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ABSTRACT
Most face and speaker identification techniques are tested on
data collected in controlled environments using high qual-
ity cameras and microphones. However, the use of these
technologies in variable environments and with the help of
the inexpensive sound and image capture hardware present
in mobile devices presents an additional challenge. In this
study, we investigate the application of existing face and
speaker identification techniques to a person identification
task on a handheld device. These techniques have proven
to perform accurately on tightly constrained experiments
where the lighting conditions, visual backgrounds, and audio
environments are fixed and specifically adjusted for optimal
data quality. When these techniques are applied on mobile
devices where the visual and audio conditions are highly
variable, degradations in performance can be expected. Un-
der these circumstances, the combination of multiple bio-
metric modalities can improve the robustness and accuracy
of the person identification task. In this paper, we present
our approach for combining face and speaker identification
technologies and experimentally demonstrate a fused multi-
biometric system which achieves a 50% reduction in equal
error rate over the better of the two independent systems.
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1. INTRODUCTION
In recent years, the availability of small laptop and hand-

held computers has allowed computation to become more
mobile and pervasive. Even formerly specialized devices
such as cellular telephones now offer a range of capabili-
ties beyond simple voice transmission, such as the ability to
take, transmit and display digital images. As these devices
become more ubiquitous and their range of applications in-
creases, the need for security also increases. To prevent im-
postors from gaining access to sensitive information stored
either locally on a device or on the device’s network, secu-
rity measures should be incorporated into these devices. In
this paper we examine the integration of two biometric tech-
niques, voice and face identification, into handheld devices.

Handheld devices offer two distinct challenges for stan-
dard face and voice identification approaches. First, their
mobility ensures that the environmental conditions the de-
vices will experience will be highly variable. Specifically, the
audio captured by these devices could contain highly vari-
able background noises that yield potentially low signal-to-
noise ratios. Similarly, the images captured by the devices
will likely have highly variable lighting and background con-
ditions. Second, the quality of the video and audio capture
devices is also a factor. Typical consumer products are con-
strained to use audio/visual components that are both small
and inexpensive, resulting in a lower quality audio and video
than is typically used in laboratory experiments.

To examine these issues we have conducted an initial study
into the use of two existing biometric techniques, speaker
identification and face identification, within a user verifi-
cation “login” scenario. The two biometric techniques we
utilize are capable of highly accurate person identification
under tightly constrained conditions. This paper examines
their performance when utilized in mobile environments,
and the potential benefit of combining these techniques to
improve the robustness of person identification.

The rest of the paper is organized as follows. We first
present an overview of our two biometric techniques and
the fusion technique for combining them. Next, we discuss
the mobile-device paradigm in which we are conducting our
experiments and the methods of data collection employed.
We follow this with experimental results showing the perfor-
mance of the two biometric techniques on the data we have
collected, both individually and in combination. Finally,
we summarize and discuss the results and present plans for
future directions of our work.



2. PERSON IDENTIFICATION

2.1 Speaker Identification
Speech is a reasonable biometric for person identifica-

tion because physiological characteristics such as vocal tract
size and vocal fold length manifest themselves as variations
in the speech signal. However, the linguistic content of
an utterance is another important source of variation in
the signal. In systems where the linguistic content of the
speech is unknown (as is the case for surveillance tasks),
text-independent systems are generally used. However, in
security applications where the user is a cooperative partic-
ipant in the attempt to prove their identity, the linguistic
content of the speech message is typically known and can be
tightly constrained. In this case, a text-dependent system
can be used. When the linguistic content of the message is
known, text-dependent speaker recognition systems gener-
ally perform better than text-independent systems because
they can model the characteristics of the specific phonetic-
content contained in the speech signal.

A common technique used in speech-based person iden-
tification is to prompt the user with a randomly generated
challenge phrase. During authentication, automatic speech
recognition can be used to verify that the spoken utterance
matches the prompted utterance. For this type of scenario,
it is both reasonable and beneficial to use the automatic
speech recognition (ASR) output to leverage the phonetic
constraints that give text-dependent systems their advan-
tage. In [5], two techniques were described that use the ASR
output during the analysis of the phonetic content from the
test utterance.

In our speaker adaptive ASR approach, the system uses
speaker-dependent speech recognizers to model each speaker.
During training, phonetically transcribed enrollment utter-
ances are used to train context-dependent phonetic mod-
els for each speaker. During testing, a speaker-independent
ASR component generates a phonetic transcription from the
test utterance. This transcription is then used by the sys-
tem to score each segment of speech against each speaker-
dependent phonetic model. Modeling speakers at the pho-
netic level can be problematic because enrollment data sets
are typically too small to build robust speaker-dependent
models for every context-dependent phonetic model. To
compensate for this difficulty, we use an adaptive scoring
approach in which the speaker-dependent score is interpo-
lated with a speaker-independent score.

Mathematically, if the word recognition hypothesis assigns
each feature vector x from the utterance X to phonetic unit
j, then the score for speaker Si, p(X|Si), is given by
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where Mj is the model for phonetic unit j and λi,j is an
interpolation factor given by

λi,j =
ni,j

ni,j + τ

In this equation, ni,j is the number of training examples of
phonetic unit j observed for speaker Si, and τ is a global
tuning parameter that is set empirically using a separate
development set. The log ratio in the equation generates
positive scores when the input speech is a good match to

a particular speaker’s models and negative scores when the
speech is a poor match.

This scoring strategy results in models that capture de-
tailed phonetic-level characteristics for a speaker when suf-
ficient training data is available, but relies more on speaker
independent models for phonetic units with sparse train-
ing data. Thus, for cases with limited training data, the
speaker independent model provides a more neutral score.
In the limiting case, if no speakers have training data for
any of the phones observed in a particular test utterance,
then they will all receive the same neutral score of zero,
which is an intuitively consistent result.

2.2 Face Identification
The face identification framework used in our work is de-

scribed largely in [9]. A face detection algorithm based on
a boosting cascade of small, efficient classifiers [8] is first
applied to the image, to determine if there are is indeed a
face in the image; and if so, where the face is located. The
face detection process allows us to crop out a face from a
larger image to eliminate background pixels. The cropped
face is first normalized to improve contrast in poorly- or
overly-illuminated images. Next, the image is sent to the
face recognition algorithm.

For face recognition, we use an approach based on support
vector machine (SVM) classifiers similar to the one described
in [2, 3]. The image is scaled down to 40x40 pixels, and the
gray values of the pixels are treated as a 1600-dimensional
feature vector. For recognition, a one-vs-all SVM scheme
is used, where one classifier is trained to distinguish each
person in the database from all the others [7]. In the SVM
training process, for each person’s classifier, that person’s
training images are used as positive examples, and the oth-
ers’ images are used as negative examples. The SVM train-
ing process finds the optimal hyperplane in the feature space
that separates the positive and negative data points. Since
the training data may not be separable, a mapping func-
tion corresponding to a second-order polynomial SVM ker-
nel function [7] is applied to the data before training.

The runtime recognition process consists of computing the
SVM classifier output score for each person’s SVM classi-
fier [7]. The scores are zero-centered – that is, a score of
zero means the data point lies directly on the decision hy-
perplane, and positive and negative scores mean the data
point lies on the positive and negative example side of the
decision hyperplane, respectively. The absolute value of the
SVM output is a multiple of the distance from the deci-
sion hyperplane, and could be normalized to produce the
distance. Thus, a highly positive score represents a large
degree of certainty that the data point belongs to the per-
son the SVM was trained for, and a highly negative score
represents the opposite. The output scores from all SVM
classifiers make up the n-best list that we treat as our face
recognition result.

For our face identification task, we collected and tested
frontal face image data only. Most state of the art face
identification systems (e.g. [2]) attempt to account for rota-
tions and/or occlusions, which would be present in a typical
surveillance task. However, for the handheld face identifi-
cation problem, the user will be cooperating with the iden-
tification process; and in general, the user certainly will be
looking at the screen of the handheld device as he or she is
using it. Thus, accounting for rotated faces is not important



in this project. Generally, rotations in the face images make
the problem of identification more challenging; thus, our
problem is easier in this respect. Nonetheless, the variable
lighting and background conditions and inexpensive camera
present an orthogonal challenge, to ensure the non-triviality
of our problem.

2.3 Multi-Biometric Fusion
Past work on fusing face and speaker classifiers have gen-

erally used very simple combination strategies. Poh and
Korczak used a logical AND rule on the results of their in-
dependent face and speaker systems [6]. This rule is most
useful when the goal is to limit false acceptances, since both
classifiers must accept the user in order to produce an accep-
tance by the fused-classifier. Kittler et al explored a variety
of probabilistic combination operators, including sum, prod-
uct, max and min, on the a posteriori probability scores from
their independent recognizers [4]. These basic fusion rules
can be suboptimal in the circumstance that the a posteriori

scores from any of the independent recognizers are poorly
estimated.

In our work, a linear weighted summation is employed for
the classifier fusion where the weights for each classifier are
trained discriminatively on a held-out development set us-
ing minimum classification error (MCE) training. The MCE
training optimizes the equal error rate of false acceptances
and false rejections under the user verification scenario. Be-
cause the final decision only requires the combination of two
independent classifiers, only one additional parameter (the
ratio of the weights of the classifiers) needs to be learned.
A simple brute force sampling of the parameter space is
used for this MCE training. More complicated techniques
(such as gradient descent training) could be used in situa-
tions where more than two scores must be fused.

3. EXPERIMENTS

3.1 The Handheld Device
For our experiments we utilized a collection of iPAQ hand-

held computers. Speech data were collected utilizing the
built-in microphone of the iPAQ. Two different models of
iPAQs were used, with two different models of off-the-shelf,
inexpensive electret condenser microphones. Face data were
collected using a 640x480 CCD camera located on a custom-
built expansion sleeve for the iPAQ. Because of the current
computation and memory limitations of the iPAQ hand-
helds, the images and audio are captured by the handheld
device, but then transmitted over a wireless network to
servers which perform the operations of face detection, face
identification, speech recognition, and speaker identification.
In future work we hope to improve the computational effi-
ciency and memory footprints of our systems so they can be
deployed directly on small handheld devices.

3.2 The Login Scenario
Our experiments were conducted using a login scenario

that combined face and speaker identification techniques
to perform the multi biometric user verification process.
When “logging on” to the handheld device, users snapped a
frontal view of their face, spoke their name, and then spoke a
prompted lock combination phrase consisting of three ran-
domly selected two digit numbers (e.g. “25-86-42”). The
system recognized the spoken name to obtain the “claimed

identity”. It then performed face verification on the face
image and speaker verification on the prompted lock com-
bination phrase. Users were “accepted” or “rejected” based
on the combined scores of the two biometric techniques.

3.3 Data Collection
For our set of “enrolled” users, we collected face and voice

data from 35 different people. Each person performed eight
short enrollment sessions, four to collect image data and
four to collect voice data. Each image collection session
consisted of the user taking 25 frontal facial images in a
variety of rooms in our lab with different lighting condi-
tions. No specific controls were placed on the distribution
of the locations and lighting conditions; users were allowed
to self-select the locales and lighting conditions of the im-
age. For voice collection, each user recited 16 prompted
lock-combination phrases in each session. Each session was
typically collected on a different day, with the time span be-
tween sessions often spanning several days and occasionally
a week or more. Each enrollment session typically lasted
less than 5 minutes with the total enrollment time taking
approximately 30 minutes on average. In total this yielded
100 images and 64 speech samples for enrolled user for train-
ing. An additional set of four enrollment sessions of audio
data (i.e., 64 additional utterances) from 17 of the train-
ing speakers was available for development evaluations and
multi-biometric weight fusion training.

For our evaluation, we collected 16 sample login sessions
from 25 of the 35 enrolled users. This yielded 400 unique
utterance/face evaluation pairs from enrolled users. We also
collected 10 impostor login sessions from 20 people not in
the set of enrolled users for an additional 200 utterance/face
evaluation pairs from unenrolled people.

We used the evaluation data to perform our user verifi-
cation experiments. Each utterance/face pair from in-set
speakers was used as a positive example of that user. This
yielded a total of 400 positive examples for our evaluation.
Each utterance/face pair from each in-set user could also be
used as an impostor for the other 34 users in the enrolled set.
This yielded 13600 impostor examples from in-set speakers.
Each utterance/face pair collected from out-of-set impostors
was also used to generate an impostor example for each of
the 35 users in the enrolled set. This yielded 7000 impostor
examples from users not in the enrollment set. In general,
it is expected that impostors that have never been observed
by the system will generate more classification errors than
enrolled users who try to impersonate other enrolled users.
This is because the models are trained to discriminate be-
tween users observed in the training data and thus may not
generalize well to unseen users.

3.4 Training
The face and speaker systems were trained on the enroll-

ment data for the 35 enrolled users. To train the fusion
weights, one of the four face enrollment sessions was held
out and a development face ID system was trained on the
remaining three face sessions. Face identification scores from
this held-out set were pairwise combined with speaker iden-
tification scores generated for utterances from the existing
speaker identification development set. The true in-set ex-
amples and in-set impostor examples were provided to the
MCE weight training algorithm previously described to gen-
erate the multi-biometric fusion weights.



Table 1: User verification results expressed as equal
error rates (%) on three systems (face only, speaker
only, and multi-biometric fusion) under two impos-
tor conditions (known in-set impostors vs. unknown
out-of-set impostors).

System In-set impostors Out-of-set Impostors
Face 5.85 7.30

Speaker 0.66 1.77

Fused 0.40 0.89

3.5 Experimental Results
Table 1 shows our user verification results for three sys-

tems (face ID only, speaker ID only, and our full multi-
biometric system) under two different impostor conditions
(using only known in-set impostors vs. using only unknown
out-of-set impostors). Several observations should be made
from these results. First, it is interesting to note the differ-
ence in performance when the system encounters impostors
who are part of the enrollment set (i.e., enrolled users try-
ing to impersonate other enrolled users) vs. the performance
on impostors who are not known to the system. The fused
system experienced a 120% increase in the equal error rate
when unknown impostors were used instead of enrolled im-
postors. This shows the importance of evaluating the system
using people that are not part of the training data.

Second, the speaker identification system is performing
much better than the face identification system. This can
partially be explained by the fact that we are using a fairly
advanced speaker identification system, but we have imple-
mented a relatively basic face identification system for these
experiments. The primary reason for this decision was based
on computational requirements. The more advanced face
identification techniques that were potential candidates for
our system had too high of a computational latency for use
in a real time system. Because the construction of a real-
time prototype system was one of our goals (which is an
achievement we have reached), computational efficiency was
a primary factor in our design decisions. In future work we
hope to integrate a more state-of-the-art face identification
algorithm into our system.

Finally, despite the gap in performance between the face
and speaker systems, the fused system is still able to achieve
a significant improvement over the better of the two systems.
When examining the equal error rate on the experiment us-
ing out-of-set impostors, the fused system achieves an equal
error rate which is 50% less than the equal error rate of the
speech only system.

To examine the degradation that might be experienced
when our speaker identification technique is utilized in a mo-
bile environment, we compared the performance of closed-
set speaker recognition on the mobile handheld data set
against the performance of our system on the tightly con-
strained YOHO corpus, which uses the same lock combina-
tion phrase approach that we employed [1]. It is important
to note that the YOHO corpus was collected using a single
close-talking telephone handset in a quiet office, and thus
does not suffer from the degradations that are present in
our mobile devices due to the low quality far-field micro-
phone and the variable background conditions. In [5], it
was shown that our system’s speaker recognition error rate

was 0.31% over YOHO’s closed-set of 138 speakers. Using
our 400 utterance in-set speaker evaluation set, our system’s
speaker recognition error rate was 0.25% over our closed set
of 35 enrolled speakers (i.e., only one misrecognition in 400
trials). Thus we have achieved roughly the same error rate
as on YOHO, but only with a much smaller set of speakers.

4. SUMMARY AND FUTURE WORK
In summary, our initial study in biometric fusion for user

verification has demonstrated the benefits of combining face
and speaker identification even when one of the biomet-
ric techniques has superior performance to the other. A
50% reduction in user verification equal error rate was ob-
served when our initial speaker identification system was
fused with a face identification system. Though our initial
study demonstrated the feasibility of our approach, our ini-
tial evaluation set is quite small. In future work we plan to
expand the size of evaluation set and examine the specific
types of errors the system makes. We also plan to inves-
tigate the performance of the system under the conditions
where impostors are specifically selected based on resem-
blances of their voice or facial properties (i.e., same gender
or ethnicity) to particular enrolled users.
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