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ABSTRACT

In 1993, a segment-based system for Automatic Lan-
guage Identi�cation (ALI) was developed and introduced.
The system incorporates phonetic, acoustic, and prosodic
information within a probabilistic framework. The origi-
nal system was trained and tested using the OGI Multi-
Language Telephone Speech Corpus and achieved an accu-
racy of 57.3% in identifying the language of test utterances
from the OGI corpus. Recent improvements to the system
have included the addition of channel normalization during
preprocessing, the utilization of the recently transcribed ut-
terances from the OGI corpus for phonetic recognition train-
ing, the use of mixture Gaussian density functions for the
modeling of prosodic information, and the development of
a hill-climbing optimization procedure for determining the
scaling factors used when combining the scores from di�er-
ent models. The current system has achieved an accuracy
of 79.7% in identifying the language of test utterances.

INTRODUCTION

Recently, research activities in Automatic Language

Identi�cation (ALI) systems have increased in conjunc-
tion with the growing interest in multi-lingual spoken

language systems. Multi-lingual systems may require

an accurate and e�cient means for determining the lan-
guage of a spoken utterance. While higher level infor-

mation, such as vocabulary and syntactic constraints,

may be used to uniquely determine the language of an
utterance, utilization of this information for a large set

of potential languages could be computationally expen-
sive. However, examination of lower level information,

such as phonotactic constraints, may provide enough in-

formation to allow for accurate language identi�cation
without being computationally burdensome. If a small

subset of possible languages can be identi�ed quickly

(i.e. via a fast match), then higher level information
can be used to verify the top-choice language. This pa-

per presents a segment-based ALI system which is in-
tended to provide a fast match list of likely candidate
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languages for a spoken utterance. This system, pre-

viously described in [1] and [2], incorporates phonetic,

acoustic and prosodic information within a probabilistic
framework.

SYSTEM DESCRIPTION

Corpus

The ALI system described herein was trained and

tested using the OGI Multi-Language Telephone Speech
Corpus [3]. The original OGI database consisted of

utterances spoken in 10 di�erent languages that were
collected over the telephone lines. The ten languages

are English, Farsi, French, German, Japanese, Korean,

Mandarin, Spanish, Tamil, and Vietnamese. Each lan-
guage contained utterances from 90 di�erent speakers.

The database was divided into three sections: 50 speak-

ers per language for the training set, 20 speakers per
language for the development test set, and 20 speakers

per language for the �nal test set. Within the last year
the database has been expanded to include additional

utterances in the ten original languages as well as utter-

ances in Hindi.

For this paper, tests using several di�erent training

and test sets were conducted. The initial system was
developed using 2715 utterances from the original train-

ing set for training, and tested using 1120 utterances

from the development test set. The second set of tests
used the original training set, the development test set,

and the utterances in the expanded data set for training
while the �nal test set was used for testing. For these

experiments 5987 utterances were available for training.

Of these, 552 utterances distributed amongst English,
German, Hindi, Japanese, Mandarin, and Spanish were

accompanied by a full time-aligned phonetic transcrip-

tion. The test set for these experiments contained 187
utterances as selected by NIST2 for their March 1994

evaluation. These utterances were a minimum of 30 sec-

onds in length and contained completely unconstrained
spontaneous speech from 11 di�erent languages.
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System Architecture

The system consists of three primary sub-systems:
the preprocessor, the phonetic recognizer, and the lan-

guage identi�er. The preprocessor takes the raw wave-

form and produces frame-based feature vectors repre-
senting the wide-band spectral information and the fun-

damental frequency (F0) and voicing information. The

wide-band spectral information is represented as ~awhere
~a = f~a1;~a2; : : : ;~amg and each ~a is an individual frame.

Similarly, the fundamental frequency information is rep-

resented as ~f = f~f1; ~f2; : : : ; ~fmg. The phonetic recog-
nizer uses the acoustic information in ~a and ~f to produce

the string of phonetic elements that are most likely. This
string of phonetic elements is represented as C where

C = fc1; c2; : : : ; ckg and each c is a phonetic element.

The phonetic recognizer also provides a segmentation to
accompany the most likely string of phones. This seg-

mentation is represented as S = fs1; s2; : : : ; sk+1g where

each s is a segment boundary. Using ~a, ~f ; C, and S the
language identi�er generates an ordered list of language

hypotheses from the language set L = fL1; L2; : : : ; Lng.

Preprocessing

The wide-band spectral information of the utterance

is represented with 14 mel-frequency cepstral coe�cients

(MFCC's) and 14 delta cepstral coe�cients sampled ev-
ery 5 ms. Mean cepstral subtraction is utilized to re-

duce the e�ects of the acoustic di�erences of the di�erent
channels present in the data.

The F0 information was extracted from the wave-
form using the formant program in Entropic's ESPS

package. The pitch tracker returns an estimated F0

value and probability of voicing score every 5 ms. In
an attempt to remove speaker dependencies, the log2 of

each F0 value was taken for each voiced frame, and the

mean of log2F0 over the entire utterance was then sub-
tracted away for each frame. A delta log2F0 value was

also computed for each voiced frame.

Phonetic Recognition

The summit phonetic recognizer [4, 5] is used to de-

termine the most likely string of phonetic elements C

and segmentation S. The phonetic string C is repre-
sented using 87 di�erent phones. The recognition phase

is completely language independent. The recognizer is
trained using the phonetically transcribed utterances in

the OGI corpus.

Probabilistic Framework

Given the outputs ~a, ~f ; C, and S from the preproces-
sor and the phonetic recognizer, the language identi�ca-

tion problem can be approached as a maximum a pos-

teriori probability problem. In this case, the top choice

language of the language identi�er will be the language

which is most likely given the values of ~a, ~f ; C, and S.

This can be expressed as

argmax
i

Pr(Li j C;S;~a;~f): (1)

This expression can be shown to be equivalent to

argmax
i
[Pr(~a j C;S;~f ; Li)Pr(S;~f j C;Li)

Pr(C j Li)Pr(Li)]: (2)

The four probability expressions in (2) are consider-

ably easier to model separately than the single probabil-
ity expression in (1). Additionally, the expression is now

organized in such a way that prosodic, phonotactic and

acoustic information are contained in separate terms. In
modeling, these terms will be referred to as:

1. Pr(~a j C;S;~f ; Li) ! The acoustic model.

2. Pr(S;~f j C;Li) ! The prosodic model.

3. Pr(C j Li) ! The phonological language model.

4. Pr(Li) ! The a-priori language probability.

Within this framework, the phonological language model
can be used to capture phonotactic information con-

tained in strings of phonetic classes. The prosodic model
can be used to model the prosodic information available

in the fundamental frequency contours and segment du-

rations. The acoustic model can capture the manner
in which speci�c phonemes or phonetic classes are pro-

duced acoustically. The di�erences that exist within

these models from language to language can thus be
exploited for the purpose of language identi�cation. For

the experiments in this paper, it is assumed Pr(Li) is

the same for all languages, and thus can be ignored.

Language Model

The language model part of (2), Pr(C j Li), can be

modeled simply as an n-gram. The experiments used in
this paper use an interpolated trigram model which can

be expressed as

Pr(C j Li) =
Y

k

P̂ (ck j ck�1; ck�2; Li): (3)

where

P̂ (ck j ck�1; ck�2; Li) = �1 Pr(ck j ck�1; ck�2; Li) +

(1� �1)P̂ (ck j ck�1; Li) (4)

and

P̂ (ck j ck�1; Li) = �2 Pr(ck j ck�1; Li)+(1��2)P̂ (ck; Li):
(5)

The � values must be chosen such that the trigram
score dominates the interpolated score when su�cient

training data exists to properly estimate the trigram

probabilities but carries less weight when an insu�cient
amount of training data exists. Thus �1 and �2 are de-

�ned as

�1 =
kci�1;ci�2

kci�1;ci�2 +K1

; and �2 =
kci�1

kci�1 +K2

(6)



where K1 and K2 are constants, and kci�1;ci�2 and kci�1
are the counts of the number of times the respective

bigram and unigram substrings occurred in the training
data. The constant values K1 and K2 were empirically

set to the values of 850 and 300 based on jackkni�ng

experiments designed to optimize the performance of the
language model on data from the training set.

Acoustic Model

The acoustic model part of (2), Pr(~a j C;S;~f ; Li) can
be simpli�ed if segment independence is assumed. The

acoustic model can thus be expressed as

Pr(~a j C;S;~f ; Li) =
Y

k

Pr(~�k j ck; Li) (7)

where each �k is a segment-based feature vector. The

feature vectors for these experiments consisted of 14
MFCC's and 14 delta MFCC's averaged over all the

frames in each segment. To model the feature vector,

mixtures of diagonal Gaussian density functions were
utilized for each of the 87 phonetic classes in each lan-

guage.

Prosodic Model

In (2) the quantity Pr(S;~f j C;Li) represents the

prosodic model. In the original system, the fundamental

frequency contours are assumed to be independent of
the phone durations and the phonetic string. With this

assumption the prosodic model is expressed as

Pr(~f j Li)Pr(S j C;Li): (8)

The expression Pr(S j C;Li) will be referred to as

the segment duration model. For our experiments, we
further assume that the segments are independent of one

another, allowing the duration model to be represented

as

Pr(S j C;Li) =
Y

k

Pr(dk j ck; Li) (9)

where d represents the duration of a segment. The du-

ration of segments for each phonetic class in each lan-
guage are modeled with mixtures of Gaussian density

functions.

The expression Pr(~f j Li) represents an F0 contour

model. For our experiments, the frames are assumed to

be independent, allowing the F0 model to be modeled
as

Pr(~f j Li) =
Y

m

Pr(~fm j Li) (10)

where only voiced frames are used in �nding the model's
score. The frame-based feature vectors are modeled with

mixtures of full covariance Gaussian density functions
for each language.

The complete system used in the development tests
utilized the two separate duration and F0 models de-

scribed above. However, because segment durations and

fundamental frequency contours may jointly contribute

to the prosodic composition of an utterance, it may not

be appropriate to assume they are independent. An al-

ternate approach which accounts for the within-segment
correlation of duration and F0 features can be expressed

as

Pr(S;~f j C;Li) =
Y

k

Pr(~pk j ck; Li) (11)

where each ~p is a segment-based prosodic feature vec-
tor which includes the duration, average F0 and average

�F0 for voiced segments and only the duration for un-

voiced segments. For this approach, mixtures of diag-
onal Gaussian density functions are used to model the

segment-based prosodic feature vectors for each phonetic
class in each language.

System Integration

In principle, the log probability scores from each in-

dividual model need only be added to generate the full
system score for a particular language given a test utter-

ance. Unfortunately, in reality the acoustic and F0 mod-
els dominate the full system score, completely obliterat-

ing the e�ect of the language model. To compensate for

this the log probability score for each model can be mul-
tiplied by a scaling factor. Two methods for selecting

the scaling factor have been investigated. Both meth-

ods involve optimizing the scaling factors based on tests
performed on development test data jackknifed from the

training set.

Closer examination of each of the individual prob-

abilistic models shows that the top choice probability
estimates appear inated, as indicated by the fact that

the average a posteriori probability for the top choice

language is larger than the actual language identi�ca-
tion accuracy for each of the models. To compensate for

this discrepancy, scaling factors can be applied to the

log probability scores of each model where the scaling
factors are selected to compress the range of a posteri-

ori probabilities for that model so that its average top
choice language probability equals its language identi-

�cation accuracy. This method was used in all of the

development tests.

The second method is to optimize the scaling fac-

tors so that the full system achieves a maximal language
identi�cation accuracy on development tests. This is

accomplished with a hill-climbing search routine where

the system's scaling factors are optimized one model at
a time in an iterative fashion until a local maximum in

performance is achieved.

RESULTS

Development Results

As shown in the �rst row of Table 1, our �rst imple-

mentation of an ALI system, as reported in [1], achieved

an accuracy of 47.7% when tested on the complete de-



Date Comments Accuracy

4/93 System presented in [1] 47.7%

8/93 System presented in [2] 48.6%

1/94 + Channel normalization 54.8%

1/94 + Mixture Gaussian duration model 55.8%

2/94 + Recognizer trained w/ OGI data 58.5%

Table 1: Summary of development test results

Test date March '94 June '94

Utt. length 10 sec. >30 sec. 10 sec. >30 sec.

Language model 61.6% 72.7% 62.7% 77.5%

Acoustic model 48.8% 52.9% 49.0% 50.8%

Duration model 34.7% 43.3% 31.7% 44.4%

F0 model 12.4% 20.9% 12.4% 20.9%

Complete system 65.4% 70.1% 62.6% 69.0%

Table 2: Summary of recent test results on NIST's March
'94 evaluation test set (all values are accuracy percentages)

velopment test set.3 The system described in [2] con-
tained incremental improvements over the system in [1]

and, as shown in the second row of Table 1, achieved an

accuracy of 48.6% on the development test set. Since
then signi�cant improvements have been made to the

system. These improvements include (1) the addition

of channel normalization during preprocessing, (2) the
use of mixture Gaussian modeling in the duration model

as opposed to non-parametric modeling techniques, and

(3) the use of a phonetic recognizer trained on the pho-
netically transcribed utterances from the OGI corpus as

opposed to one trained on the NTIMIT corpus (which
contains only English read speech). The remaining rows

of Table 1 summarize the contributions each of these

modeling techniques has made in improving the perfor-
mance of the system on the development test set.

Recent Experiments

Table 2 shows the results of our current system for

two separate tests using NIST's March '94 evaluation
test set. The two di�erent experiments both utilize the

a posteriori probability adjustment method for deter-

mining the scaling factors for combining the separate
models. The only di�erence between the March '94 test

and the June '94 test is the number of utterances used to
train the phonetic recognizer. The March '94 test only

used the 297 transcribed utterances within the original

training set. The June '94 test used the 552 transcribed
utterances described previously.

Table 3 compares the performance of the system as
the means for determining the model scale factors is

changed from the a posteriori probability adjustment

method to the hill-climbing optimization method. When

3The same system achieved an accuracy of 57.3% on the 178

utterances of NIST's April '93 evaluation set, which also contained

unconstrained utterances of length 30 seconds or greater.

Test date June '94

Utt. length 10 sec. >30 sec.

Complete system 62.6% 69.0%

+ hill climbing optimization 65.9% 79.7%

+ combined prosodic model 65.0% 79.1%

Table 3: System performance with new modeling tech-
niques added (all values are accuracy percentages)

the hill-climbing optimization method is utilized the per-

formance increases from 69.0% to 79.7%. Table 3 also
shows the system's performance when a single prosodic

model is used in place of the duration and F0 models.

DISCUSSION

There are several key observations that can be made

from the results. First, channel normalization prepro-
cessing greatly improves the performance of the system.

Second, an improper means of selecting the scaling fac-

tors used when combining the individual model scores
can hurt the system. The hill-climbing optimization

method for selecting the scaling factors helped increase
the performance of the system above the level of any of

the individual models. However, it is not clear whether

this method is the most appropriate method. Last,
combining the F0 and duration models into a single

prosodic model had little e�ect on the system's perfor-

mance, though more investigation may still be required.
Overall, the improvements described in this paper have

increased the performance of the system from an accu-
racy rate of 57.3% up to 79.7% over the last year.
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