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ABSTRACT

This paper describes our experiences with developing a real-
time telephone-based speech recognizer as part of a conversational
system in the weather information domain. This system has been
used to collect spontaneous speech data which has proven to be
extremely valuable for research in a number of different areas. Af-
ter describing the corpus we have collected, we describe the de-
velopment of the recognizer vocabulary, pronunciations, language
and acoustic models for this system, the new weighted finite-state
transducer–based lexical access component, and report on the cur-
rent performance of the recognizer under several different condi-
tions. We also analyze recognition latency to verify that the system
performs in real time.

1. INTRODUCTION

Over the past year and a half, we have developed a telephone-
based, weather information system calledJUPITER [14], which
is available via a toll-free number for users to query a relational
database of current weather conditions using natural, conversa-
tional speech.1 Using information obtained from several different
internet sites,JUPITERcan provide weather forecasts for approx-
imately 500 cities around the world for three to five days in ad-
vance, and can answer questions about a wide range of weather
properties such temperature, wind speed, humidity, precipitation,
sunrise etc., as well as weather advisory information.

The JUPITER system makes use of ourGALAXY conversa-
tional system architecture which incorporates speech recognition,
language understanding, discourse and dialog modelling, and lan-
guage generation [12]. JUPITER has been particularly useful for
our research on displayless interaction, information on demand,
and robust spontaneous speech recognition and understanding.
Since we attempt to understand all queries (i.e., not spot words),
and do not constrain the user at any point in the dialog, it is crucial
to have a high accuracy speech recognizer that covers, as much as
possible, the full range of user queries. This paper describes our
work in developing a robust recognizer in this domain.

When the system was first deployed in late April 1997, the
error rates of our recognizer initially more than tripled our labora-
tory baselines, due in part to the mismatch between the laboratory
training and actual testing conditions. The real data had a much
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1In the United States and Canada please call 888 573-8255 or visit
http://www.sls.lcs.mit.edu/jupiter.

larger variation in environment and channel conditions (often with
very poor signal conditions), as well as a much wider range of
speakers (we had no children in our training data for example, and
had mainly trained on native speakers without regional accents),
speaking style (spontaneous speech vs. read speech), language
(both for within-domain queries, and out-of-domain queries), and
other artifacts such as non-speech sounds and clipped speech due
to the user interface (we do not currently allow for barge-in).

As we have collected more data we have been able to better
match the users’ vocabulary, and build more robust acoustic and
language models. The result is that we have steadily reduced word
and sentence error rates, to the point of cutting the initial error rates
by over two thirds. In this paper, we describe the methods we have
used to develop this recognizer and report on the lessons we have
learned in moving from a laboratory environment to dealing with
real data collected from real users. Our experience has shown us
clearly that while there is no data like more data, there is also no
data likereal data!

2. CORPUS

Several different methods have been employed to gather data for
the JUPITERweather information system. Beginning in February
and March 1997, we created an initial corpus of approximately
3,500 read utterances collected from a variety of local telephone
handsets and recording environments, augmented with over 1,000
utterances collected in a wizard environment [14]. These data were
used to create an initial version of a conversational system which
users could call via a toll-free number and ask for weather informa-
tion. The benefit of this setup is that it provides us with a continu-
ous source of data from users interested in obtaining information.
Currently, we average over 70 calls per day, and have recorded
and orthographically transcribed over 60,000 utterances from over
11,000 callers, all without widely advertising the availability of the
system. On average, each call contains 5.6 utterances, and each
utterance has an average of 5.2 words. The data are continually
orthographically transcribed (seeded with the system hypothesis),
and marked for obvious non-speech sounds, spontaneous speech
artifacts, and speaker type (male, female, child) [4].

3. VOCABULARY

The vocabulary used by theJUPITERsystem has evolved as peri-
odic analyses are made of the growing corpus. The current vocab-
ulary contains 1893 words, including 638 cities and 166 countries.
Nearly half of the vocabulary contains geography-related words.



can you when is nevermind
do you what about clearup
excuseme what are heatwave
give me what will pollen count
going to how about warm up
you are i would wind chill

Table 1: Examples of multi-word units in theJUPITERdomain.

The design of the geography vocabulary was based on the
cities for which we were able to provide weather information, as
well as commonly asked cities. Other words were incorporated
based on frequency of usage and whether or not the word could
be used in a query which the natural language component could
understand. The 1893 words had an out-of-vocabulary (OOV) rate
of 2.0% on a 2506 utterance test set.

Since the recognizer makes use of a bigram grammar in the
forward Viterbi pass, several multi-word units were incorporated
into the vocabulary to provide for greater long-distance constraint
and, in some cases, to allow for specific pronunciation modelling.
This would allow for explicit modelling of word sequences such as
“going to” or “give me” to be pronounced as “gonna” or “gimme”
respectively. Common contractions such as “what’s” were rep-
resented as multi-word units (e.g., “whatis”) to reduce language
model complexity, and because these words were often a source
of transcription error anyway. Additional multi-word candidates
were identified using a mutual information criterion which looked
for word sequences which were likely to occur together. Table 1
shows examples of multi-word units in the current vocabulary.

4. PHONOLOGICAL MODELING

In the currentJUPITERrecognizer, words are initially represented
as sequences of phonetic units augmented with stress and syllabifi-
cation information. The initial baseform pronunciations are drawn
from the LDC PRONLEX dictionary. The baseforms are repre-
sented using 41 different phonetic units with three possible levels
of stress for each vowel. The baseforms have also been automat-
ically syllabified using a basic set of syllabification rules. After
drawing the pronunciations for theJUPITERvocabulary from the
PRONLEX dictionary, all baseform pronunciations were then veri-
fied by hand. Vocabulary words missing from the dictionary were
hand coded. Alternate pronunciations are explicitly provided for
some words. In addition to the standard pronunciations for sin-
gle words provided byPRONLEX, the baseform file was also aug-
mented with common multi-word sequences which are often re-
duced, such as “gonna”, “wanna”, etc.

A series of phonological rules were applied to the phonetic
baseforms to expand each word into a graph of alternate pro-
nunciations. These rules account for many different phonological
phenomena such as place assimilation, gemination, epenthetic si-
lence insertion, alveolar stop flapping, and schwa deletion. These
phonological rules utilize stress, syllabification, and phonetic con-
text information when proposing alternate pronunciations. We
have made extensive modification to these rules, based on our ex-
amination of theJUPITERdata.

The final pronunciation network does not represent the words
using the original 41 phonetic units utilized inPRONLEX. In-
stead, a set of 105 different units were used which include sub-

phonetic, supra-phonetic and non-phonetic units in addition to
standard phonetic units. For example, the recognizer treats most
within-syllable vowel-semivowel sequences and some semivowel-
vowel sequences as single units in order to better model the highly
correlated dynamic characteristics of these sequences. Thus, the
phonetic sequence [ow] followed by [r] is represented as a single
segmental unit [or]. The recognizer also incorporates various non-
phonetic units to account for non-linguistic speech transitions and
speech artifacts, silences, and non-speech noise. The 105 units
also retain two levels of stress for each vowel unit. An example
pronunciation graph for the word “reports” is shown in Figure 1.

pclr p or+ tcl t sax
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Figure 1: Pronunciation graph for the word “reports.”

The arcs in the pronunciation graph can further be augmented
with transition weights which give preference to more likely pro-
nunciations and penalize less likely pronunciations. ForJUPITER

these weights were set using an error correcting algorithm on de-
velopment data [13]. This algorithm adjusted the arc weights in an
iterative fashion in order to reduce the error rate of the recognizer
on development data.

5. LANGUAGE MODELLING

A class bigram language model was used in the forward Viterbi
search, while a class trigram model was used in the backwards
A∗ search to produce the 10-best outputs for the natural language
component. A set of nearly 200 classes were used to improve the
robustness of the bigram. The majority of the classes involved
grouping cities by state or country (foreign), in order to encourage
agreement between city and state. In cases where a city occurred
in multiple states or countries, separate entries were added to the
lexicon (e.g., Springfield, Illinois vs. Springfield, Massachusetts).
Artificial sentences were created in order to provide complete cov-
erage of all of the cities in the vocabulary. Other classes were
created semi-automatically using a relative entropy metric to find
words which shared similar conditional probability profiles.

Since filled pauses (e.g., uh, um) occurred both frequently and
predictably (e.g., start of sentence), they were incorporated explic-
itly into the vocabulary, and modelled by the bigram and trigram.
Original orthographies were modified for training and testing pur-
poses by removing non-speech and clipped word markers. When
trained on a 26,000 utterance set, and tested on a 2506 utterance
set the word-class bigram and trigram had perplexities of 18.4 and
17.1, respectively. These are slightly lower than the respective
word bigram and trigram perplexities of 19.5 and 18.8. Note that
the class bigram also improved the speed of the recognizer as it
had 22% fewer connections to consider during the search.

6. ACOUSTIC MODELLING

The JUPITER system makes use of the segment-basedSUMMIT

recognizer which can utilize acoustic models based on segments
or landmarks [3]. The nature of the acoustic models has varied
over the course of system development, depending in large part on



the amount of available training data. The currentJUPITERconfig-
uration makes use of context-dependent landmark-based diphone
models which require the training of bothtransition and internal
diphone models. Internal diphones model the characteristics of
landmarks occurring within the boundaries of a hypothesized pho-
netic segment, while transition diphones model the characteristics
of landmarks occurring at the boundary of two hypothesized pho-
netic segments.

Given the 105 phonetic units used in theJUPITER system,
and the constraints of the full pronunciation graph, there were
4,822 possible diphone transition models and 105 internal mod-
els needed. We have explored two different methods of modelling
transitions. The first method trained models for frequently oc-
curring transitions, and used one “catch-all” model for remaining
transitions. This method worked well, and was simple to train. We
currently use a reduced set of 782 equivalence classes which were
determined manually to insure that an adequate amount of training
existed for each class and that the elements of each class exhibited
contextual similarity. This method performs slightly better than
the “catch-all” method.

For each landmark, 14 MFCC averages were computed for 8
different regions surrounding the landmark, creating 112 differ-
ent features. This initial feature set was then reduced from 112
features to 50 features using principal component analysis. The
acoustic models for each class modeled the 50 dimensional feature
vectors using diagonal Gaussian mixture models. Each mixture
model consisted of a variable number of mixture components, de-
pendent on the number of available training vectors for that class,
with a maximum of 50 mixture components.

The diphone models were trained on a subset of data which
excludes utterances with out-of-vocabulary words, clipped speech,
cross-talk, and various types of noise. The training data also ex-
cludes all speech from speakers deemed to have a strong foreign
accent. The full set of within-domain training utterances used for
acoustic modelling consisted of 20,064 utterances, which was 76%
of the available data at the time.

7. LEXICAL ACCESS

We have recently re-implemented the lexical access search compo-
nents ofSUMMIT to use weighted finite-state transducers with the
goals of increasing recognition speed while allowing more flexibil-
ity in the types of constraints. We view recognition as finding the
best path(s) through the compositionA ◦ U , whereA represents
the scored (on demand) acoustic segment graph andU the com-
plete model of an utterance from acoustic model labels through the
language model. We computeU = C ◦P ◦L ◦G, whereC maps
context-independent labels on its right to context-dependent (di-
phone in the case ofJUPITER) labels on its left,P applies phono-
logical rules,L is the lexicon mapping pronunciations to words,
andG is the language model. Any of these transductions can be
weighted. A big advantage of this formulation is that the search
components operate on asingle transducerU ; the details of its
composition are not a concern to the search. As such,U can be
precomputed and optimized in various ways or it can be computed
on demand as needed. This use of a cascade of weighted finite-
state transducers is heavily inspired by work at AT&T [8, 10].

We have achieved our best recognition speed by precomputing
U = C ◦ minimize(determinize((P ◦ L) ◦ G)) for G a word-
class bigram. This yields a deterministic (modulo homophones),
minimal transducer that incorporates all contextual, phonological,

Test Set # Utts WER SER
Standard 2506 24.4 43.0

In domain 1806 13.1 28.6
Male (In domain) 1290 9.8 24.1
Female (In domain) 274 13.6 31.8
Child (In domain) 242 26.3 48.8

Out of domain 700 61.8 80.1
Non-native (In domain) 3225 29.9 60.1
Expert (In domain) 354 2.3 7.1

Table 2: CurrentJUPITERperformance on various test sets.

lexical, and language model constraints [8]. ForJUPITER, U has
89,452 states and 699,172 arcs. We apply a word-class trigram and
computeN-best in a second pass utilizing anA∗ search.

For greater system flexibility, we can computeU = (C ◦
minimize(determinize(P ◦ L))) ◦G, performing the composition
with G on the fly during the search. For example, the use of a
dynamic language model that changes during a dialogue would
require this approach. However, with on-the-fly composition we
have found that the system runs about 40% slower than for the
fully composed and optimizedU .

8. EXPERIMENTS

Over the course of the past year theJUPITERrecognizer has had
a steady improvement in its performance; this has been a result of
both an increase in training data and improvements to the system’s
modeling techniques. The test data consists of sets of calls ran-
domly selected over our data collection period. The current test set
consists of 2506 utterances, of which 1806 were considered to be
“in domain” as they were covered by the vocabulary, were free of
partial words, crosstalk, etc. Of these sentences, 1290 were from
male speakers, 274 from females, and 242 from children. Table 2
shows the performance of theJUPITERrecognizer on this test set
using word error rate (WER) and sentence error rate (SER) as the
evaluation metrics.2 As can be seen in the table, the system tends
to perform reasonably when it encounters queries spoken by adults
without a strong accent, that are covered by the domain, and that
do not contain spontaneous, or non-speech artifacts. Females had
50% more word errors than males, while children had 300% more
word errors than males. This is probably a reflection of the lack
of training material for females and children. The system has con-
siderable trouble (64.5% WER) with “out of domain” utterances
containing out-of-vocabulary words, partial words, crosstalk, or
other disrupting effects. This rate is artificially high, however, due
to the nature of the alignment procedure with reference orthogra-
phies (e.g., partial wordsalwayscause an error for example, due
to the nature of our mark-up scheme).

Table 2 also shows the performance on speakers judged to
have strong foreign accents, who were not included in the standard
test set. These data consisted of 3,225 in-domain utterances, and
had an error rate more than double the baseline in-domain error
rate. Finally, we also evaluated the recognizer on “expert” users
(i.e., mainly staff in our group) who have considerable experience
using theJUPITERsystem, but were not used for training. The sys-
tem had extremely small error rates for these users. This behavior

2These error rates are slightly different from those reported in [4]. The
reason is that we have increased pruning to achieve real-time performance.
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Figure 2: Histogram ofJUPITERrecognition latency.

is typical of users who become familiar with the system capabili-
ties (a case of users adapting to the computer!).

Since JUPITER is a conversational system, rapid system re-
sponse is critical. We consider a recognizer to run in real time if its
latency (time after utterance is complete) is independent of utter-
ance duration. An initial analysis of latency showed that while the
latency was generally less than 1s, the worst cases took substan-
tially longer. Not surprisingly, most of the worst cases were due to
out-of-domain utterances containing out-of-vocabulary words. To
combat the worst-case latency, we have added count-based beam
pruning to limit the number of active nodes kept at any given point
in time. Previously, we limited the beam solely with a score-
based pruning threshold. With aggressive count-based pruning on
a 300MHz Pentium II, we find a correlation coefficient between
latency and utterance length of only−0.08, meaning that they are
independent and we are achieving real-time performance. Figure 2
shows a histogram of the latency: 85% of the time the latency is
less than 1s, and 99% of the time it is less than 2s.

9. DISCUSSION & FUTURE WORK

The speech recognizer described in this paper is only one com-
ponent of the fullJUPITER conversational system [11, 14]. The
current interface between the recognizer and our language under-
standing component is via anN-best interface. Although we have
reported only first-choice error rates in this paper, the understand-
ing error rates are typically better, since many word confusions do
not impact understanding.

There remain a considerable number of ongoing areas of re-
search we are presently pursuing, which should help improve per-
formance. Recent developments in probabilistic segmentation [7],
near-miss modelling [1], heterogeneous classifiers [5], and tighter
integration of linguistic knowledge [2], have shown improvements
in our JUPITERbaseline, although they have not yet been propa-
gated to the data collection system.

The system to date has used a pooled speaker model for all
acoustic modelling. It should be possible to achieve gains through
speaker normalization, short-term speaker adaptation, and better
adaptation to the channel conditions of individual phone calls.
Adaptation may also be useful to help improve performance on
non-native speakers. Since a phone call could have multiple speak-

ers, we are exploring within-utterance consistency techniques that
have given us gains elsewhere [6].

The data collection efforts have produced a gold-mine of spon-
taneous speech effects which are often a source of both recogni-
tion and understanding errors. For example, partial words typi-
cally cause problems for the speech recognizer. Another source
of recognition errors is out-of-vocabulary words, which are often
cities not covered in the vocabulary. These issues have caused us
to begin work in confidence scoring, which was an area we had
not previously addressed [9]. Finally, we plan to explore the use
of dynamic vocabulary and language models, which may help to
alleviate some of the unknown city problems.
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