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ABSTRACT

In this paper, we investigate the problem of topic identification from
audio documents using features extracted from speech recognition
lattices. We are particularly interested in the difficult case where
the training material is minimally annotated with only topic labels.
Under this scenario, the lexical knowledge that is useful for topic
identification may not be available, and automatic methods for ex-
tracting linguistic knowledge useful for distinguishing between top-
ics must be relied upon. Towards this goal we investigate the prob-
lem of topic identification on conversational telephone speech from
the Fisher corpus under a variety of increasingly difficult constraints.
We contrast the performance of systems that have knowledge of the
lexical units present in the audio data, against systems that rely en-
tirely on phonetic processing.

Index Terms— Audio document processing, topic identifica-
tion, topic spotting.

1. INTRODUCTION

As new technologies increase our ability to create, disseminate, and
locate media, the need for automatic processing of these media also
increases. Spoken audio data in particular is a media which could
benefit greatly from automatic processing. Because audio data is
notoriously difficult to “browse”, automated methods for extract-
ing and distilling useful information from a large collection of audio
documents would enable users to more efficiently locate the specific
content of their interest. One specific task of interest is automatic
topic identification (or topic ID), for which the goal of a system is to
identify the topic(s) of each audio file in its collection. A variant of
the topic identification problem is the topic detection (or topic spot-
ting) problem, for which a system must detect which audio files in
its collection pertain to a specific topic.

Topic identification has been widely studied in both the text pro-
cessing and speech processing communities. The most common ap-
proach to topic identification for audio documents is to apply word-
based automatic speech recognition to the audio, and then process
the resulting recognized word strings using traditional text-based
topic identification techniques [1]. This approach has proven to work
effectively for tasks in which reasonably accurate speech recognition
performance is achievable (e.g. news broadcasts) [2]. Of course,
speech recognition errors can degrade topic identification perfor-
mance, and this degradation becomes more severe as the accuracy
of the speech recognizer decreases.
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Despite previous successes, existing speech recognition systems
may not perform well enough to support accurate topic identification
for some tasks. Two common reasons for the inadequacy of a speech
recognition system are (1) a severe mismatch between the data used
to train the recognizer and the unseen data on which it is applied, and
(2) a dearth of training data that is well matched to the conditions
in which the recognizer is used. One problem that could manifest
itself, for example, is a mismatch between the vocabulary employed
by the recognizer and the topic-specific vocabulary used in the data
of interest. In the most extreme case, a recognition system may not
even be available in the language of the data of interest.

When training a topic identification system, one would ideally
possess a large corpus of transcribed data to help train both a speech
recognition system and a topic identification module. Unfortunately,
manual transcription of data is both costly and time-consuming. To
alleviate this cost, one could resort to a more rapid manual annota-
tion of available data in which audio content is only labeled by topic
and full lexical transcription is not performed. In this case, the de-
termination of relevant lexical items for topic identification can not
be determined from manual transcriptions, but instead must be de-
duced somehow from the acoustics of the speech signal. Towards
this end, several previous studies have investigated the use of pho-
netic speech recognizers (instead of word recognizers) in the devel-
opment of topic identification systems [3, 4, 5, 6].

In this paper, we empirically contrast topic identification sys-
tems using word-based speech recognition vs. phone-based speech
recognition. Furthermore, we investigate a variety of methods for
improving the performance of both word- and phone-based topic
identification. We begin by investigating a traditional Naı̈ve Bayes
formulation of the problem. Within this formulation we examine
a variety of feature selection techniques required to optimize perfor-
mance of the approach. We also investigate a support vector machine
(SVM) approach which has previously been successfully applied to
the problems of speaker and language identification [7].

2. EXPERIMENTAL TASK DESCRIPTION

2.1. Corpus

For the data set for our experiments we have used the English Phase
1 portion of the Fisher Corpus [8, 9]. This corpus consists of 5851
recorded telephone conversations. During data collection, two peo-
ple were connected over the telephone network and given instruc-
tions to discuss a specific topic for 10 minutes. Data was collected
from a set of 40 different topics. The topics were varied and in-
cluded relatively distinct topics (e.g. “Movies”, “Hobbies”, “Edu-
cation”, etc.) as well as topics covering similar subject areas (e.g.
“Issues in Middle East”, “Arms Inspections in Iraq”, “Foreign Re-
lations”). Fixed prompts designed to elicit discussion on the topics
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were played to the participants at the start of each call. For example,
the prompt for the “Foreign Relations” topic was:

Do either of you consider any other countries to be a
threat to U.S. safety? If so, which countries and why?

From this corpus we conduct two basic types of experiments:
1. Closed set topic identification (i.e., identify the topic from the
closed set of 40 topics).

2. Topic detection (i.e., specify if an audio document is or is not
about a specified topic)

For our experiments the corpus was subdivided into four subsets:
1. Recognizer training set (3104 calls; 553 hours)
2. Topic ID training set (1375 calls 244 hours)
3. Topic ID development test set (686 calls; 112 hrs)
4. Topic ID evaluation test set (686 calls; 114 hrs)

There is no overlap in speakers across the sets.
For our experiments we can treat each conversation as an in-

dependent audio document. This yields a total of 686 separate au-
dio documents for each of the development and evaluation test sets.
Because each side of the conversation was recorded into indepen-
dent channels within its audio file, we can further break each con-
versation into two separate call side documents yielding a total of
686 × 2 = 1372 audio documents in each of the development and
evaluation test sets. In our experiments we provide results on a whole
call and/or a call side basis. Individual calls are further subdivided
into individual audio segments, which are typically a few seconds in
length, for processing by a speech recognition system.

2.2. Speech Recognition Systems

2.2.1. Overview

In our topic ID experiments, the first stage of processing is to ap-
ply automatic speech recognition (ASR) to each segment of audio in
each audio document. The ASR system is used to generate a net-
work, or lattice, of speech recognition hypotheses for each audio
segment. In this work we explore the use of both word-based and
phone-based speech recognition. Within each lattice we can com-
pute the posterior probability of any hypothesized word (or sequence
of phones for a phone-based system), and an expected count for each
word can be computed by summing the posterior scores over all in-
stances of that word in the lattice.

2.2.2. Word-Based Speech Recognition

For word-based ASR we have used the MIT SUMMIT speech recog-
nition system [10]. The system’s acoustic models were trained using
a standard maximum-likelihood approach on the full 553 hour recog-
nition training set specified above without any form of speaker nor-
malization or adaptation. For language modeling, the system uses a
basic trigram language model with a 31.5K word vocabulary trained
using the transcripts of the recognizer training set. Because this rec-
ognizer applies very basic modeling techniques with no adaptation,
the system performs recognition faster than real time (on a current
workstation) but word error rates can be high (typically over 40%).

2.2.3. Phone-Based Speech Recognition

For phonetic recognition we use a phonetic ASR system developed
at the Brno University of Technology (BUT) [11]. Two versions
of the system were trained, one which uses an English phone set
and one which uses a Hungarian phone set. The English recognizer

was trained using 10 hours from the Switchboard Cellular Phase
1 conversational telephone speech corpus [9]. This training was
seeded with phonetic time alignments generated by the BBN ASR
system [12]. The Hungarian recognizer was trained using the Hun-
garian portion of the SPEECH-DAT corpus [13]. This corpus con-
tains read speech collected over the Hungarian telephone network.

3. PROBABILISTIC TOPIC IDENTIFICATION

3.1. The Naı̈ve Bayes Formulation

In a probabilistic approach to topic identification, the goal is to de-
termine the likelihood of an audio document being of topic t given
the string of spoken words W . Here, each known topic t is an ele-
ment of a set of topics T . This can be expressed mathematically, and
expanded via Bayes rule, as follows:

P (t|W ) = P (t)
P (W |t)

P (W )
= P (t)

P (w1, . . . , wN |t)

P (w1, . . . , wN )
(1)

Here, the word stringW is expanded into its underlying sequence of
N words, w1, . . . , wN . In the Naı̈ve Bayes approach to the problem,
statistical independence is assumed between each of the individual
words in W. Under this assumption, the posterior of t given W is
approximated as:

P (t|W ) ≈ P (t)

NY
i=1

P (wi|t)

P (wi)
(2)

The expression above assumes a sequence of N individual words.
This expression can alternatively be represented using a counting
interpretation instead as follows:

P (t|W ) ≈ P (t)
Y

∀w∈V

„
P (w|t)

P (w)

«C(w|W )

(3)

In this interpretation, the occurrence count C(w|W ) within W of
each word w in the system’s vocabulary V is used to exponentially
scale the score contribution of that word. Under this interpretation
non-integer values of the counts C(w|W ) are allowed, thus provid-
ing the system the ability to incorporate word posterior estimates
from a lattice generated by a recognition system. This Naı̈ve Bayes
approach is utilized as our baseline system.

3.2. Parameter Estimation

The likelihood functions in our probabilistic systems are all esti-
mated from training materials using maximum a posteriori proba-
bility (MAP) estimation. For example, the prior probability of the
topic, P (t), obtained using MAP estimation is expressed as follows:

Pmap(t) =
ND

ND + αT NT

Pml(t) +
αT NT

ND + αT NT

1

NT

(4)

In this expression, ND is the total number of documents in the train-
ing set and NT is the number of distinct topics used for classifica-
tion. MAP estimation results in an interpolation of the maximum
likelihood (ML) estimate, Pml(t), with a prior distribution for P (t)
which is assumed to be uniform (i.e. 1/NT ). The rate of the in-
terpolation is controlled by the smoothing parameter αT (which is
typically determined empirically). As the number of training docu-
ments,ND, increases, the MAP estimate moves away from the prior
uniform distribution towards the ML estimate. The ML estimate is
simply expressed as:

Pml(t) =
ND|t

ND

(5)
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Here,ND|t is the number of documents in the training set belonging
to topic t. When combining Equations 4 and 5, the MAP estimate
used to model P (t) reduces to:

Pmap(t) =
ND|t + αT

ND + αT NT

(6)

A MAP estimate for the prior likelihood of word w, P (w), can
be constructed in the same fashion, and is expressed as:

Pmap(w) =
Nw + αW

NW + αW NV

(7)

In this expression, NV is the number of unique words in the vocab-
ulary used for topic identification, Nw is the number of occurrences
of the specific word w in the training corpus, NW is the total count
of all words from the NV word vocabulary in the training corpus,
and αW is a MAP estimation smoothing parameter.

The MAP estimate for P (w|t) is also built in a similar fashion.
However, instead of using a uniform distribution, the distribution
Pmap(w) described in Equation 7 can be used as the prior distribu-
tion against which the ML estimate Pml(w|t) is interpolated. In this
case the MAP estimate is expressed as:

Pmap(w|t) =
Nw|t + αW |T NV Pmap(w)

NW |t + αW |T NV

(8)

In this expression, Nw|t is the number of times word w occurs in
training documents of topic t, NW |t is the total number of words
the training documents of topic t, and αW |T is the MAP estimation
smoothing parameter.

Equations 6, 7, and 8 each contain an α smoothing parameter.
Appropriate settings for these parameters must be learned empir-
ically. In our case, preliminary experiments revealed that perfor-
mance is not highly sensitive to the value of these terms and near-
optimal performance on development test data was achieved by sim-
ply setting all of the α terms to a value of 1. Thus, we set each α
term to a value of 1 for all experiments discussed later in this paper.

3.3. Feature Selection

In word-based topic identification, it is typically the case that a small
number of topic specific content words contribute heavily to the de-
termination of the topic, while many non-content words (i.e., arti-
cles, prepositions, auxiliary verbs, etc.) contribute nothing to the
decision. For this reason, probabilistic approaches to topic identifi-
cation typically employ a feature selection process in which only a
subset of words from the full vocabulary of the system are used when
performing the probabilistic scoring. The use of a “stop list” of com-
mon topic-independent words that should be ignored is a common
practice in topic identification systems. Techniques for selecting use-
ful topic specific words using the χ2 statistic or the information gain
measure have also been employed in previous work [14].

3.3.1. Topic Posterior Estimation

Two of the feature selection approaches we examine require an es-
timate of the posterior probability P (t|w). While this measure can
be estimated indirectly using Bayes Rules (as is done in Sections 3.1
and 3.2), our feature selection techniques perform better whenP (t|w)
is estimated directly using the following MAP estimate:

Pmap(t|w) =
Nw|t + αT |W NT Pmap(t)

Nw + αT |W NT

(9)

Here, αT |W is a MAP smoothing parameter set to one.

3.3.2. The Information Gain Measure

The information gain measure for a word w can be defined mathe-
matically as:

IG(w) = H(t) − H(t|w) (10)

whereH(t) is the entropy of the prior distribution, P (t), andH(t|w)
is the entropy of the conditional distribution P (t|w) when the spe-
cific word w is observed. This expression expands to:

IG(w) =
X
∀t∈T

−P (t) log P (t) + P (t|w) log P (t|w) (11)

One potential problem with the information gain measure is that it
favors words that are predominantly present in only one topic. In
this case the information gain measure may only select words from
the topics which are distinctly different from the other topics (and
hence already easy to distinguish). In cases where several topics
may be similar, the words that could predict these topics may appear
frequently across these similar topics, which in turn would increase
the conditional entropy of these words. Under these circumstances,
the most predictive words for these topics may not be selected as
features when using the information gain criteria.

3.3.3. The χ2 Statistic

The χ2 statistic is used for testing the independence of two variables
t and w from their observed co-occurrence counts. It is defined as
follows: let A be the number of times word w occurs in topic t, B
the number of times w occurs outside of topic t, C the total number
of words in topic t that aren’t w, and D the total number of words
outside of topic t that aren’t w. LetNW be the total number of word
occurrences in the training set. Then:

χ2(t, w) =
NW (AD − CB)2

(A + C)(B + D)(A + B)(C + D)
(12)

This statistic uses raw counts and does not depend on smoothed
probability estimates. In [14], this measure was converted into a
“global” selection measure for a word w by averaging its χ2 statis-
tic over all classes. We use it here as a per-class selection measure:
for each topic t, we select the N words with the highest χ2 values.
These words are the least likely to be independent of topic t, i.e.,
their presence (or absence) in a document is likely to give informa-
tion about the document belonging to topic t.

3.3.4. The Maximum Posterior Probability Measure

Another approach we have investigated is to select the top N words
per topic which maximize the posterior probability of the topic, i.e.
the words which maximize the value of P (t|w) as estimated in the
Equation 9. Experiments on our development set show this feature
selection approach generally outperforms the other approaches men-
tioned above. For example, Figure 1 shows the performance of the
three measures discussed above on individual call sides within the
topic ID development test set when applied to the manual text tran-
scriptions of the data. Optimal performance was achieved when
selecting the top 25 words per topic using the maximum posterior
probability measure. To illustrate the feature selection, Table 1 shows
the top 10 words which maximize P (t|w) for five specific topics in
the topic ID training set. Feature selection in the remaining Naı̈ve
Bayes experiments in this paper all use this maximum posterior prob-
ability approach.
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Fig. 1. Topic identification on call sides within the topic ID devel-
opment test set when using the manual text transcriptions. Perfor-
mance of the information gain, χ2, and maximum posterior proba-
bility measures is shown as the number of selected features is varied.

Topics
Arms U.S.

Pets Professional Airport Inspections Foreign
Sports on TV Security in Iraq Relations

dog football airport inspections threat
dogs hockey security disarming Korea
cat Olympics plane oil countries
pet sport flights weapons nuclear
cats basketball flight inspectors China
pets sports shoes arms threats
animals golf flown Saddam nations
fish team safer U.N. Iraq

goldfish soccer airports voting Iran
animal baseball fly destruction allies

Table 1. Examples of top-10 words w which maximize P (t|w) for
five specific topics.

3.4. Processing Phonetic Strings

In our formulation of the topic identification problem, we have as-
sumed that documents can be expressed as a collection of words and
their associated counts. However, for some applications knowledge
of the important lexical keywords for a task may be incomplete or
unavailable. Under these situations, it is possible to instead perform
topic identification based on phonetic strings (or phonetic lattices)
while retaining the same probabilistic framework. In this case, the
word string W is not comprised of words, but rather a set of units
derived from the proposed sequence of phonetic units. A common
approach to deriving word-like units from phonetic strings is to ex-
tract n-grams from the phonetic string. For example, the word string
“I like dogs” would be represented by the phonetic string:

ay l ay k d ao g z

This phonetic string can be converted into the following sequence of
phonetic trigram units:

ay:l:ay l:ay:k ay:k:d k:d:ao d:ao:g ao:g:z

Topics
Arms U.S.

Pets Professional Airport Inspections Foreign
Sports on TV Security in Iraq Relations

p:ae:t w:oh:ch r:p:ao w:eh:p ch:ay:n
ax:d:ao s:b:ao ch:eh:k hh:ao:s w:eh:p
d:oh:g g:ey:m ei:r:p w:iy:sh th:r:eh
d:d:ao s:p:ao r:p:w axr:oh:k r:eh:t
d:ao:ix ey:s:b axr:p:ao axr:dh:ei th:r:ae
axr:d:ao oh:ch:s iy:r:p p:aw:r ay:r:ae
t:d:ao w:ay:ch iy:r:dx w:ae:p r:ae:k
p:eh:ae w:aa:ch ch:ae:k axr:ae:k ah:n:ch
d:ow:ao hh:oh:k s:ey:f v:axr:dh n:ch:r
d:oh:ix oh:k:iy r:p:l r:ae:k uw:ae:s

Table 2. Examples of top-10 phonetic trigrams w recognized by the
BUT English phonetic recognizer which maximize P (t|w) for five
specific topics.

The same feature selection and probabilistic scoring mechanisms
used for processing words can similarly be used with phonetic n-
grams. For example, the feature selection mechanism could learn
that the phonetic trigram unit d:ao:g (corresponding to the word dog)
is a useful feature for predicting the topic “Pets”.

To provide an example of phonetic n-gram feature selection, Ta-
ble 2 displays the top 10 trigrams extracted from outputs of our En-
glish phonetic recognizer for five topics. The feature selection mech-
anism identifies trigrams which can typically be mapped to distinc-
tive words from that topic. For example, in the “U.S. Foreign Re-
lations” topic, the trigram ch:ay:n comes from the word China, and
the trigrams th:r:eh and r:eh:t come from the word threat. Trigrams
containing common phonetic errors within the distinctive words are
also evident, e.g., the trigram th:r:ae is a substitution error for the
correct trigram th:r:eh within the word threat.

4. SVM TOPIC IDENTIFICATION

As an alternative to the Naı̈ve Bayes approach, support vector ma-
chines (SVMs) have also been successfully applied to the topic iden-
tification problem for text processing applications [15]. In the speech
processing arena, SVMs have also proven effective for the speaker
identification and language identification tasks [7].

In this work, our SVM architecture is based upon a previous
phonetic n-gram approach to speaker identification [16]. As in our
Naı̈ve Bayes approach, a document is represented as a sequence of
words (or phonetic n-gram tokens), W = w1, · · · , wN . For each
audio document, the relative frequency of each unique word wj in
W is expressed as follows:

P (wj |W ) =
C(wj |W )

|W |
(13)

HereC(wj |W ) is the occurrence count of unique word wj inW and
|W | is the total number of words in W . These relative frequencies
are mapped to a sparse vector representation with one dimension per
vocabulary item. The vector’s entries have the following form:

P (wj |W )

s
1

P (wj)
(14)

Here the prior probability P (wj) is estimated (via maximum likeli-
hood) from all documents across all topics in the topic identification
training data.
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Next, a kernel function for comparing two word sequences W
and V , is defined as follows:

K(W, V ) =
X
∀j

P (wj |W )P (wj|V )

P (wj)
(15)

Intuitively, the kernel in Equation (15) expresses a high degree of
similarity between W and V (via a large inner product) if the fre-
quencies of the same word are similar between the two sequences.
If individual words are not present in one of the sequences, then
this will reduce similarity because one of the probabilities in the nu-
merator of Equation (15) will be zero. The denominator, p(wj), in-
sures that words with large probabilities do not dominate the score.
The kernel can alternatively be viewed as a linearization of the log-
likelihood ratio (see [16] for more details).

Incorporating the kernel in Equation (15) into an SVM system
is straightforward. Our system uses the SVMTorch package [17].
Training is performed with a one-versus-all strategy. For each target
topic, we pool the vectors from all audio documents from all non-
target topics then train an SVM to distinguish the target topic from
the non-target topics. In aggregate, one topic-specific SVM classifier
is created for each topic.

5. EXPERIMENTAL RESULTS

5.1. Topic Identification: Words vs. Phones

In our first set of experiments, we explore topic identification con-
ducted under five different, and increasingly difficult, constraints:
1. Using the human generated text transcripts for each call.
2. Using phonetic strings generated by phonetic forced align-
ment of the transcripts (as generated by the MIT SUMMIT
recognizer).

3. Using word lattices automatically generated by theMIT SUM-
MIT word recognition system.

4. Using phonetic lattices generated by the BUT English pho-
netic recognizer.

5. Using phonetic lattices generated by the BUTHungarian pho-
netic recognizer.

For each constraint, a Naı̈ve Bayes classifier was trained using the
data from the topic ID training subset. System parameters, such as
the number features used by the classifier under each condition, were
optimized on the development test set. Results for closed set topic
identification on the evaluation test set using the Naı̈ve Bayes system
are shown in Table 3.

In examining the results in Table 3, several observations can be
made. First when comparing the result using the human generated
word transcriptions vs. the result obtained from phone trigrams ex-
tracted from the forced alignments, we observe that there is little
difference in performance between the two constraints. The word-
based system performs slightly better on the individual call sides,
but the phone-based system performs slightly better when analyzing
the whole call. This suggests that lexical knowledge is not necessary
to perform topic identification provided accurate phonetic transcrip-
tions are available.

Next, when we examine the performance of the system using the
human generated transcripts vs. the system using the lattices from
the automatic word recognizer, we see a modest degradation in per-
formance from the system using the automatic word recognizer. This
indicates that the high error rate of the word recognition system does
harm performance, but not dramatically so.

Experimental Conditions Topic ID Error Rate(%)
Features Feature Call Whole
Extracted Selection Sides Call

Words from 25 words 12.4 8.2Transcription per topic
English Phones from 100 3-grams 12.8 7.6Forced Alignment per topic

Words from 100 words 16.8 9.6ASR Lattices per topic
English Phones 100 3-grams 35.3 22.9from ASR Lattices per topic
Hungarian Phones 100 3-grams 64.7 52.9from ASR Lattices per topic

Table 3. Closed-set topic identification using a Naı̈ve Bayes classi-
fier under a variety of experimental conditions.

Finally, the last two rows of the table show the performance us-
ing phonetic lattices. Here, a more substantial degradation is ob-
served. This indicates that the lack of lexical knowledge combined
with imperfect phonetic recognition contributes to a significant drop
in topic identification accuracy. It is interesting to note, however,
that despite the significant relative drop in performance from the En-
glish phonetic recognizer to the Hungarian phonetic recognizer, the
system using the Hungarian recognizer is still able to identify the
topic of an English call nearly 50% of the time. By contrast, the
accuracy of always selecting the most frequent topic in the training
data is only 4%. This discriminative ability exists despite the se-
vere mismatch in both the language and speaking style between the
recognizer’s training material and the test data.

5.2. Topic Identification: System Comparisons

To explore the capabilities of different classification systems, score
normalization techniques, and fusion techniques, we have conducted
additional experiments using the phonetic lattices generated by the
BUT English phonetic recognizer. In these experiments we explore
the use of both the Naı̈ve Bayes System and the SVM system. Ta-
ble 4 shows a wide range of results over different system configura-
tions. These results are discussed below.

In our topic identification work we have discovered score nor-
malization issues comparable to those experienced in the fields of
speaker identification and language identification. In particular, the
range of the scores across different audio documents can vary dra-
matically. To compensate for these issues we have explored two
score normalization techniques: (1) Test Normalization (or T-norm),
and (2) a “back-end” (BE) normalization technique that applies a lin-
ear discriminant analysis transform to the vector of scores followed
by a Gaussian model classifier. A description of T-norm can be found
in [18]. A description of our back-end classifier can be found in [19].
It is important to note that the back-end normalization technique re-
quires training on scores generated from our development test set.
For both of the normalization techniques used, the final normalized
scores, S(W, ti), for a word sequenceW for each topic ti are further
converted into a log-likelihood ratio form using this expression:

Sllr(W, ti) = log
exp(S(W, ti))

1
NT −1

P
j �=i

exp(S(W, tj))
(16)

T-norm can also be applied first and then followed by normaliza-
tion by the back-end classifier (as expressed as “T-Norm+BE” in
Table 4). Using this normalization sequence reduces the closed set
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Classifier Normalization Fusion CER(%) EER(%)
Bayes None N/A 35.3 11.07
Bayes T-Norm N/A 35.3 10.80
Bayes BE N/A 38.9 12.90
Bayes T-Norm + BE N/A 34.1 9.77
SVM None N/A 37.1 12.24
SVM T-Norm N/A 37.1 10.50
SVM BE N/A 34.9 10.57
SVM T-Norm + BE N/A 35.2 10.13

Bayes+SVM None Linear 34.0 10.28
Bayes+SVM None BE 32.4 9.08
Bayes+SVM T-Norm Linear 32.3 9.25
Bayes+SVM T-Norm BE 31.2 8.82

Table 4. Closed-set topic ID classification error rates (CER) and
topic detection equal error rates (EER) using the BUT English rec-
ognizer phone lattices with various classifiers, score normalization
techniques, and score fusion techniques.

topic classification error of the Naı̈ve Bayes system from 35.3% to
34.1%, and the SVM system from 37.1% to 35.2%.

The results of the Naı̈ve Bayes and SVM systems can also be
fused. The simplest fusion is a linear combination of the score vec-
tors of the two systems using an equal weighting for each system.
Our back-end system can also be used as the fusion mechanism by
providing it with the concatenated vector of topic scores from each
of the two systems. Fusion of the T-normed scores from the two
systems using the back-end classifier reduces the classification error
rate to 31.2%. The represents an 8.5% relative error rate reduction
from the best Naı̈ve Bayes system result of 34.1%.

Table 4 also shows results for topic detection, i.e., specifying
whether a test file is (or is not) from a specific topic. Results are
reported in terms of the system equal error rate (i.e., the point in a
detection error trade-off curve where a topic detector is equally likely
to falsely reject a document belonging to the target topic as it is to
falsely accept a document that does not belong to the target topic.)
In the topic detection case, the best Naı̈ve Bayes system achieves an
equal error rate (EER) of 9.77%. The best fused system achieves an
EER of 8.82%, which represents a 10% relative reduction in EER
over the best Naı̈ve Bayes system.

6. SUMMARY

In this paper we have examined the task of topic identification for
audio documents. We have examined the problem under a variety
of constraints under which systems may be deployed. Under the
best case scenario, a well-trained word-based ASR system for the
topic domains of interest is available. In this case, only minor degra-
dations in topic identification from a comparable text-based system
can be expected. For the scenario in which knowledge of the lexi-
cal units useful for predicting the topics of interest is unknown, we
have attacked the problem by performing pattern selection of pho-
netic sequences obtained from automatic phonetic transcriptions of
the training material. Experiments showed that phonetic sequences
corresponding to topic specific words can be learned automatically
and exploited to perform reasonably accurate topic detection.
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