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ABSTRACT

This paper describes our experiences with developing a
telephone-based speech recognizer as part of a conversational
system in the weather information domain. This system has been
used to collect spontaneous speech data which has proven to be
extremely valuable for research in a number of different areas.
After describing the corpus we have collected, we describe the
development of the recognizer vocabulary, pronunciations, lan-
guage and acoustic models for this system, and report on the cur-
rent performance of the recognizer under several different con-
ditions.

1. INTRODUCTION

Over the past year and a half, we have developed a telephone-
based, weather information system calledJUPITER[11], which
is available via a toll-free number for users to query a relational
database of current weather conditions using natural, conversa-
tional speech2. Using information obtained from several differ-
ent internet sites,JUPITERcan provide weather forecasts for ap-
proximately 500 cities around the world for three to five days,
and can answer questions about a wide range of weather proper-
ties such temperature, wind speed, humidity, precipitation, sun-
rise etc., as well as weather advisory information.

The JUPITERsystem makes use of ourGALAXY conversational
system architecture which incorporates speech recognition, lan-
guage understanding, discourse and dialog modelling, and lan-
guage generation [9]. JUPITER has been particularly useful for
our research on displayless interaction, information on demand,
and robust spontaneous speech recognition and understanding.
For example, since we attempt to fully understand all queries
(i.e., not spot words), and do not constrain the user at any point
in the dialog, it is crucial to have a high accuracy speech rec-
ognizer that covers, as much as possible, the full range of user
queries. This paper describes our work in developing a robust
recognizer in this domain.

When the system was first deployed in late April 1997, the er-
ror rates of our recognizer initially more than tripled our labora-
tory baselines, due in part to the mismatch between the labora-
tory training and actual testing conditions. The real data had a
much larger variation in environment and channel conditions (of-
ten with very poor signal conditions), as well as a much wider

1This research was supported by DARPA under contract N66001-96-C-8526,
monitored through Naval Command, Control and Ocean Surveillance Center.

2In the U.S. and Canada: 888 573-8255 (http://www.sls.lcs.mit.edu/jupiter).

range of speakers (we had no children in our training data for
example, and had mainly trained on native speakers without re-
gional accents), speaking style (spontaneous speech vs. read
speech), language (both for within-domain queries, and out-of-
domain queries), and other artifacts such as non-speech sounds
and clipped speech due to the user interface (we do not currently
allow for barge-in).

As we have collected more data we have been able to better
match the users’ vocabulary, and build more robust acoustic and
language models. The result is that we have steadily reduced
word and sentence error rates, to the point of cutting the initial
error rates by over two thirds. In this paper, we describe the
methods we have used to develop this recognizer, and report on
the lessons we have learned in moving from a laboratory envi-
ronment to dealing with real data collected from real users. Our
experience has shown us clearly that while there is no data like
more data, there is also no data likereal data!

2. CORPUS CHARACTERISTICS

2.1. Data Collection

Several different methods have been employed to gather data for
the JUPITERweather information system. Beginning in Febru-
ary and March 1997, we created an initial corpus of approxi-
mately 3,500 read utterances collected from a variety of local
telephone handsets and recording environments, augmented with
over 1,000 utterances collected in a wizard environment [11].
These data were used to create an initial version of a conversa-
tional system which users could call via a toll-free number and
ask for weather information. The benefit of this setup is that
it provides us with a continuous source of data from users in-
terested in obtaining information. Currently, we average over
70 calls per day, and have recorded and orthographically tran-
scribed over 59,000 utterances from over 10,560 callers, all with-
out widely advertising the availability of the system. On average,
each call contains 5.6 utterances, and each utterance has an av-
erage of 5.2 words. The data are continually orthographically
transcribed (seeded with the system hypothesis), and marked for
obvious non-speech sounds, spontaneous speech artifacts, and
speaker type (male, female, child) [8].

2.2. Data Analysis

Speaker CharacteristicsA breakdown of the live data shows
that just over 70% of users are male speakers, with females com-
prising approximately 21% of the data, and children the remain-



der. A portion of the data was from non-native speakers, al-
though the system performs adequately on speakers whose di-
alect or accent does not differ too much from general American
English. Callers with strong accents constituted approximately
7% of the calls and 14% of the data. A very small fraction (0.1%)
of the utterances included talkers speaking in a foreign language
(e.g., Spanish, French, German, or Chinese).

Signal Quality The signal quality of the data varied substan-
tially depending on the handset, line conditions, and background
noise. It is clear that speaker phones were used in approximately
5% of the calls due to the presence of multiple talkers in an ut-
terance. Less than 0.5% of the data was estimated to be from
cellular or car-phones.

Non-Speech SoundsOver 11% of the data contained signif-
icant noises. About half of this noise was due to cross-talk
from other speakers, while the other half was due to non-speech
noises. The most common identifiable non-speech noise was
caused by the user hanging up the phone at the end of a record-
ing (e.g., after saying good bye). Other distinguishable sources
of noise included (in descending order of occurrence) television,
music, phone rings, touch tones, etc.

Spontaneous Speech EffectsThere were a number of sponta-
neous speech effects present in the recorded data. Over 6% of the
data included filled pauses (uh, um, etc.) which were explicitly
modeled as words in the recognizer, since they had consistent
pronunciations, and occurred in predictable places in utterances.
Utterances contained partial words in another 6% of the data, al-
though approximately two thirds of these were due to clipping
at the beginning or end of an utterance. The remaining artifacts
were contained in less than 2% of the data and included phe-
nomenon such as (in descending order of occurrence) laughter,
throat clearing, mumbling, shouting, coughing, breathing, sigh-
ing, sneezing, etc.

3. VOCABULARY

The vocabulary used by theJUPITERsystem has evolved as pe-
riodic analyses are made of the growing corpus. The current
vocabulary contains 1893 words including 638 cities and 166
countries. Table 1 shows a breakdown of the various types of
words in the current vocabulary. Note that nearly half of the vo-
cabulary contains geography related words.

Type Size Examples
geography 910 Boston, Alberta, France, Africa

basic 769 I, what, January, tomorrow
weather 214 temperature, snow, sunny

Table 1: Categorical breakdown of theJUPITERvocabulary.

The design of the geography vocabulary was based on the cities
for which we were able to provide weather information, as well
as commonly asked cities. Other words were incorporated based
on frequency of usage and whether or not the word could be
used in a query which the natural language component could
understand. The 1893 words had an out-of-vocabulary (OOV)
rate of 2.0% on a 2506 utterance test set. Table 2 shows some
of the most frequently occurring OOV words along with some

Word Count Example Usage
N (letter) 10 B A N G O R Bangor
creek 9 Oak Creek, Dayes Creek
Los 7 Los Los Angeles California
white 7 white Christmas, white house
mother 6 I’m going to visit my mother
news 6 what is the news of the day
away 5 go away, get away from me
stock 5 I need a good stock tip

Table 2: Frequent OOV words in theJUPITERdomain.

canyou whenis nevermind
do you what about clearup
excuseme what are heatwave
give me what will pollen count
going to how about warm up
you are i would wind chill

Table 3: Examples of multi-word units in theJUPITERdomain.

example usages of the word.

Since the recognizer makes use of a bigram grammar in the for-
ward Viterbi pass, several multi-word units were incorporated
into the vocabulary to provide for greater long-distance con-
straint and, in some cases, to allow for specific pronunciation
modelling. This would allow for explicit modelling of word se-
quences such as “going to” or “give me” to be pronounced as
“gonna” or “gimme” respectively. Common contractions such as
“what’s” were represented as multi-word units (e.g., “whatis”)
to reduce language model complexity, and because these words
were often a source of transcription error anyway. Additional
multi-word candidates were identified using a mutual informa-
tion criterion which looked for word sequences which were
likely to occur together. Table 3 shows examples of multi-word
units found in the currentJUPITERvocabulary.

4. PHONOLOGICAL MODELING

In the currentJUPITER recognizer, words are initially repre-
sented as sequences of phonetic units augmented with stress and
syllabification information. The initial baseform pronunciations
are drawn from the LDCPRONLEX dictionary. The baseforms
are represented using 41 different phonetic units with three pos-
sible levels of stress for each vowel. The baseforms have also
been automatically syllabified using a basic set of syllabifica-
tion rules. After drawing the pronunciations for theJUPITER

vocabulary from thePRONLEX dictionary, all baseform pronun-
ciations were then verified by hand. Vocabulary words missing
from the dictionary were hand coded. Alternate pronunciations
are explicitly provided for some words. In addition to the stan-
dard pronunciations for single words provided byPRONLEX, the
baseform file was also augmented with common multi-word se-
quences which are often reduced, such as “gonna”, “wanna”, etc.

A series of phonological rules were applied to the phonetic base-
forms to expand each word into a graph of alternate pronun-
ciations. These rules account for many different phonological



phenomena such as place assimilation, gemination, epenthetic
silence insertion, alveolar stop flapping, and schwa deletion.
These phonological rules utilize stress, syllabification, and pho-
netic context information when proposing alternate pronuncia-
tions. We have made extensive modification to these rules, based
on our examination of theJUPITERdata.

The final pronunciation network does not represent the words
using the original 41 phonetic units utilized inPRONLEX. In-
stead, a set of 105 different units were used which include
sub-phonetic, supra-phonetic and non-phonetic units in addi-
tion to standard phonetic units. For example, the recog-
nizer treats most within-syllable vowel-semivowel sequences
and some semivowel-vowel sequences as single units in order
to better model the highly correlated dynamic characteristics of
these sequences. Thus, the phonetic sequence [ow] followed by
[r] is represented as a single segmental unit [or]. The recognizer
also incorporates various non-phonetic units to account for non-
linguistic speech transitions and speech artifacts, silences, and
non-speech noise. The 105 units also retain two levels of stress
to augment each vowel unit. An example pronunciation graph
for the word “reports” is shown in Figure 1.

pclr p or+ tcl t sax

iy tcl

Figure 1: Pronunciation graph for the word “reports.”

The arcs in the pronunciation graph can further be augmented
with transition weights which give preference to more likely pro-
nunciations and penalize less likely pronunciations. ForJUPITER

these weights were set using an error correcting algorithm on de-
velopment data [10]. This algorithm adjusted the arc weights in
an iterative fashion in order to reduce the error rate of the recog-
nizer on development data.

5. LANGUAGE MODELLING

A class bigram language model was used in the forward Viterbi
search, while a class trigram model was used in the backwards
A
� search to produce the 10-best outputs for the natural language

component. A set of nearly 200 classes were used to improve the
robustness of the bigram. The majority of the classes involved
grouping cities by state or country (foreign), in order to encour-
age agreement between city and state. In cases where a city oc-
curred in multiple states or countries, separate entries were added
to the lexicon (e.g., Springfield, Illinois vs. Springfield, Mas-
sachusetts). Artificial sentences were created in order to provide
complete coverage of all of the cities in the vocabulary. Other
classes were created semi-automatically using a relative entropy
metric to find words which shared similar conditional probability
profiles. Table 4 shows examples of word classes.

Since filled pauses (e.g., uh, um) occurred both frequently and
predictably (e.g., start of sentence), they were incorporated ex-
plicitly into the vocabulary, and modelled by the bigram and tri-
gram. Original orthographies were modified for training and
testing purposes by removing non-speech and clipped word
markers. When trained on a 26,000 utterance set, and tested on

raining snowing humidity temperature
cold hot warm advisories warnings
humid windy conditions forecast report
extended general

Table 4: Example word classes used in theJUPITERdomain.

a 2506 utterance set the word-class bigram and trigram had per-
plexities of 18.4 and 17.1, respectively. These are slightly lower
than the respectivewordbigram and trigram perplexities of 19.5
and 18.8. Note that the class bigram also improved the speed
of the recognizer as it had 22% fewer connections to consider
during the search.

6. ACOUSTIC MODELLING

The JUPITER system performs recognition using the segment-
basedSUMMIT recognizer which can incorporate both segment-
and landmark-based acoustic models [3]. The nature of the
acoustic models has varied over the course of system develop-
ment, depending in large part on the amount of available training
data. The currentJUPITERconfiguration makes use of context-
dependent landmark-based diphone models which require the
training of bothtransition and internal diphone models. Inter-
nal diphones model the characteristics of landmarks occurring
within the boundaries of a hypothesized phonetic segment, while
transition diphones model the characteristics of landmarks oc-
curring at the boundary of two hypothesized phonetic segments.

Given the 105 phonetic units used in theJUPITERsystem, and the
constraints of the full pronunciation graph, there were 4,822 pos-
sible diphone transition models and 105 internal models needed.
We have explored two different methods of modelling transi-
tions. The first method trained models for frequently occurring
transitions, and used one “catch-all” model for remaining transi-
tions. This method worked well, and was simple to train. We
currently use a reduced set of 782 equivalence classes which
were determined manually to insure that an adequate amount of
training existed for each class and that the elements of each class
exhibited contextual similarity. This method performs slightly
better than the “catch-all” method.

For each landmark, 14 MFCC averages were computed for 8
different regions surrounding the landmark, creating 112 dif-
ferent features. This initial feature set was then reduced from
112 features to 50 features using principal component analysis.
The acoustic models for each class modeled the 50 dimensional
feature vectors using diagonal Gaussian mixture models. Each
mixture model consisted of a variable number of mixture com-
ponents, dependent on the number of available training vectors
for that class, with a maximum of 50 mixture components.

The diphone models were trained on a subset of data which ex-
cludes utterances with out-of-vocabulary words, clipped speech,
cross-talk, and various types of noise. The training data also ex-
cludes all speech from speakers deemed to have a strong foreign
accent. The full set of within-domain training utterances used for
acoustic modelling consisted of 20,064 utterances, which was
76% of the available data at the time.



7. EXPERIMENTS

Over the course of the past year theJUPITERrecognizer has had
a steady improvement in its performance; this has been a re-
sult of both an increase in training data and improvements to
the system’s modeling techniques. The test data consists of sets
of calls randomly selected over our data collection period. The
current test set consists of 2506 utterances, of which 1806 were
considered to be “in domain” as they were covered by the vo-
cabulary, were free of partial words, crosstalk, etc. Of these
sentences, 1290 were from male speakers, 274 from females,
and 242 from children. Table 5 shows the performance of the
JUPITERrecognizer on this test set using word error rate (WER)
and sentence error rate (SER) as the evaluation metrics. As can
be seen in the table, the system tends to perform reasonably when
it encounters queries spoken by adults without a strong accent,
that are covered by the domain, and that do not contain spon-
taneous, or non-speech artifacts. Females had 50% more word
errors than males, while children had 300% more word errors
than males. This is probably a reflection of the lack of training
material for females and children. The system has considerable
trouble (64.5% WER) with “out of domain” utterances contain-
ing out-of-vocabulary words, partial words, crosstalk, or other
disrupting effects. This rate is artificially high, however, due to
the nature of the alignment procedure with reference orthogra-
phies (e.g., partial wordsalwayscause an error for example, due
to the nature of our mark-up scheme).

Table 5 also shows the performance on speakers judged to have
strong foreign accents, who were not included in the standard
test set. These data consisted of 3,225 in-domain utterances, and
had an error rate more than double the baseline in-domain error
rate. Finally, we also evaluated the recognizer on “expert” users
(i.e., mainly staff in our group) who have considerable experi-
ence using theJUPITERsystem, but were not used for training.
The system had extremely small error rates for these users. This
behavior is typical of users who become familiar with the system
capabilities (a case of users adapting to the computer!).

Test Set # Utts WER SER
Standard 2506 24.0 41.9

In domain 1806 11.8 26.6
Male (In domain) 1290 8.4 22.2
Female (In domain) 274 12.3 28.5
Child (In domain) 242 25.0 48.3

Out of domain 700 64.5 81.4
Non-native (In domain) 3225 26.6 56.7
Expert (In domain) 354 2.1 7.9

Table 5: CurrentJUPITERperformance on various test sets.

8. DISCUSSION & FUTURE WORK

The speech recognizer described in this paper is only one com-
ponent of the fullJUPITERconversational system [8, 11]. The
current interface between the recognizer and our language un-
derstanding component is via anN -best interface. Although we
have reported only first-choice error rates in this paper, the un-
derstanding error rates are typically better, since many word con-
fusions do not impact understanding.

There remain a considerable number of ongoing areas of re-
search we are presently pursuing, which should help improve
performance. Recent developments in probabilistic segmenta-
tion [6], near-miss modelling [1], heterogeneous classifiers [4],
and tighter integration of linguistic knowledge [2], have shown
improvements in ourJUPITERbaseline, although they have not
yet been propagated to the data collection system. We have also
been able to significantly speed up the system (which is con-
strained to near real-time performance) using a more flexible
finite-state transducer representation under active development.

The system to date has used a pooled speaker model for all
acoustic modelling. It should be possible to achieve gains
through speaker normalization, short-term speaker adaptation,
and better adaptation to the channel conditions of individual
phone calls. Adaptation may also be useful to help improve per-
formance on non-native speakers. Since a phone call might have
multiple speakers, we are exploring within-utterance consistency
techniques which have given us gains elsewhere [5].

The data collection efforts have produced a gold-mine of sponta-
neous speech effects which are often a source of both recognition
and understanding errors. For example, partial words typically
cause problems for the speech recognizer. Another source of
recognition errors is out-of-vocabulary words, which are often
cities not covered in the vocabulary. These issues have caused us
to begin work in confidence scoring, which was an area we had
not previously addressed [7]. Finally, we plan to explore the use
of dynamic vocabulary and language models, which may help to
alleviate some of the unknown city problems.
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