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ABSTRACT

This paper presents a minimum classification error (MCE) train-
ing approach for improving the accuracy of multi-class support vec-
tor machine (SVM) classifiers. We have applied this approach to
topic identification (topic ID) for human-human telephone conversa-
tions from the Fisher corpus using ASR lattice output. The new ap-
proach yields improved performance over the traditional techniques
for training multi-class SVM classifiers on this task.

Index Terms— SVM classifiers, MCE training, topic identifi-
cation.

1. INTRODUCTION

Support vector machines (SVMs) have recently been used used in
a variety of text and speech classification problems including topic
identification, speaker identification, and language identification [3,
11]. However, the traditional method of training multi-class SVMs
has limitations. Multi-class SVMs are typically created by indepen-
dently training individual one-vs.-all classifiers for each class. Thus,
for a classification problem with M classes, the traditional training
procedure individually optimizes M different 2-class classifiers in-
stead of globally optimizing a single M -class classifier. As a result,
the scores of the different 2-class SVMs may not be well calibrated
for comparison within an M -class classifier.

To address the short-comings of traditional multi-class SVMs,
a variety of methods have been proposed. For example, Crammer
and Singer [4] have presented a extension to soft-margin training
for the multi-class SVM scenario. Platt [13] addressed the calibra-
tion issue by fitting sigmoid functions to the outputs of the SVM
classifiers to generate scores that approximated probabilities. The
sigmoid functions were fitted to held-out data not used during the
SVM training. Brummer [2] has alternatively used logistic regres-
sion classifiers trained on held-out data to calibrate the output scores
of different classifiers. In our previous work [10], we successfully
applied Brummer’s calibration approach to a multi-class SVM sys-
tem for topic identification (topic ID). In this paper, we present a
minimum classification error (MCE) approach for calibrating multi-
class SVM classifiers that does not require a held-out data set as was
required in our previous work, but instead can use an efficient leave-
one-out procedure applied directly to the training data.

Concerns about the soft-margin optimization approach that is
typically used for training multi-class SVMs have also been raised
in previous papers. For example, Arenas-Garcı́a and Pérez-Cruz [1]
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argued for the use of empirical risk minimization optimization of
multi-class SVMs instead of soft-margin optimization. Gao et al [7]
have introduced a maximum figure of merit (MFoM) approach for
optimizing the detection performance of SVM-based topic detection
systems. In this paper, we further investigate the use of MCE training
of multi-class SVMs as an alternative to soft margin training.

In our previous work, we have used MCE training to learn a
weighting vector for rescaling the input feature space for either naive
Bayes [9] or SVM classifiers [10]. In this paper, we also revisit the
use of this technique in conjunction with our new MCE approach for
training the SVM parameters themselves.

2. MCE TRAINING OF SUPPORT VECTOR MACHINES

2.1. Overview of Multi-Class SVMs

Traditional SVM training finds a hyperplane which maximally sep-
arates positive and negative training tokens in a vector space [15].
SVMs are commonly trained with soft margin optimization which
allows training tokens to fall within the separation margin of the de-
cision hyperplane with some penalty.

In its standard form, an SVM is a 2-class classifier. To create
a multi-class SVM for a problem with M classes, one would typi-
cally produce a one-vs.-all SVM classifier for each class m with the
following scoring function for a test vector �x:

S(�x, m) = −bm +
X
∀i

αi,mK(�vi, �x) (1)

Here, each vector �vi is a unique training token or support vector from
the full collection of training tokens covering all classes. Each αi,m

value represents the learned support vector weight for the training
token i for the SVM classifier for class m. For notational simplicity,
the αi,m values here absorb the ±1 valued class labels yi,m which
are often included in the SVM expression as presented in much of
the literature. The bm value represents a decision boundary offset
value for the SVM scoring function. The function K(�v, �x) is a ker-
nel function for comparing the vectors �v and �x. While many kernel
functions are possible, the primary optimization algorithm discussed
in this paper is independent of the choice of kernel function.

Because of the geometric constraints imposed on the SVM
learning process, the positive training tokens for class m will have
positive valued support vector weights for αi,m, while the negative
training tokens will have negative valued support vector weights.
Furthermore, if the full collection of training vectors is divided into
the set of positive tokens for class m, V +

m , and the set of negative
tokens for class m, V −m , the following equality also holds:

X

∀i:�vi∈V +
m

αi,m =
X

∀i:�vi∈V−m

−αi,m = am (2)
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Here, we have introduced the term am, which we will refer to as
the SVM scaling factor for class m. We can further define a set of
prescaled support vector weights as:

ωi,m = αi,m/am (3)

We should also note that pulling the scale factor am out of the sum-
mation in Equation 2 yields this constraint:

X

∀i:�vi∈V +
m

ωi,m =
X

∀i:�vi∈V−m

−ωi,m = 1 (4)

Next we can define the weighted sum of kernel scores for the positive
and negative support vectors independently as:

R+(�x, m) =
X

∀i:�vi∈V +
m

ωi,mK(�vi, �x) (5)

R−(�x, m) =
X

∀i:�vi∈V−m

ωi,mK(�vi, �x) (6)

From here, we define the full raw SVM score R(�x, m) to be:

R(�x, m) = R+(�x, m) + R−(�x, m) (7)

Using these definitions we can rewrite Equation 1 as:

S(�x, m) = −bm + amR(�x, m) (8)

Using this interpretation of the SVM expression, the discriminative
capabilities of the individual 2-class SVMs created for each class m
are captured by the set of class specific support vector weights ωi,m

contained within R(�x, m), while the calibration of the full multi-
class SVM is captured by the settings of the scale factors, am, and
decision thresholds, bm.

2.2. MCE Training of SVM Parameters

To optimize our multi-class SVM system, we use the minimum clas-
sification error (MCE) training approach [12]. We begin by defining
a misclassification measure:

M(�x) = F (�x, {m �= mC})− S(�x, mC) (9)

Here, S(�x, mC) represents the classifier score for vector �x for the
correct class mC , and F (�x, {m �= mC}) is a function of the scores
for all of the incorrect classes defined as follows:

F (�x, {m �= mC}) =
1

η
log

2
4 1

M − 1

X
∀m�=mC

exp(ηS(�x, m))

3
5

(10)
In this expression, all competing hypotheses contribute to the mis-
classification measure with the highest scoring competitors con-
tributing the most. The η term is a posterior scaling factor for
controlling the relative weighting of the incorrect classes.

The misclassification measure is then mapped by a sigmoid loss
function onto the [0, 1] continuum as follows:

�(�x) =
1

1 + exp(−βM(�x))
(11)

Here, β represents the slope of the sigmoid function. The loss func-
tion approximates the classification error, thus �(�x) should approach
zero for test vectors that are classified correctly and approach one for
test vectors that are incorrectly classified.

The loss function can be differentiated with respect to the indi-
vidual parameters of the SVM classifier. The partial derivatives of
the loss function with respect to these parameters are used to update
these parameters with the goal of minimizing the average value of
the loss function over the training set. We will refer to a process that
optimizes only the SVM scale and threshold parameters, am and bm,
as calibration. If we additionally train the prescaled support vector
weights ωi,m, we will refer to this as full optimization.

While SVM training often selects a sparse subset of training vec-
tors to be actual support vectors, we will simplify our derivation by
assuming that all training vectors are used within the SVM expres-
sion in Equation 1. In this case, the non-support vectors simply carry
a support vector weight of zero. It should be noted that the MCE op-
timization allows training vectors that start with an initial weight of
zero to obtain a non-zero weight during the optimization process.

For MCE training we must first compute the partial derivatives
of the loss function �(�x) with respect to each parameter. The ex-
pressions of these derivatives for each am, bm and ωi,m parameter
are:

∂�(�x)

∂am
=

8<
:
−β�(�x) (1− �(�x)) R(�x, m) if m = mC

γmβ�(�x) (1− �(�x)) R(�x, m) if m �= mC

(12)

∂�(�x)

∂bm
=

8<
:

β�(�x) (1− �(�x)) if m = mC

−γmβ�(�x) (1− �(�x)) if m �= mC

(13)

∂�(�x)

∂ωi,m
=

8<
:
−β�(�x) (1− �(�x)) amK(�vi, �x) if m = mC

γmβ�(�x) (1− �(�x)) amK(�vi, �x) if m �= mC

(14)
Here, the γm parameters are posterior-like weights over the incorrect
classes as defined by:

γm =
exp(ηS(�x, m))P

∀mi �=mC
exp(ηS(�x, mi))

(15)

As η → ∞ then γmI → 1 for the best scoring incorrect class mI ,
and γm → 0 for all other incorrect classes.

In our system, the learning algorithm performs iterative batch
updating of the parameters, i.e., the partial derivatives of the loss
function are averaged over all NX vectors in the optimization set and
the parameters are then updated once at the end of each pass through
the optimization data. The form of the updates are as follows:

a′m = am − ε

NX

X
∀�x

∂�(�x)

∂am
(16)

b′m = bm − ε

NX

X
∀�x

∂�(�x)

∂bm
(17)

ω′i,m = ωi,m − ε

NX

X
∀�x

∂�(�x)

∂ωi,m
(18)

Here ε is a learning rate parameter. We further regularize the col-
lection of am and bm terms after each iteration through the training
data to adhere to these constraints:

P
∀m am = cA and

P
∀m bm = cB (19)

Here, cA and cB represent the sums of the initial values of the am

and bm terms before MCE training begins. We also regularize the
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support vector weights to adhere to the constraints given in Equa-
tion 4 and we impose the constraint that the weights for the positive
training tokens of a class must be non-negative while the weights for
the negative training tokens must be non-positive.

During full optimization, we first optimize the am and bm pa-
rameters while leaving the ωi,m weights fixed, and then we optimize
the ωi,m weights while leaving the am and bm parameters fixed. We
iteratively alternate between these two optimization steps until con-
vergence is reached.

2.3. Leave-One-Out Scoring for SVMs

When computing the loss �(�x) of a token �x during the MCE opti-
mization process, �x would ideally be a token that is held-out or un-
seen during the initial training process. This is most easily achieved
by optimizing over a set of data that is held out during the initial
SVM training. A drawback of this approach is that less data is then
available to train the initial SVM parameters. The leave-one-out
training approach could provide a more efficient use of the training
data by allowing all but the one held-out data point to be used for
constructing the classification models. While leave-one-out training
can be prohibitively expensive in terms of computation, we use a
leave-one-out approximation to SVM scoring that can be run in a
computationally efficient manner.

In leave-one-out training we must remove a specific training vec-
tor �vj from the training set, adjust the trained models to account for
the removal of this vector, and then assess the accuracy of the model
by computing its loss �(�vj) on the held out vector. Our approach
approximates the score of an SVM model by removing the train-
ing vector as a support vector and renormalizing the weights of the
remaining support vectors to account for the lost weight from the
held-out vector. In the case that the held-out training vector �vj is a
positive support vector for class m this requires that we adjust the
computation of R+(�vj , m) as follows:

R+(�vj , m) =
X

∀i:i�=j,�vi∈V +
m

ωi,m

1− ωj,m
K(�vi, �vj) (20)

Of course, this expression is not valid for the degenerate case where
ωj,m = 1. In our experiments we have yet to encounter this case,
but should this occur one could conceivably approximate R+(�vj , m)
by assigning uniform weights to the remaining collection of positive
training vectors for class m. For the case where the held-out vector
�vj is a negative support vector for class m, we similarly adjust the
computation of R−(�vj , m) as follows:

R−(�vj , m) =
X

∀i:i�=j,�vi∈V−m

ωi,m

1 + ωj,m
K(�vi, �vj) (21)

Using this leave-one-out approach to SVM model scoring, we can
compute approximate values for R(�v, m) and �(�v), thus allowing
every training vector �v in the training set to be used as an unseen
observation during MCE training.

2.4. Training the Kernel Function

In the experiments in this work, we use a linear kernel function, i.e.,
K(�v, �x) = �v · �x. In previous work we have added an additional
feature weight to the input feature vector which serves to increase
or decrease the contribution of different elements in the feature vec-
tor [10]. In this case, the kernel function becomes:

K(�v, �x) = �v · (�λ ∗ �x) (22)

Here the ∗ operator is simply a component-wise multiplication and
�λ is initialized as a vector of ones (and hence does not alter the ini-
tial SVM training). After SVM training is complete, MCE training

can be used to optimize �λ. We described this process in our pre-
vious paper [10]. We have modified the n-fold jackknife training
approach from our earlier work to adhere to the leave-one-out train-
ing paradigm described in Section 2.3. In this work, MCE training
of the kernel function feature weights is performed before MCE op-
timization of the SVM parameters when both techniques are applied.

3. EXPERIMENTAL RESULTS

3.1. Data Set

Our experiments used the English Phase 1 portion of the Fisher Cor-
pus containing 10-minute-long telephone conversations between two
people. Each conversation discussed one topic chosen from a set of
40 prespecified topics [6]. For this work, the corpus was subdivided
into three subsets: (1) a 553 hour recognizer training set containing
3104 calls, (2) a 244 hour topic ID training set with 1375 calls, and
(3) a 226 hour topic ID test set with 1372 calls.

3.2. Speech Recognition Details

In our ASR-based experiments, a network, or lattice, of speech
recognition hypotheses is generated for every audio segment from
both conversation sides of every call. Within each lattice the pos-
terior probability is computed for each hypothesized word. An
expected count for each word within a call is then computed by
summing the posterior scores over all instances of each word over
all lattices.

For ASR we have used the MIT SUMMIT speech recognition
system [8]. The system’s acoustic models were trained using a stan-
dard maximum-likelihood approach on the full 553 hour recognition
training set without any form of speaker normalization or adaptation.
For language modeling, the system uses a basic trigram language
model with a 31.5K word vocabulary trained using the transcripts of
the recognizer training set. This system performs recognition faster
than real time (on a current PC) but word error rates can be high
(typically over 40%).

3.3. Experimental Details

In our experiments, every call is represented by a single feature vec-
tor containing the expected counts of the words observed during the
call. Proper normalization of this feature vector is required for op-
timal topic ID performance. In this work we examine two normal-
ization techniques: (1) term frequency/inverse document frequency
normalization (TF-IDF) and (2) term frequency/log likelihood ratio
(TF-LLR) normalization. For TF-IDF, we use a modified version
of this standard technique in which the inverse document frequency
component is estimated from the lattice term counts [16].

For TF-LLR normalization, the expected counts for each vocab-
ulary word w are first converted into relative frequencies fw, which
are then normalized by the square root of the global a prior likeli-
hood P (w) of observing w (as estimated over all calls in the training
set) as follows:

xw = fw/
p

P (w) (23)

When using a linear kernel function, TF-LLR yields a linear approx-
imation to a log likelihood ratio within the SVM [3].

In our experiments we use the LIBSVM software package [5]
for initial training of the SVM models. It is worth noting that our
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training data in these experiments is fully separable (i.e. the error
rate over the full training set is 0%). We use settings of β = 10
and η = 100 for MCE training, though we have found that perfor-
mance is not overly sensitive to these settings and a wide range of
β and η yield similar results. The learning rate ε is initially set to
1, but is adaptively adjusted using a modified version of the RPROP
algorithm [14].

3.4. Results

Table 1 shows the topic ID performance of our approach on the test
set. Performance is reported with two metrics: (1) the classification
error rate (CER) for a 40-class closed-set topic classification eval-
uation, and (2) the equal error rate (EER) from the detection-error
trade-off curve for a topic detection evaluation. The first column of
the table shows the four different types of feature normalization and
weighting used in our experiments. Here TF-LLR and TF-IDF are
compared, both with and with-out additional MCE training of the

feature weighting vector �λ. The second column of the table shows
which style of our new MCE training approach is used. Here, per-
formance of standard soft margin SVM training is compared against
our MCE calibration and MCE full optimization techniques.

In the table, we observe that our new MCE approach for SVM
calibration and optimization yields improved accuracy over the base-
line SVM system using either TF-LLR or TF-IDF normalization.
Next, we can observe that previously introduced method for MCE
training of the feature weights also provides significant performance
improvements over the baseline SVM system using either TF-LLR
and TF-IDF normalization. Finally, when we combine MCE opti-
mization of the SVM parameters with MCE training of the feature
weights, we see additional modest improvements in performance.

Overall, the best performing SVM system used TF-LLR normal-
ization with MCE training of both the feature weights and the SVM
parameters. We also note that the TF-LLR normalization approach
yields better results than the traditional TF-IDF normalization after
our MCE optimization techniques are applied. The results from the
best SVM system presented here are similar to results obtained with
the best naive Bayes system using MCE trained feature weights that
we have previously reported [9].

4. SUMMARY

In this paper we have presented an MCE-based optimization ap-
proach for improving the accuracy of a multi-class SVM system for
classification problems. We have applied this approach to topic ID
for human-human telephone conversations using the lattice output
from an ASR system. We have found that MCE-based optimization
of SVM-based systems yields better accuracy than traditional SVM
training techniques within our topic ID systems. Although we have
applied these techniques to topic ID, we believe they may also be
applied to other multi-class classification problems as well.
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