MINIMUM CLASSIFICATION ERROR TRAINING OF LANDMARK MODELS
FOR REAL-TIME CONTINUOUS SPEECH RECOGNITION

Erik McDermott

NTT Communication Science Laboratories
NTT Corporation
Kyoto 619-0237, Japan

ABSTRACT

Though many studies have shown the effectiveness of the Mini-
mum Classification Error (MCE) approach to discriminative train-
ing of HMMs for speech recognition, few if any have reported
MCE results for large (> 100 hours) training sets in the context of
real-world, continuous speech recognition. Here we report large
gains in performance for the MIT JUPITER weather information
task as a result of MCE-based batch optimization of acoustic mod-
els. Investigation of word error rate vs. computation time showed
that small MCE models significantly outperform the Maximum
Likelihood (ML) baseline at all points of equal computation time,
resulting in up to 20% word error rate reduction for in-vocabulary
utterances. The overall MCE loss function was minimized us-
ing Quickprop, a simple but effective second-order optimization
method suited to parallelization over large training sets.

1. INTRODUCTION

Discriminative training of speech recognizers, using either Min-
imum Classification Error (MCE) or Maximum Mutual Informa-
tion (MMI), has been shown to improve performance over stan-
dard Maximum Likelihood (ML) training in a number of stud-
ies [1,2, 3]. The benefit of discriminative training over ML-based
training is that model parameters can be designed specifically so
as to improve recognition accuracy. In particular, the MCE frame-
work uses a smooth estimate of the classification risk as the cri-
terion function to be minimized by the model optimization pro-
cess. This approach to model design allows for a more efficient
use of model parameters, typically resulting in better performance
and smaller model sizes — important concerns for any recognition
task, and in particular for applications that require real-time per-
formance such as conversational dialogue systems.

Previous work has shown that MMI-based training can yield
significant improvements on challenging spontaneous speech recog-
nition tasks using up to 265 hours of training data [3]. However,
no MCE studies to our knowledge have reported results for large-
scale speech recognition tasks, characterized by both large train-
ing sets and challenging language modeling requirements. Among
many studies, MCE has been evaluated on the Resource Manage-
ment, TIMIT, TI digits and SieTill datasets, which are all very
small by today’s standards [1, 4, 5]. The largest MCE training
task reported so far may be the preliminary study presented in
[6], which evaluated a novel MCE-derived training method on the
DARPA Communicator travel reservation task, with a training set
of 46 hours. The task we examine here is the JUPITER weather in-
formation system, designed using a training set of more than 100

0-7803-8484-9/04/$20.00 ©2004 IEEE

I-937

Timothy J. Hazen

MIT Computer Science and
Artificial Intelligence Laboratory
Cambridge, MA 02139, USA

hours of speech data.

One important issue in the application of MCE to large train-
ing sets is the availability of an effective batch-oriented optimiza-
tion method suitable to parallelization over many computers. Most
MCE studies use either the online, token-by-token Probabilistic
Descent method [4], or the batch version of this method [5, 6].
Both approaches only use the (first-order) gradient of the loss func-
tion. Here we use Quickprop, a simple second-order batch-oriented
optimization method previously found effective for MCE mini-
mization [4]. Though we do not detail this here, Quickprop yielded
much better results than simple first-order batch gradient descent
on the JUPITER task.

Another issue is the use or non-use of lattices to define the set
of competitor string categories against which to compare the score
of the correct string in the definition of loss. Lattices are standard
in most MMI implementations [3], but not common in MCE stud-
ies (though see [5]), which typically use the single best incorrect
category or the top IV incorrect categories. One important effect
of using lattices in the context of MMI is that learning will occur
for utterances that are correctly, but not confidently, recognized
[5]. This may lead to better generalization to unseen data. This
“learning when correct” effect does not occur with the Corrective
Training approximation of MMI, using the single best recognition
output instead of the lattice. With MCE, since the correct category
is by definition removed from the set of competitors, this effect
can be obtained by suitable choice of loss function shape, and is
independent of whether a lattice or just the single best incorrect
category is used. The MCE approach adopted here uses only the
single best incorrect category as the competitor. This is of course
much simpler to implement than using a lattice.

2. SYSTEM DESCRIPTION

2.1. The JUPITER System

The data used in our experiments was primarily derived from calls
made to the JUPITER weather information system [7]. JUPITER is
a conversational system that can understand and respond to queries
related to weather forecasts for roughly 500 cities around the world.
It utilizes a mixed-initiative dialogue strategy which allows callers
the freedom to express their queries in whatever form they wish.
Because of this approach, JUPITER’s recognizer is forced to handle
highly spontaneous, continuous speech. Difficult artifacts such as
background and foreground noises, out-of-vocabulary words, false
starts, partial words, filled pauses, and strong accents are common,
making the recognition task challenging.

ICASSP 2004

2.2. The SUMMIT Recognizer

The experiments in this study were conducted using the SUM-
MIT speech recognizer [8]. SUMMIT’s standard real-time recogni-
tion configuration performs acoustic modelling using a set of 1388
context-dependent landmark models. Each hypothesized landmark
is modeled with a set of Mel Scale Cepstral Coefficient (MFCC)
averages collected from regions, up to 75ms away, surrounding
the landmark. The acoustic information surrounding each land-
mark is represented by a 112-dimension feature vector which is
reduced to 50 dimensions using a principal component analysis
(PCA) rotation matrix. These 50-dimension vectors form the in-
put to the recognizer’s acoustic model classifier, which assigns
context-dependent acoustic scores for each landmark using mix-
ture Gaussian models. The landmark scores are combined with
segment duration scores and class trigram language model scores
during the search to produce the full score.

For our baseline system, the parameters of the mixture Gaus-
sian models used by the landmark models are estimated with stan-
dard Maximum Likelihood (ML) training using the EM algorithm.
The system uses Viterbi-style training where a single segmentation
of each training utterance is generated using forced path recogni-
tion from a manually transcribed orthography.

3. MCE TRAINING IN BATCH MODE

3.1. MCE Overview

The MCE criterion is defined using discriminant functions g, (x, A)
for each string S;, where X represents the utterance and A rep-
resents a set of model parameters. For string recognition from
speech, g; (x, A) represents the full recognizer log-likelihood score,
including both language and acoustic model scores. A misclassi-
fication measure, dj (X, A), is used to compare the match between
an utterance’s correct string Sy and the best incorrect string:

di(x,A) = —gr(x,A) + rg&ag(gi(x, A). €))

This expression is positive when the best incorrect string S; has
a larger score than that of the correct string Sj, and negative oth-
erwise. This is a special case of the general MCE definition of
misclassification measure using a weighted sum over all incorrect
strings [1, 4]. A loss function then maps the misclassification mea-
sure to a 0-1 continuum. The loss function is typically a sigmoid,

1
L(dr(x,N)) = T et XA 2
The core component of batch-mode MCE training is the com-
putation of the derivative of the loss function (Equ. (2)) with re-
spect to each of the model parameters to be trained, summed over
the training set. The Quickprop method then uses those derivatives
to update the model parameters [9].

3.2. The MCE Loss Function

In the following work, three basic loss functions were used:
Standard sigmoid : Equ. (2) with steepness « set so that the
function tapers off for a substantial number of training set utter-
ances that are very strongly correct or incorrect.
Linear loss function : Equ. (2) with a small setting of a such
that all training tokens fall in the linear region of the sigmoid.

Chopped linear loss function : A function that is 0 for dj () <
0 and Equ. (2) with a small setting of « otherwise.

The standard sigmoid embodies the MCE principle of using a
criterion function that approximates recognition error. When the
derivative of the loss function is taken, the sigmoid function as-
signs more weight to training utterances with a misclassification
measure near zero, and less weight to utterances whose recogni-
tion is either strongly correct or strongly incorrect, i.e., those with
large misclassification magnitudes.

In contrast, the linear loss function is equivalent to not using
a loss function at all beyond the misclassification measure. Us-
ing such a loss function focuses on increasing the separation be-
tween the correct and best incorrect hypotheses, with no consid-
eration of the binary cost of misclassification. All training tokens
are weighted equally during the MCE update step. Increasing sep-
aration might help generalization to unseen data. This setting cor-
responds to the MMI-derived approach proposed in [10], in which
only correct and best incorrect categories are used.

Both the sigmoid loss function and the linear loss function can
be described as approaches to rival training [10]. With these loss
functions, depending on c, there will always be at least some of the
“learning when correct” effect mentioned earlier. In contrast, the
chopped linear loss function corresponds to a corrective training
strategy, which only performs parameter modifications for incor-
rectly recognized utterances. The philosophy in this approach is
that training should be focused on the errors the systems makes,
and that expending effort to improve the performance on utter-
ances that are already recognized correctly may be inefficient and
ineffective. This choice of loss function corresponds to the MMI-
derived Corrective Training approach described in [5] and else-
where.

3.3. MCE-based Quickprop optimization for SUMMIT

In this study, the mean vectors, variances, and Gaussian mixing
weights of SUMMIT’s landmark-based acoustic models were all
modified via MCE-based training. The MCE derivative functions
previously derived for fixed-frame rate models [4] were applied
directly to SUMMIT’s landmark models with little modification.
Each iteration of MCE-based Quickprop optimization [4] for SUM-
MIT was implemented in four steps:

1. for all training utterances, generation of total score and Viterbi
state sequence for the best incorrect string;

2. for all training utterances, generation of total score and Viterbi
state sequence for the correct string;

3. for all training utterances, calculation and accumulation of
MCE gradient;

4. given the new MCE gradient just computed, generation of a
new set of landmark models using the Quickprop algorithm.

This is a modular approach to MCE implementation. In the
first step, the existing recognizer is used in recognition mode, fol-
lowed by a filtering step to remove the correct string should it occur
in the recognition output (in order to guarantee possession of the
best incorrect string). In the second step, the recognizer is run in
forced alignment mode on the correct training data transcriptions;
language model scores for the correct transcriptions are generated
and incorporated into the total score. The third and fourth step
implement the MCE/Quickprop optimization process for that iter-
ation. Note that it is the first step that is the most computation-
ally intensive in implementing MCE-based training. However, the

I-938

approach adopted means that any software used to parallelize the
recognition and/or forced alignment process can be used in the ser-
vice of the MCE procedure.

As the Quickprop algorithm uses a simple numerical approx-
imation of the second-order derivative using the new gradient, the
gradient at the previous iteration, as well as the model update step
taken at the previous iteration, must also be available and updated
after each iteration [4].

4. EXPERIMENTS

4.1. Training

The baseline acoustic models used in our experiments were trained
using 140,769 utterances, amounting to 120 hours of audio. This
data only includes utterances that are completely within a 7767
word training vocabulary that was used during forced path tran-
scription of the data. A subset of 101,965 utterances from the
JUPITER system was used for MCE training. These utterances
only contained spoken words within the 1924 word vocabulary
used by the recognizer of the JUPITER system. The in-vocabulary
constraint on this data was necessary to ensure that a path through
the recognition network could be found for the correct answer. To
optimally tune the MCE training parameters, and to test conver-
gence of the training, a development set of 4894 held-out JUPITER
utterances was also available.

The baseline set of models (which we refer to as the “ML-75”
model set) was trained using standard ML Viterbi-style EM train-
ing. The number of mixtures per model was heuristically set to be
1 mixture component for every 50 training samples with a maxi-
mum of 75 mixture components per model. (Previous experiments
showed that using more than a maximum of 75 components per
model does not improve recognition performance after ML train-
ing). This produced a model set with 41,677 total Gaussian com-
ponents, for an average of 30 Gaussians per model over the full set
of 1388 different models. In order to evaluate the ability of MCE
training to produce accurate models using fewer parameters, a sec-
ond set of ML trained models was also produced. These models
(which we refer to as the “ML-15" models) were trained with at
most 15 Gaussian components per model, producing a model set
using 15,325 total components, for an average of 11 Gaussians per
model. Thus, the ML-15 model set has 63% fewer parameters than
the ML-75 model set.

The ML trained models are used to initialize the MCE proce-
dure. Using the standard sigmoid loss function, the MCE train-
ing algorithm was used to produce an “MCE-75" model set from
the ML-75 models, and an “MCE-15" model set from the ML-15
models. For each condition examined, MCE training was carried
out for 10-12 iterations. Word error rates on both the training and
development test sets were tracked; both show a rapid reduction in
error rate over the first few iterations, followed by more gradual re-
duction for subsequent iterations. Over-training was not observed.

4.2. Results

For our experiments, a held-out set of 2905 JUPITER utterances
was used for all evaluations. Within this set, 80% of the utterances
are spoken entirely with words contained in the 1924-word vocab-
ulary of the JUPITER recognizer. The remaining 20% of the data
contains at least one out-of-vocabulary (OOV) word or incomplete
partial word in each utterance. For our evaluations we have fo-
cused on the in-vocabulary portion of our evaluation set (which

20 :

- ML-75
o ML-15 ||
== MCE-75
ol @ MCE-15 ||
X
o 17F |
o]
[ass
5 16- |
wm
© 15+ |
2 | .
14} T, |
e, ‘e.,
o, bl)
| " ° “"-r-,., V B
13 (-} ‘m‘uomw‘.‘uoﬂ‘\'\‘w*"‘om"o
12 : ‘ ‘ ‘
0.8 1 1.2 1.4 1.6

Computation - Real Time Factor

Fig. 1. Comparison of ML and MCE training for two different
model set sizes.

represents 80% of the full evaluation set). We are specifically con-
cerned with the in-vocabulary portion of the evaluation data for
two reasons. First, this is the data that matches the same training
conditions in which the MCE training algorithm was used. Sec-
ond, this is the data which we are most concerned with recogniz-
ing as accurately as possible. Because errors caused specifically
by OOV words can not be recovered by improvements to the rec-
ognizer itself, our conversational systems rely on a combination of
OOV word detection, recognition confidence scoring, and error-
recovery dialogue techniques to recover from recognition errors
introduced by the presence of out-of-vocabulary words [11, 12].
We do report results on the full evaluation set (including the OOV
utterances) at the end of this section but all other experiments re-
ported in this section are on the in-vocabulary evaluation set.

Figure 1 shows the performance of two sets of ML trained
models and two sets of MCE trained models. The plot shows the
trade-off between accuracy and computation time as the pruning
threshold governing the maximum number of hypotheses in the
hypotheses stack is varied. It can be observed that the smaller ML-
15 model set performs significantly worse than the larger ML-75
model set, indicating that the additional parameters in ML-75 are
required to accurately model the probability density functions of
the individual classes. However, when using MCE training there
is little difference in performance between the MCE-15 model set
and the MCE-75 model set, with the smaller model set in fact per-
forming slightly better. This demonstrates the significant reduction
in parameters that MCE training enables.

Figure 2 shows the performance of models derived from the
three different MCE loss functions, using the smaller ML-15 model
set as the starting point. The models trained with the standard sig-
moid loss function show slightly better performance than those
from the linear loss function. This may indicate that an equal
weighting of the training tokens is not as effective as a loss func-
tion which assigns greater weight to the training tokens closest
to the classification decision boundary. The relatively small dif-
ference between these two models shows that the training is not
hyper-sensitive to the o gain parameter of the sigmoidal loss func-
tion. Both loss functions resulted in significantly better perfor-
mance than the chopped linear loss function used for pure correc-
tive training, clearly suggesting the benefit of increasing the sepa-

I-939

17 ‘ : :
=e= Sigmoid Loss, Rival Training
=®= Linear Loss, Rival Training
10 Linear Loss, Corrective Training
161 o
~ /o
% 15 . L / .]
o °° ““““
§ ““““ °
v
o 14 1
S)
=
13r 1
12 I I I I
0.8 1 1.2 1.4 1.6

Computation - Real Time Factor

Fig. 2. Comparison of three different MCE loss functions.

ration between correct and best incorrect strings even for correctly
recognized utterances.

Table 1 shows the performance of MCE-15 models versus the
baseline ML-75 models when examining both the in-vocabulary
and out-of-vocabulary (OOV) portions of the evaluation data. These
results were obtained using a pruning threshold that achieves real
time performance for each respective model set. It can be observed
that MCE training did not improve the performance of the recog-
nizer on the out-of-vocabulary portion of the data. In fact, a small
relative degradation of 1.7% occurs on the OOV data. This is not
unexpected, as the OOV utterances are mismatched with the MCE
training condition which only uses in-vocabulary utterances. Over-
all, MCE training produced a relative word error rate reduction of
8.9% over the full evaluation set. In future work we may inves-
tigate methods for incorporating the OOV data into the training
procedure as a means of increasing our MCE training set size and,
potentially, to improve the performance on data containing OOVs.

5. CONCLUSION

Optimization of SUMMIT acoustic models using the MCE criterion
and the simple Quickprop method yielded a 20% relative reduc-
tion in word error rate compared to the standard SUMMIT models
trained using ML, when tested on the matched condition of in-
vocabulary utterance recognition. This result was obtained with
an MCE-trained model that is 63% smaller in size than the stan-
dard ML SUMMIT models, at the point of real-time computation
for both models. Word error rate vs. computation time was exam-
ined for a number of different MCE-trained systems, all of which
performed significantly better than the ML baseline. The models
trained using the “rival training” approaches (using either the stan-
dard sigmoid MCE loss function or a linear loss function focusing
only on separation between the correct and best incorrect strings)
significantly outperformed the models trained with the “corrective
training” approach that performs training only for incorrectly clas-
sified utterances. The sigmoid function slightly outperformed the
linear loss function, suggesting that there is a benefit to focusing on
utterances that are near the boundary between correct and incorrect
classification. These results, obtained without the use of lattices
to form sets of competing strings, show the strong potential for
MCE-based discriminative training to improve speech recognition

I-940

Word Error Rate Relative Error
Test Set ML-75 | MCE-15 | Rate Reduction
In Vocab. 16.3% 13.1% 19.7%
Out of Vocab. | 54.6% 56.7% -1.7%
All Data 23.9% 21.8% 8.9%

Table 1. Word error rate comparison of ML trained models and
MCE trained models, evaluated over all utterances at a real-time
computation setting.

accuracy in the context of difficult spontaneous telephone-based
recognition tasks and large training sets.

6. REFERENCES

[1] W. Chou, C.-H. Lee, and B.-H. Juang, “Minimum error rate
training based on N-best string models,” in Proc. of ICASSP,
1993, vol. 2, pp. 652-655.

[2] E. McDermott, A. Biem, S. Tenpaku, and S. Katagiri, “Dis-
criminative training for large vocabulary telephone-based
name recognition,” in Proc. of ICASSP, 2000, vol. 6, pp.
3739-3742.

[3] P.C. Woodland and D. Povey, “Large scale discriminative
training of hidden Markov models for speech recognition,”
Computer Speech and Language, vol. 16, pp. 25-47, 2002.

[4] E. McDermott, Discriminative Training for Speech Recog-
nition, Ph.D. thesis, Waseda University, School of Engineer-
ing, March 1997.

[5] R. Schluter, W. Macherey, B. Muller, and H. Ney, “Com-
parison of discriminative training criteria and optimization
methods for speech recognition,” Speech Communication,
vol. 34, pp. 287-310, 2001.

[6] H. Jiang, O. Siohan, F.-K. Soong, and C-.H-. Lee, “A dy-
namic in-search discriminative training approach for large
vocabulary speech recognition,” in Proc. ICASSP 2002,
2002, vol. 1, pp. 113-116.

[7] V. Zue et al., “JUPITER: A telephone-based conversational
interface for weather information,” IEEE Trans. on Speech
and Audio Processing, vol. 8, no. 1, pp. 85-96, January 2000.

[8] J. Glass, “A probabilistic framework for segment-based
speech recognition,” Computer Speech and Language, vol.
17, no. 2-3, pp. 137-152, April-July 2003.

[9] S. E. Fahlman, “An empirical study of learning speed in
back-propagation networks,” Tech. Rep., Carnegie Mellon
University, 1988.

[10] C. Meyer and G. Rose, “Improved noise robustness by cor-
rective and rival training,” in Proc. ICASSP 2001, 2001,
vol. 1, pp. 293-296.

[11] T. Hazen, S. Seneff, and J. Polifroni, “Recognition con-
fidence scoring for use in speech understanding systems,”
Computer Speech and Language, vol. 16, no. 1, pp. 49-67,
January 2002.

[12] I. Bazzi and J. Glass, “A multi-class approach for modelling
out-of-vocabulary words,” in Proc. of ICSLP, Denver, Col-
orado, September 2002, pp. 1613-1616.

	footer1:

