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Abstract

This paper investigates the use of minimum classification error
(MCE) training in conjunction with speaker adaptation for the
large vocabulary speech recognition task of lecture transcrip-
tion. Emphasis is placed on the case of supervised adaptation,
though an examination of the unsupervised case is also con-
ducted. This work builds upon our previous work using MCE
training to construct speaker independent acoustic models. In
this work we explore strategies for incorporating MCE train-
ing into a model interpolation adaptation scheme in the spirit
of traditional maximum a posteriori probability (MAP) adapta-
tion. Experiments show relative error rate reductions between
3% and 7% over a baseline system which uses standard ML es-
timation instead of MCE training during the adaptation phase.
Index Terms: acoustic modeling, MCE training, speaker adap-
tation.

1. Introduction
Discriminative training of speech recognizers, using either Min-
imum Classification Error (MCE) or Maximum Mutual Infor-
mation (MMI), has been shown to improve performance over
standard maximum likelihood (ML) training in a number of
studies [1, 2, 3]. The benefit of discriminative training over
ML-based training is that model parameters can be tuned specif-
ically to improve recognition accuracy. In particular, the MCE
framework uses a smooth estimate of the classification risk as
the criterion function to be minimized. This approach allows
for a more efficient use of model parameters, typically resulting
in better performance and smaller model sizes.

After incorporating discriminative techniques into the train-
ing of acoustic models, it is natural to examine whether the
use of MCE training can be extended to the task of supervised
speaker adaptation. Along these lines, maximum likelihood lin-
ear regression (MLLR) adaptation has been recast in an MCE
framework [4, 5, 6, 7]. Similarly, a method for revising MMI
estimation to incorporate a prior distribution leads to a discrim-
inative form of maximum a posteriori probability (MAP) adap-
tation [8]. In the case of unsupervised adaptation, it is not as
clear if discriminative techniques such as MCE can be used ef-
fectively, because they require knowledge of the correct answer
during training. In these cases, it is useful to examine if the
generative ML and MAP estimation techniques can be used ef-
fectively in conjunction with baseline models trained using the
MCE technique.

In this paper we examine the use of MCE training applied to
the problem of speaker adaptation within a spoken lecture tran-
scription task. This large vocabulary transcription task typically
involves the processing of audio files which are 45 to 90 min-
utes in length and contain (almost entirely) speech from a single

primary speaker. In addition, in cases such as the video lec-
tures available on MIT’s OpenCourseWare web site, data from
a whole semester’s worth of classes taught by a single lecturer
may be available. The potential access to large amounts (i.e.,
many hours) of speech from individual speakers could allow
discriminative speaker adaptation techniques to yield significant
improvements over traditional ML or MAP based adaptation
techniques. In this paper we apply the use of MCE training to a
MAP-style model interpolation adaptation technique.

2. MCE Training Overview

The approach to MCE-based optimization in this paper follows
that described in [3]. A loss function is defined in terms of a
comparison between the log-likelihood for the correct word se-
quence with that for the best incorrect word sequence. The over-
all loss function, summed over the training set, is minimized
using a simple batch-oriented second-order modified Newton’s
method, Quickprop [9].

The MCE formalism uses the speech recognition likelihood
expression p(x|Λ, Sj)P(Sj) for a hypothesized string Sj as its
discriminant function, where x represents the acoustic feature
vectors of the utterance and Λ represents a set of model param-
eters. A misclassification measure dk(x,Λ) is used to compare
the match between an utterance’s correct string Sk and the best
incorrect string as follows:

dk(x,Λ) = log
maxi�=k p(x|Λ, Si)P(Si)

p(x|Λ, Sk)P(Sk)
(1)

This expression is positive when the best incorrect string Si has
a larger score than that of the correct string Sk, and negative
otherwise. A loss function then maps the misclassification mea-
sure to a 0-1 continuum. The loss function used in this work is
a sigmoid,

�(dk(x, Λ)) =
1

1 + e−αdk(x,Λ)
, (2)

though many other loss functions are possible. When the deriva-
tive of the sigmoid loss function is taken, the sigmoid function
assigns more weight to training utterances with a misclassifi-
cation measure near zero, and less weight to utterances whose
recognition is either strongly correct or strongly incorrect, i.e.,
those with large misclassification magnitudes.

The core component of the MCE training algorithm is the
computation of the derivative of the loss function (Equation 2)
with respect to each of the model parameters in Λ to be trained.
The Quickprop method then uses those derivatives to update the
model parameters.
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3. Speaker Adaptation
3.1. MAP-Style Model Interpolation

Maximum a posteriori probability (MAP) estimation is a com-
monly used technique for speaker adaptation of Gaussian mix-
ture models. MAP adaptation performs an interpolation process
which slowly shifts the parameters of an a priori (or speaker
independent) model towards the maximum likelihood (ML) es-
timated parameter settings for a particular speaker as more data
from that speaker is observed. Full details of the algorithm can
be found in [10]. Theoretically, MAP adaptation has the desir-
able property of converging to the ML estimated model asymp-
totically with increasing amounts of adaptation data. In prac-
tice, MAP adaptation requires experimental effort to effectively
set its learning rate parameters.

An alternative approach is one we will refer to as MAP-
style model interpolation (MI) adaptation. This approach inter-
polates the output scores of two density functions as follows:

psa(x) =
c

c + τ
psd(x) +

τ

c + τ
psi(x) (3)

Here, psa(x) is the speaker adapted (SA) model for scoring ob-
servation x, psd(x) is the speaker dependent (SD) ML estimated
model for the new speaker, psi(x) is the speaker independent
(SI) model, c is number of adaptation observations available for
the model, and τ is a learning rate parameter (τ is set to 50 in
our experiments). In this expression, rather than adjusting the
parameters of an existing SI model, the system learns a new
ML estimated SD density function for the speaker from scratch.
This allows the SD estimated model to use a smaller number of
Gaussian components than the full SI model, especially when
the number of adaptation observations c is small. As c grows
larger, the number of Gaussian components can be grown to
improve the modeling power of the SD model. Eventually, as
c grows very large, the contribution of the SI model becomes
negligible and the full SD model can replace the interpolated
SA version. In practice, we have observed that MI adaptation
performs very similarly to traditional MAP adaptation on tasks
we have investigated and is slightly easier to tune.

3.2. Extensions to MCE Training

To implement supervised MCE training within the model inter-
polation adaptation framework, we examine two possible ap-
proaches. The first approach, which we will refer to as MCE-
ML adaptation, starts with an ML estimated speaker dependent
model trained from the adaptation data. During each training
iteration, the MCE procedure computes the loss function from
a recognition pass over the adaptation data that uses only the
ML estimated SD model, and then adjusts the SD model. When
training is completed, the updated SD model is then combined
with the SI model using model interpolation to create the SA
model.

The second approach, which we will refer to as MCE-MI
adaptation, works similarly to MCE-ML. However, during each
MCE recognition pass the system instead computes the loss
function using the MI combination of the SD model and the
SI model. Then, during the MCE update phase, only the pa-
rameters of the original SD model are adjusted. The original SI
model components in the model interpolation remain fixed at all
times. In this approach, the MCE updates of the SD model are
scaled by the interpolation weight of the SD model. This causes
models with fewer adaptation observations to receive smaller
MCE adjustments than models with more adaptation observa-
tions, thus limiting MCE over-training of the SD model.

3.3. Supervised vs. Unsupervised Adaptation

Speech recognition training algorithms generally use knowl-
edge of the underlying words spoken in the training utterances.
Unsupervised learning is required when the underlying word
sequence is not known. For example, in the lecture processing
task, it is often desirable to create speaker adapted models for
a new speaker who is present in an audio file that the system is
transcribing. Typically, this form of unsupervised adaptation is
performed by assuming that the word sequence obtained from
an initial recognition pass over the data can be used as a proxy
for the true, but unknown, underlying word sequence.

Even when errors are present in the assumed transcription,
improvements can be obtained from unsupervised adaptation.
Multiple recognition passes over the adaptation data can also
be conducted to iteratively refine the speech recognition models
and hopefully the improve subsequent transcriptions.

4. Experimental Results
4.1. Task Overview

Our experiments are conducted on the task of spoken lecture
transcription. A core set of 121 hours of lecture audio, primar-
ily obtained from the MIT World collection of lectures, was
available for the training of our SI speech recognizer. For our
experiments, additional audio from a wide variety of academic
courses from the MIT OpenCourseWare video lecture collec-
tion are also available. Details on the properties of the data in
our corpus can be found in [11].

In developing a system to transcribe this data, we antici-
pate three different usage scenarios. In the first scenario, the
system is requested to transcribe a lecture from a previously un-
seen lecturer. In this case, the system must rely on unsupervised
adaptation performed on the same lecture.

In the second scenario, one to two lectures of data from
a lecturer are manually transcribed. This could allow the sys-
tem to produce a quality speaker adapted model for that lec-
turer, while requiring only a moderate expense for manual tran-
scription. The speaker adapted model can then be used to auto-
matically transcribe the remainder of lectures recorded for that
speaker, where a typical academic course at MIT accumulates
about 30 hours of recorded audio over the span of one semester.

In the third scenario, a full semester of lectures from a
speaker could be manually transcribed to allow a highly ac-
curate model for that speaker to be built and used on lectures
from subsequent courses taught by that lecturer. For one lec-
turer in our collection, we have two full semesters worth of lec-
tures manually transcribed, allowing us to examine long-term
adaptation in this scenario.

4.2. Baseline System

For our experiments we are using the SUMMIT speech recog-
nition system [12]. For language modeling, a standard word
trigram with a core vocabulary of 37.4K words is used. A topic
independent language model is trained from a combination the
Switchboard corpus (containing 3.1M total words) and a collec-
tion of transcribed academic lectures obtained from three uni-
versities (containing 3.5M total words). For specific lectures,
supplemental materials may be available, including companion
textbooks, lecture slides, or relevant materials obtained from the
web via a Google search. These materials are used to augment
the recognizer’s vocabulary and perform topic adaptation to the
language model.
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Figure 1: Word error rates vs. iterations of unsupervised
MAP-style model interpolation speaker adaptation using MCE-
trained speaker independent models interpolated with ML-
estimated speaker dependent models.

The SUMMIT recognizer models the acoustic signal using
the same diphone-based landmark modeling techniques used
in the real-time recognition systems employed in our interac-
tive dialogue systems [12]. Diagonal Gaussian mixture models
are used to model each of the 1871 context-dependent acoustic
landmark models in our system. This yielded a speaker inde-
pendent set of acoustic models containing 31873 total Gaussian
components (or around 17 Gaussians per model on average).
The SI models were initialized with ML estimation, and then
refined with 13 iterations of MCE training.

4.3. Unsupervised Speaker Adaptation

To examine unsupervised speaker adaptation, we conducted ex-
periments on 5 held-out test lectures from 5 different speak-
ers, containing an aggregate of 6 hours of audio. Three of the
lectures were from an MIT course on automatic speech recog-
nition and two of the lectures were one-time public seminars
given at MIT by outside speakers. For the 3 speech recogni-
tion lectures, the language model and vocabulary were adapted
based on the lecturer’s presentation slides. For the 2 exter-
nal lectures, the language model and vocabulary were adapted
based on a small collection of documents about the lecturer and
topic obtained via a Google search. Using our baseline speaker
independent acoustic models, the topic-independent recognizer
achieved a word error rate of 33.6% and the topic-adapted rec-
ognizer achieved a word error rate of 31.3%.

To perform unsupervised adaptation, the top-choice recog-
nition result from the topic-adapted recognizer was used to
guide the training of a new set of acoustic models for each lec-
ture (from scratch) using ML estimation. In our experiments,
no data filtering based on confidence scores was used. As a re-
sult, errors in the phonetic labels used during the training run
are commonly present. In addition, no unsupervised speaker
diarization is applied to the audio file. Thus, a small subset of
utterances from speakers other than the lecturer (e.g., audience
questions) are present in the audio and also not filtered out.

The resulting ML estimated SD models for each lecture are
interpolated with the MCE trained SI models using MAP-style

model interpolation. These speaker adapted models can then
be reapplied to the test data to obtain new transcriptions and
hence new speaker adapted models. This process can be iter-
ated under the assumption that improved transcriptions will lead
to improved speaker adapted models. In similar experiments
using ML estimated SI models, we typically observe improve-
ments in performance when iterating the adaptation process 3
to 5 times, with performance asymptoting with additional iter-
ations. Figure 1 shows our adaptation results when using our
SI-MCE models instead of SI-ML models. The figure shows a
9% relative reduction in error rate (from 31.3% to 28.4%) af-
ter one iteration of unsupervised speaker adaptation. After the
first iteration, the figure shows an unusual decrease in accuracy
with additional iterations, until the accuracy begins asymptot-
ing at 29.0% after 10 iterations. This implies that, despite the
improved fidelity of the recognition transcripts from the initial
iteration of speaker adaptation, the learned ML estimated SD
models may actually be harming some of the discriminative
abilities provided by the baseline MCE trained SI models, af-
ter model interpolation is performed. It is unclear if this trend
would continue to exist if data-filtering to remove poorly rec-
ognized words was applied before adaptation. We leave this
experiment to future work.

4.4. Supervised Speaker Adaptation

For supervised adaptation we have a full semester of manu-
ally transcribed lectures available from two different academic
courses taught by the same professor. The professor is a non-
native (i.e. Dutch) speaker, who speaks in a clear, though an-
imated, speaking style. We used 35 lectures totaling 29 hours
from a physics course on electromagnetics as the adaptation ma-
terial. We have randomly selected 4 lectures from a physics
course on classical mechanics for the test material. By chance 2
hours of audio from other lectures given by this speaker are also
contained in the training material for the original SI model. The
language model for our experiments is adapted from physics
materials, predominantly collected from two physics textbooks
as well as the 35 electromagnetics lectures used for the adapta-
tion data. The baseline speaker independent topic adapted rec-
ognizer achieves a performance of 30.7% on the test data.

We conducted 2 supervised adaptation experiments. In the
first experiment we use only 2 lectures (or roughly 100 minutes
of audio) for adaptation. In the second experiment we use the
full 29 hours of available data. Both experiments begin with
baseline speaker adapted models created using model interpo-
lation where the SD models are derived with ML estimation.

Figure 2 shows the performance of the system using 100
minutes of adaptation data for model interpolation adaptation
using the original ML SD models, as well as models from both
the MCE-ML and MCE-MI training approaches. The initial
speaker adapted model achieves a word error rate of 25.9%.
Both MCE-ML and MCE-MI training improve the performance
of the baseline speaker adapted model, with MCE-MI train-
ing outperforming MCE-ML. In particular, MCE-ML only im-
proves performance during its first eight MCE iterations achiev-
ing a minimum word error rate of 25.5%. After eight itera-
tions, performance begins to deteriorate, presumably because
the MCE training is over-training the SD model. The MCE-MI
approach exhibits better learning, achieving a minimum error
rate of 25.1%, before also starting to deteriorate in performance.
However, the deterioration of the MCE-MI models is slower,
with a plateau in performance of around 25.2% word error rate
from the 11th iteration through the 24th iteration. At it’s best
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Figure 2: Word error rates for supervised model interpolation
adaptation from 100 minutes of adaptation data when the SD
model is created using ML estimation, using MCE-ML training,
and using MCE-MI training. Results are shown for up to 40
iterations of MCE training during the adaptation process.

point, the MCE-MI adaptation achieves an error rate which is a
3% relative improvement over the baseline MI adaptation tech-
nique using the ML estimated SD model. This also represents
an 18% relative error rate reduction from the speaker indepen-
dent performance of 30.7%.

Figure 3 shows the performance of the system under the
same conditions but using 29 hours of adaptation data. The
models show similar trends, with MCE-MI training outperform-
ing MCE-ML training slightly but not as significantly as in the
100-minute adaptation case. Both models also begin to show a
slight deterioration in performance as the number of iterations
approaches 30, but this deterioration is not as severe as in the
100-minute case. The MCE-MI approach achieves a minimum
word error rate of 17.0% at it best point, which is a relative
reduction in error rate of 7% from the 18.2% error rate of the
baseline MI adaptation approach using the ML estimated SD
models. This also represents a 45% relative error rate reduction
from the speaker independent performance of 30.7%.

5. Summary
In this paper we have explored strategies for incorporating MCE
training into a model interpolation speaker adaptation scheme
in the spirit of traditional maximum a posteriori probability
(MAP) adaptation. Supervised adaptation experiments show
relative error rate reductions between 3% and 7% over a base-
line system which uses standard ML estimation instead of MCE
training during the adaptation phase.
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