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ABSTRACT
In this paper we investigate a discriminative approach to feature
weighting for topic identification using minimum classification error
(MCE) training. Our approach learns feature weights by optimizing
an objective loss function directly related to the classification error
rate of the topic identification system. Topic identification experi-
ments are performed on spoken conversations from the Fisher cor-
pus. Features drawn from both word and phone lattices generated
via automatic speech recognition are investigated. Under various
different conditions, our new feature weighting scheme reduces our
classification error rate between 9% and 23% relative to our baseline
naive Bayes system using feature selection.

Index Terms— Audio document processing, topic identifica-
tion, topic spotting.

1. INTRODUCTION

In this paper we investigate a discriminative approach to feature
weighting for topic identification (or topic ID) using minimum clas-
sification error (MCE) training. This work extends our previous
work in topic ID of audio files where we explored the use of fea-
tures extracted from speech recognition hypothesis lattices created
from both word-based and phone-based recognizers [1]. The pri-
mary goal of our previous work was to examine the application of ex-
isting approaches to topic ID to audio files of spoken human-human
conversations. A particular focus of our work is topic ID using only
the output of phonetic recognition systems (and potentially phonetic
recognition systems from mismatched languages). An important as-
pect of this type of topic ID is the automatic discovery of phonetic
features (e.g., phonetic n-gram sequences) which are relevant for the
prediction of the topic.

Past research has largely viewed the topic ID problem as con-
sisting of two primary stages: feature selection and classification. In
feature selection, the goal is to reduce the large space of potential
features to a smaller set which possesses the most relevant or dis-
criminative features for topic ID. For example, in word-based sys-
tems this typically involves discovery of the content words which
are most likely to be used during the discussion of a particular topic.
Previous feature selection techniques have utilized statistical mea-
sures which capture correlations between features and topics, e.g.
the mutual information between features and topics, the maximum a
posteriori probability of topics given features, or χ2 statistics [1, 2].

Given a set of features, the second stage of topic ID is classifica-
tion. The use of naive Bayes classifiers is popular throughout much
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of the topic ID research. Because these classifiers use generative
models, their training can be performed efficiently, their parameters
can be learned and adapted in an on-line fashion, and their accuracy
is often sufficient for many tasks [3, 4]. There are two obvious poten-
tial drawbacks to the standard naive Bayes approach. First, because
naive Bayes systems are based on generative models, their parame-
ters are generally estimated statistically instead of being trained in
a discriminative fashion. Second, the processes of feature selection
and model training are generally performed independently instead of
jointly.

In this work, we attempt to address the shortcomings of the tradi-
tional naive Bayes classifier by applying a discriminative procedure
commonly called minimum classification error (MCE) training [5, 6]
to the topic ID problem. In this paper, we describe the application of
MCE training to feature weights in a naive Bayes topic ID system.
We will present experimental evidence detailing the usefulness of
our technique when applied to data from the Fisher Corpus of con-
versational human-human telephone speech. Results based on both
word-based and phone-based speech recognition of the audio data
are provided.

2. EXPERIMENTAL TASK DESCRIPTION

2.1. Corpus

For the data set for our experiments we have used the English Phase
1 portion of the Fisher Corpus [7, 8]. This corpus consists of 5851
recorded telephone conversations. During data collection, two peo-
ple were connected over the telephone network and given instruc-
tions to discuss a specific topic for 10 minutes. Data was collected
from a set of 40 different topics. The topics were varied and included
relatively distinct topics (e.g. “Movies”, “Hobbies”, “Education”,
etc.) as well as topics covering similar subject areas (e.g. “Issues
in Middle East”, “Arms Inspections in Iraq”, “Foreign Relations”).
Fixed prompts designed to elicit discussion on the topics were played
to the participants at the start of each call. For our experiments the
corpus was subdivided into four subsets:
1. Recognizer training set (3104 calls; 553 hours)
2. Topic ID training set (1375 calls 244 hours)
3. Topic ID development test set (686 calls; 112 hrs)
4. Topic ID evaluation test set (686 calls; 114 hrs)

2.2. Speech Recognition Systems

2.2.1. Overview

In our topic ID experiments, the first stage of processing is to ap-
ply automatic speech recognition (ASR) to each segment of audio in
each audio document. The ASR system is used to generate a net-
work, or lattice, of speech recognition hypotheses for each audio
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segment. While topic ID systems generally use word-based speech
recognition [9, 10], for some applications knowledge of the impor-
tant lexical keywords for a task may be incomplete or entirely un-
available. Under these situations, it is possible to instead perform
topic ID based on phonetic strings (or phonetic lattices) while re-
taining the same topic ID framework [11, 12].

In this work we explore the use of both word-based and phone-
based speech recognition. Within each lattice we can compute the
posterior probability of any hypothesized word (or phone sequence),
and an expected count for each word can be computed by summing
the posterior scores over all instances of that word over all lattices
from both sides of the conversation within each call.

2.2.2. Word-Based Speech Recognition

For word-based ASR we have used the MIT SUMMIT speech recog-
nition system [13]. The system’s acoustic models were trained using
a standard maximum-likelihood approach on the full 553 hour recog-
nition training set specified above without any form of speaker nor-
malization or adaptation. For language modeling, the system uses a
basic trigram language model with a 31.5K word vocabulary trained
using the transcripts of the recognizer training set. Because this rec-
ognizer applies very basic modeling techniques with no adaptation,
the system performs recognition faster than real time (on a current
workstation) but word error rates can be high (typically over 40%).

2.2.3. Phone-Based Speech Recognition

For phonetic recognition we use a phonetic ASR system developed
at the Brno University of Technology (BUT) [14]. Two versions of
the system were trained, one which uses an English phone set and
one which uses a Hungarian phone set. The English recognizer was
trained using 10 hours from the Switchboard Cellular Phase 1 con-
versational telephone speech corpus [8]. The Hungarian recognizer
was trained using the Hungarian portion of the SPEECH-DAT cor-
pus [15]. This corpus contains read speech collected over the Hun-
garian telephone network.

3. PROBABILISTIC TOPIC IDENTIFICATION

3.1. The Naive Bayes Formulation

In a probabilistic approach to topic identification, the goal is to de-
termine the likelihood of a document being of topic t (from a set of
topics T ) given the document’s string of words W . In audio-based
topic ID the true string of spoken words is not known and must be
determined automatically. In this case the variable W represents a
set of words (or word-like features such as phonetic n-grams) that
are extracted from an audio document via ASR.

For topic ID scoring we use a hypothesis testing likelihood ra-
tio approach. For closed-set topic ID, an audio document (as repre-
sented byW ) will be determined to belong to topic ti if the following
expression holds:

∀j �= i
P (W |ti)

P (W |t̄i)
>

P (W |tj)

P (W |t̄j)
(1)

Here P (W |t) represents the likelihood that W is produced given
the topic is t, while P (W |t̄) represents the likelihood thatW is pro-
duced given the topic is not t. The same scoring approach could also
be used for open set topic detection by comparing this likelihood
ratio against a pre-determined score threshold.

When modeling P (W |t), if we assume W is a word string, we
can expand it into its underlying sequence ofN words, w1, . . . , wN .
In the naive Bayes approach to the problem, statistical independence
is assumed between each of the individual words in W. Under this
assumption, the likelihood ofW given t is approximated as:

P (W |t) ≈
NY

i=1

P (wi|t) (2)

The expression above assumes a sequence of N individual words.
When using expected counts from lattices, this expression can alter-
natively be represented with a counting interpretation as follows:

P (W |t) ≈
Y

∀w∈V

P (w|t)Cw|W (3)

In this interpretation, the occurrence count Cw|W withinW of each
word w in the system’s vocabulary, V , is used to exponentially scale
the score contribution of that word. Under this interpretation non-
integer values of the counts Cw|W are allowed, thus providing the
system the ability to incorporate expected count estimates from lat-
tices generated by a recognition system.

The likelihood function P (W |t̄) is generated as follows:

P (W |t̄) =
1

NT − 1

X

∀ti �=t

P (W |ti) (4)

Here NT is the total number of known topics. This expression as-
sumes a uniform prior distribution over all topics.

In practice the score for topic t given words W , expressed as
F(t|W ), is implemented in the log domain as the following sum:

F(t|W ) =
X

∀w∈V

Cw|W log
P (w|t)

P (w|t̄)
(5)

This naive Bayes approach is utilized as our baseline system.

3.2. Parameter Estimation

The likelihood function P (w|t) in our system is estimated from
training materials using maximum a posteriori probability (MAP)
estimation with Laplace smoothing as follows:

P (w|t) =
Nw|t + NV P (w)

NW |t + NV

(6)

In this expression,NV is the total number of words in the vocabulary
used by the system, Nw|t is the number of times word w occurs in
training documents of topic t, andNW |t is the total number of words
in the training documents of topic t. The term P (w) represents the
prior likelihood of word w occurring independent of the topic. This
likelihood function is also determined using MAP estimation with
Laplace smoothing as follows:

P (w) =
Nw + 1

NW + NV

(7)

In this expression, Nw is the number of occurrences of the specific
word w in the training corpus and NW is the total count of all words
from the NV word vocabulary in the training corpus.
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3.3. Feature Selection

As discussed earlier, it is typically the case that a small number of
topic specific features contribute heavily to the determination of the
topic (e.g., content words), while many other features (e.g., func-
tion words) contribute nothing to the decision. For this reason, topic
identification systems typically employ a feature selection process in
which only a subset of the possible features are actually used.

In our previous work we examined multiple measures for feature
selection including the information gain measure and the χ2 statis-
tic. We had the most success using the maximum topic posterior
probability measure [1]. In this approach, we select the top N words
per topic which maximize the posterior probability of the topic, i.e.
the words which maximize the value of P (t|w), where P (t|w) is
determined using MAP estimation as follows:

P (t|w) =
Nw|t + 1

Nw + NT

(8)

We use this feature selection method in the experiments in this paper.

3.4. MCE-Based Feature Weighting

Feature selection can be viewed as a specific case of feature weight-
ing, where each feature receives either a weight of one or a weight
of zero. In the more general case, we can allow the weights of each
feature to be of any value (or at least any positive value). To express
this, let us first use the following simplifying notational substitution:

f(t|w) = log
P (w|t)

P (w|t̄)
(9)

The basic naive Bayes expression in Equation 5 can now be general-
ized to include variable valued features weights as follows:

F(t|W ) =
X

∀w∈V

λwCw|W f(t|w) (10)

Here, λw is the feature weight associated with word w.
Our goal is to learn values for the collection of feature weights

which minimize the topic ID error rate. We utilize the discrimina-
tive minimize classification error (MCE) training approach to this
problem [5, 6]. In this approach, a misclassification measure is first
defined as:

M(W ) = F(tI |W )− F(tC |W ) (11)
Here, tC represents the correct topic for the audio document and tI

represents the best scoring incorrect topic. If the document is cor-
rectly classified the misclassification measureM(W ) will be nega-
tive, while incorrect classification will result in a positive value.

The misclassification measure is then mapped by a sigmoid loss
function onto the [0, 1] continuum as follows:

�(W ) =
1

1 + e−βM(W )
(12)

Here, β represents the slope of the sigmoid function. The loss func-
tion will be close to zero for documents with large negative values
ofM(W ) and close to one for documents with large positive values
ofM(W ). The average value of the loss function over all docu-
ments approximates the actual topic ID error rate (becoming exact
as β →∞). As such, minimizing the average value of the loss func-
tion should also minimize the classification error rate. Because the
loss function is a smooth monotonic function overM(W ), it can
be differentiated with respect to the individual features weights and
optimized via an iterative gradient descent algorithm.

The partial derivative of the loss function �(W ) with respect to
a specific feature weight λw is:

∂�(W )

∂λw

= β�(W ) (1− �(W )) (f(tI |w)− f(tC |w)) Cw|W (13)

The partial derivatives over all W in the training data can be aver-
aged and an update of the feature weights can be expressed as:

λ
′
w = λw − ε

1

ND

X

∀W

∂�(W )

∂λw

(14)

Here ND is the total number of training documents and ε is a learn-
ing rate parameter used during the iterative MCE training. In our
experiments we do not allow λw to go negative, but we do not con-
strain or normalize the values of each λw in any other way.

Ideally, when computing the partial derivatives of �(W ), the
log likelihood ratios used in F(t|W ) should be estimated from data
which excludes W . This can be accomplished via a jack-knifing
training process over the training data. In our experiments, the topic
ID training data was subdivided into ten partitions, and for each
training document W the functions f(t|w) were estimated from the
nine partitions of the training data that did not include W .

3.5. Relationship to Previous Work

The MCE approach in this paper is similar in nature to prior work in
discriminative training for automatic call routing tasks [16, 17]. The
basic naive Bayes formulation can be mapped into the vector space
call routing formulation presented by Kuo and Lee [16]. Specifi-
cally, the log likelihood ratios f(w|t) can be viewed as entries in
an NT by NV matrix which is referred to as a routing matrix R.
Viewed in matrix form, a vector of topic scores �s is generated from
the product of the routing matrixR and the vector of features counts
�c as follows:

�s = R�c (15)
In their work, discriminative training of all terms of the routing ma-
trix R is performed. In our work, the set of feature weights can be
viewed as a diagonal NV by NV matrix Λ whose diagonal entries
are the feature weights λw. When adding Λ into the formulation,
the topic ID vector is produced from this expression:

�s = RΛ�c (16)

Viewed in this matrix formulation, our MCE approach trains the di-
agonal entries inΛ instead of the full matrixR. BecauseΛ contains
far fewer trainable parameters than R, it is less susceptible to over-
fitting by the discriminative training process.

4. EXPERIMENTAL RESULTS

For our experiments, we report results on 40-topic closed-set topic
ID (though our hypothesis testing formulation is equally valid for
topic detection tasks as well). Figure 1 demonstrates the effect of
training the feature weights with up to 125,000 MCE iterations for
our word-based system. Results are shown for both the topic ID error
rate and the average value of the loss function for both the training
set and the held-out development test set. The experiment used all
30,373 words from recognizer’s vocabulary observed in the lattices
of the topic ID training set. The feature weights were initialized to
1.0 for all words. The training used values of 0.1 for β and 1.0 for ε.

In Figure 1, the topic ID error rate on the training set begins
at 14.9% (with an average loss function value of 0.167) and, after
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Fig. 1. Topic ID error rates and average loss function values for
MCE feature weight learning using a 30373 word vocabulary from
the output of our word-based ASR system.

Experimental Conditions Topic Error Rate(%)
Recognition Type Features Pre-MCE Post-MCE
English Words 30373 Words 16.9 7.4
English Words 3155 Words 9.6 7.9
English Phones 13899 3-grams 30.0 19.2
English Phones 3363 3-grams 22.2 21.0
Hungarian Phones 14413 3-grams 65.0 48.5
Hungarian Phones 3494 3-grams 53.0 47.7

Table 1. Closed-set topic ID error rate of the naive Bayes classifier
before and after MCE training of the feature weights under various
conditions.

125,000 iterations, is reduced to 0.9% (with an average loss function
value of .012). On the held out development set, the error rate begins
at 17.2% (with an average loss function value of 0.196) and, after
125,000 iterations, is reduced to 8.3% (with an average loss func-
tion value of 0.088). Despite the large number of iterations, the loss
function on the held-out development data is still decreasing which
indicates the training is not over-fitting the training data. A similar
trend was observed in our other experiments as well.

Table 1 shows the topic ID performance on our evaluation test
set using the recognition outputs from the English word recognition
system, the English phonetic recognition system, and the Hungarian
phonetic recognition system. In these experiments the final feature
weights were determined by selecting the set of weights which min-
imized the average of the loss function on the development test set.
In each case, the table shows the results before and after the MCE
feature weight training. Results are also shown for different levels
of initial feature selection.

In the case of word recognition, we compare the MCE train-
ing using the full recognition vocabulary against using only 3155
preselected word features. Without MCE training, feature selection
provides an obvious benefit to the naive Bayes system. However,
when using MCE training of the feature weights, better performance
was achieved when no preselection of the feature set was used. A
similar trend was observed using the English phonetic system where
a larger set of preselected trigrams outperformed a smaller set after
MCE training was applied. For the Hungarian phonetic system, the
larger trigram set did not perform as well as the smaller set, but the
benefit of preselecting a reduced set of trigram features was dramat-
ically reduced by the MCE training.

5. SUMMARY

In this paper we have presented a discriminative MCE-based ap-
proach to feature weight training for topic ID. We have applied this
approach to topic ID for human-human telephones conversations us-
ing both word-based and phone-based recognition. When tested un-
der various different constraints, relative reductions in topic ID error
rates between 9% and 23% were achieved over our baseline system.
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