo-words, were added into the dictionary in SGMM-
120. Our preliminary experiments have shown that the use
of pseudo-words are very effective for exploiting additional
training data.

Other than the amounts of training data and compound word
units, all three systems were built with the same configura-
tions. In training, 5 iterations of SOU training were performed.
Multi-pass recognition was performed on all systems with
the final lattices generated with unsupervised speaker adapted,
non-crossword models and rescored by crossword models.

IV. TOPIC ID EXPERIMENTS

A. Corpus

Our topic ID experiments were performed on data from the
English Phase 1 portion of the Fisher Corpus [19]. During the
Fisher data collection, two participants were connected over
the telephone network and instructed to discuss a specific topic
for 10 minutes. Data was collected from a set of 40 different
prompted topics. For our experiments, a set of 1374 topic-
labeled conversations serve as the topic ID training set, and an
independent set of 1372 conversations are used for the topic
ID test set. There is no overlap between these sets and the
Fisher data used for SOU training.

B. Phonetic Recognition Systems

Our experiments used five different phonetic recognition
systems for processing the audio data. The baseline English
system used the BUT phonetic recognizer trained on 10-hours
of telephone speech from the Switchboard cellular corpus.
Within the lattices produced on the topic ID training set, this
recognizer produced 86,407 unique triphones for use in the
topic ID feature set. For our cross-language experiment, we
used a Hungarian version of the BUT recognizer trained on
10 hours of read Hungarian telephone speech. This system
yielded 161,442 unique triphone features for topic ID.

The primary focus of our experiments is the use of the three
SOU tokenizers discussed in Section III-E. The SOU SGMM-
15 system used 64 base phone units yielding 187,854 triphone
sequences for its topic feature set. The SOU BUT-15 system
used 44 base phone units and yielded 38,071 unique triphones
during recognition.

The SOU SGMM-120 system used 64 base units in conjunc-
tion with 1106 pseudo-words (which were treated as individual
units when computing n-gram counts). As a result, SGMM-
120 yielded over 18 million unique trigram sequences (with
most of these features being longer than 3 base units in length).
To reduce the number of features to a more manageable
number we only computed bigram counts over the pseudo-
word units produced by the SGMM-120 system. Even when

TABLE I
TOPIC ID RESULTS FOR USING A STANDARD SVM APPROACH AND AN

SVM WITH MCE FEATURE WEIGHTING (FW) AS APPLIED TO PHONETIC

FEATURES EXTRACTED FROM FIVE DIFFERENT PHONETIC RECOGNITION
SYSTEMS.

Phonetic # n-gram Classification Error Rate
Recognizer Features SVM SVM+FW
BUT Hungarian 161,442 45.7 40.9
SOU SGMM-15 187,854 42.1 33.7
SOU BUT-15 38,071 37.5 30.7
SOU SGMM-120 890,540 35.1 26.7
BUT English 86,407 19.9 17.9

only using bigrams over the pseudo-words, the number of
unique features produced by SGMM-120 system was 890,540.

C. Results

Table I shows our topic ID results using the five recog-
nizers described above. Results are presented using both a
standard multi-class SVM approach, and the SVM approach
that incorporates our MCE feature weight (FW) training. There
are two primary observations that can be made about the
results in Table I. First, MCE feature weight training produces
relative reductions in error rate of between 10% (for the BUT
English system) and 24% (for the SOU SGMM-120 system)
over the baseline SVM. Second, the SOU systems all perform
better than the cross-language BUT Hungarian system. This
demonstrates that untranscribed in-language data can be used
effectively to produce models trained in an unsupervised
fashion. In fact, the SOU SGMM-120 system using pseudo-
words has closed over 60% of the gap between the cross-
language BUT Hungarian system and the BUT English system
(which had transcribed data available for supervised training).

V. UNSUPERVISED LEXICAL AND TOPICAL DISCOVERY

A. Background

The results we reported in Section IV-C are on a traditional
topic ID problem with supervised learning which requires a
manual labeling of the topics present in the training data. A
related problem is that of completely unsupervised learning of
lexical items and topics. In recent years there have been several
research efforts geared toward the unsupervised discovery of
lexical items directly from acoustic data without the benefit of
any lexical and topical annotation. The goal is to automatically
discover repeated acoustic patterns corresponding to lexical
items within an audio corpus. These include efforts to discover
acoustic patterns within various representations of the acoustic
signal including frame-based mel-frequency scale cepstral
coefficients (MFCCs) [21], frame-based posteriorgrams gen-
erated form Gaussian mixture models (GMMs) [22], self-
organizing units [12], or frame-based posteriorgrams generated
from an English phonetic recognizer [23].

One technical challenge for pattern discovery is learning
to distinguish patterns that correspond to topically important
content words from patterns that corresponds to words or
word sequences that possess little or no topical relevance (e.g.,
“excuse me”, “you know”, etc.). In [12], it was shown that long
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SOU sequences that correspond to important topical words
can be discovered when information about the topic labels
is available. In [24], common multi-phone sequences were
discovered automatically as a pre-processing stage for clus-
tering documents into a topic hierarchy based on the counts
of discovered sequences. Our goal is to jointly discover both
the topics and the important words or phrases corresponding
to these topics in an unsupervised fashion.

B. PLSA Modeling

We have performed a pilot study to examine the utility of
applying probabilistic latent semantic analysis (PLSA) [25]
to the output of a phonetic recognizer. The end goal is
to help guide existing lexical discovery techniques towards
the speech regions most likely to contain topically relevant
phonetic sequences. PLSA learns a set of NZ latent topics
Z = {z1, . . . , zNZ

} each possessing a probabilistic model
P (f |z) for generating features. PLSA also learns a model
P (z|d) for mapping each document d to a distribution of topics
z ∈ Z .

C. PLSA Experimental Conditions

Our pilot experiment was conducted using the output of
the BUT English phonetic recognizer applied to the 1374
document Fisher training set. Each document is represented
by the raw estimated occurrence counts of triphones. PLSA
was applied to the training set feature vectors to learn a set
of latent topic models in an unsupervised fashion. Our pilot
experiment sets the number of latent topics to be 40 (the actual
number of prompted topics in the Fisher Corpus).

Word-based PLSA models are often aided by manually
crafted word stop-lists, i.e., a list of non-content-bearing
words (e.g., articles, conjunctions, etc.) that are ignored dur-
ing processing. Statistical stop-listing can be applied in the
phonetic modeling approach to achieve the same effect. In
our experiments, PLSA modeling ignores both rare triphone
features (those with occurrence counts of 5 or less in the data
set) and extremely common triphone features (those estimated
to have appeared in > 50% of the documents). This stop-
listing removed 1754 triphones with high document-frequency
and 37008 triphones with low term-frequency, leaving 47646
triphone features for PLSA modeling.

D. Learning Topics

When PLSA is performed on word-level transcriptions of
the same Fisher data, it learns latent topics that align well
with prompted topics [26]. One goal of our pilot study was
to see whether or not PLSA could similarly learn meaningful
latent topics using only triphone counts. In contrast to our
word-based experiments, our PLSA experiments yielded more
mixed results. An alignment of the learned PLSA models with
the true prompted topic labels demonstrated that only 13 of the
40 learned PLSA topics were strongly associated with actual
Fisher topics. The remaining 27 learned latent topics do not
show any strong association with actual Fisher topics.

Table II shows 12 PLSA topics that align closely with actual
Fisher topics. Each topic is represented by its top 3 most

TABLE II
A COLLECTION OF 12 PLSA TOPICS LEARNED FROM PHONETIC

TRIPHONE COUNTS WITH STRONG ASSOCIATION WITH ACTUAL FISHER

TOPICS. EACH TOPIC IS REPRESENTED BY ITS 3 MOST DISTINCTIVE
TRIPHONE SEQUENCES (LISTED WITH THEIR ASSOCIATED WORDS).

12 PLSA Topics
Distinctive Triphones Associated Fisher Topics
(Associated Words) (% Overlap with Associated Topic)
hh:oh:l hh:ao:l l:d:ey Holidays (72.0%)
(holiday, holidays)

w:oh:ch r:iy:aw iy:aw:l Reality TV (70.1%)
(watch, reality)

p:er:jh jh:r:iy er:jh:r Perjury (67.5%)
(perjury)

ax:d:aa ax:d:ao d:d:ao Pets (58.1%)
(a dog)

m:uw:v uw:v:iy v:iy:z Movies (55.1%)
(movie, movies)

w:ey:jh m:w:ey ow:w:ey Minimum Wage (53.1%)
(minimum wage)

w:iy:hh p:ae:t sh:iy:z Pets (51.5%)
(we have, pet, she’s)
f:ae:m ae:m:l s:ae:m Family (50.8%)

(family)
uw:dx:axr m:p:y p:y:uw Computers in Education (50.0%)
(computer, computers)
w:oh:ch s:p:ao b:ao:l Sports on TV (44.3%)
(watch, sports, ball) Strikes by Athletes (16.6%)
uw:l:z t:iy:ch uw:l:s US Public Schools (36.6%)
(schools, teachers) Censorship in Schools (29.6%)

s:m:ow m:ow:k ow:k:ix Personal Habits (29.0%)
(smoke, smoking) Smoking (27.8%)

distinctive triphones based on the weighted point-wise mutual
information (WPMI) measure. The WPMI between a feature
f and a PLSA topic z is expressed as:

wpmi(f, z) = P (f, z) log
P (f, z)

P (f)P (z)
(15)

The percentage value next to each Fisher topic shows the
percentage of the corresponding latent topic model that is
associated with documents from that Fisher topic. Thus, 72.0%
of the top latent topic model in Table II is associated with
documents labeled with the “Holidays” topics. In each case,
the top scoring triphones in these latent models are easily
associated with words that are distinctive to the matching
Fisher topic. In two cases, the concatenation of three triphones
correspond exactly to title word for the associated Fisher topic
(i.e, “Movies” and “Perjury”).

E. Discovering Important Phonetic Sequences

A global ranking of the topical importance of phonetic
sequences over an entire corpus can also be obtained by
aggregating the WPMI measure of a feature f over all latent
topics z to yield a total topical information (TTI) measure as
follows:

tti(f) =
∑
∀z

wpmi(f, z) (16)

Table III shows 17 of the top 20 triphone sequences as
ranked by the TTI measure and the words for which they
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TABLE III
MAPPING OF TRIPHONES SEQUENCES WITH HIGH TTI RANKINGS TO

ASSOCIATED WORDS AND THEIR TTI RANKINGS DETERMINED FROM A

REFERENCE PLSA MODEL LEARNED FROM THE TEXT TRANSCRIPTS.

Triphones Associated Words
(TTI Rankings) (Reference TTI Rankings)
s:m:ow(1), m:ow:k(2) smoking(20), smoke(26)
m:p:y(10), p:y:uw(7), computer(6), computers(11)
y:uw:dx(17), uw:dx:axr(3)
f:ae:m(4), ae:m:l(9) family(1)
w:oh:ch(5), w:ah:ch(15) watch(3)
m:w:ey(8), w:ey:jh(6) minimum(4), wage(5)
b:ao:l(11) baseball(39), football(40)
s:p:ao(12) sports(14), sport(98)
m:uw:v(18), uw:v:iy(13) movie(10), movies(21)
k:ey:sh(16) education(66)

are predominantly associated. Each of the reference words is
also shown with a reference TTI ranking obtained from a 40-
topic PLSA model learned directly from the text transcripts
of the same data. In this table we observed that triphone
sequences from 7 of the top 11 (and also 9 of the top 21) TTI
ranked reference words from the text transcripts are present
in the top 20 ranked triphone sequences. This indicates that
PLSA applied to the phonetic recognition outputs exhibits the
capability to identify at least some of the triphone sequences
corresponding to topically important words.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have extended our previous work by
incorporating MCE-based feature weight training techniques
for SVM classifiers to the phonetic-based topic identification
problem. Significant gains in topic ID performance were
observed using the MCE approach. We have also demon-
strated the effectiveness of new methods for training tokenizers
based on self-organizing units (SOUs). Our experiments have
demonstrated that learned SOUs can be used effectively for
topic ID and their performance can be significantly improved
when pseudo-words are exploited.

In this paper, we have also examined the feasibility of jointly
learning topics and topically important phonetic sequences in
an unsupervised fashion. Our initial studies demonstrate some
promising results in this area. Because of the success of our
SOU-based topic ID experiment, we believe we can extend
our current work by similarly applying latent topic modeling
to SOUs. Additionally, we plan to extend our method for
identifying topically important phonetic sequences by tying the
TTI measure back to the recognition lattices. This would allow
us to generate a topical importance measure that is directly
associated with regions of the original acoustic data. Using
this measure, lexical discovery methods (such as segment
dynamic time warping) could be directed to efficiently focus
their acoustic sequence matching on specific acoustic regions
that are believed to contain the most topically relevant words.
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phoneme recognition,” in Proc. Int. Conf. on Text, Speech and Dialogue,
Brno, September 2004.

[21] A. Park and J. Glass, “Unsupervised pattern discovery in speech”, IEEE
Trans. on Audio, Speech, and Language Processing, vol. 16, no. 1,
pp. 186–197, 2008.

[22] Y. Zhang and J. Glass, “Towards multi-speaker unsupervised speech
pattern discovery,” in Proc. ICASSP, Dallas, March 2010.

[23] A. Jansen, K. Church and H. Hermansky, “Towards spoken term
discovery at scale with zero resources,” in Proc. Interspeech, Makuhari,
September 2010.

[24] C. Cerisara, “Automatic discovery of topics and acoustic morphemes
from speech,” Computer Speech and Language, vol. 23, no. 2, pp. 220-
239, 2009.

[25] T. Hofmann, “Probabilistic latent semantic analysis,”, in Proc. of Conf.
on Uncertainty in Artificial Intelligence, Stockholm, July 1999.

[26] T. Hazen, “Latent topic modeling for audio corpus summarization,” in
Proc. Interspeech, Florence, August 2011.

400


