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Abstract
Previous work has considered methods for learning pro-
jections of high-dimensional acoustic representations to
lower dimensional spaces. In this paper we apply the
neighborhood components analysis (NCA) [2] method to
acoustic modeling in a speech recognizer. NCA learns a
projection of acoustic vectors that optimizes a criterion
that is closely related to the classification accuracy of a
nearest-neighbor classifier. We introduce regularization
into this method, giving further improvements in perfor-
mance. We describe experiments on a lecture transcrip-
tion task, comparing projections learned using NCA and
HLDA [1] . Regularized NCA gives a 0.7% absolute re-
duction in WER over HLDA, which corresponds to a rel-
ative reduction of 1.9%.
Index Terms: speech recognition, acoustic modeling, di-
mensionality reduction

1. Introduction

Previous work [1] introduced heteroscedastic discrimi-
nant analysis (HLDA) as a method for learning projec-
tions of high-dimensional acoustic representations into
lower-dimensional spaces. Acoustic vectors in the high-
dimensional space can be created by concatenating the
MFCC representations of multiple consecutive frames.
The goal of projection methods is to find a lower-
dimensional representation that captures the information
required for discrimination of different phonemes, and
can be used within a conventional speech recognizer that
employs Gaussian mixture models for acoustic model-
ing. Finding a low-dimensional representation reduces
the number of parameters that must be trained for the
acoustic model and thereby has the potential to reduce
the amount of overtraining in the model.

In this paper, we contrast HLDA with an approach
for dimensionality reduction, neighborhood components
analysis (NCA), introduced by Goldberger et al. [2].
NCA selects a projection that optimizes the performance
of a nearest neighbor classifier in the projected space.
NCA and HLDA both make use of training sets con-
sisting of acoustic vectors and their associated class la-
bels in order to learn projections that will be effective

at separating classes in the projected space. However,
HLDA makes stronger assumptions about the distribution
of samples in each class than NCA; specifically, HLDA
assumes that each class of acoustic vectors have a nor-
mal distribution. Because NCA optimizes for a nearest
neighbor classifier, the method makes weaker assump-
tions about the shape of the distribution in each class,
making it a closer match to the use of mixtures of Gaus-
sians which are eventually employed in modeling these
distributions in the acoustic model.

We present the NCA method, along with discussion
of specific implementation issues. We extend the method
by introducing regularization which we determine can be
useful in reducing WER further. Our end goal is to use
these projections to lower WER in a large vocabulary
speech recognition task. Academic lecture data [3, 4] is
used to train and test our approach. In our experiments,
we compare NCA, principal components analysis (PCA),
and HLDA and show that NCA outperforms both other
methods, showing a 2.7% absolute improvement in WER
over a class-based PCA projection, and a 0.7% absolute
(1.9% relative) improvement over HLDA.

2. Neighborhood Components Analysis

NCA was introduced by [2]; we describe the details of
the method here for completeness. NCA learns a linear
projection of vectors into a space that optimizes a cri-
terion related to the leave-one-out accuracy of a near-
est neighbor classifier on a training set. Specifically,
NCA takes as input a training set consisting of vectors
{x1,x2, ...,xN} where xi ∈ Rm and an associated set
of labels {y1, y2, ..., yN} where yi ∈ L. For example,
in our experiments xi consist of concatenated vectors of
MFCC measurements and yi indicates the class of phone-
mic event described by the vector, such as /oy/. The
method then learns a projection matrix A of size p x m

that projects the training vectors xi into a p dimensional
representation, z′i = Axi, where a nearest neighbor clas-
sifier is effective at discriminating amongst the classes.
This projection matrix A defines a Mahalanobis distance
metric that can be used by the nearest neighbor classifier
in the projected space.
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d(xi,xj) = (Axi − Axj)
T (Axi − Axj)

By selecting p < m, we can learn a lower dimensional
representation of the original acoustic vectors.

The goal of the method is to learn a projection A that
maximizes the accuracy of a nearest neighbor classifier.
In order to define a differentiable optimization criterion,
the method makes use of “soft-neighbor” assignments in-
stead of directly using the k nearest neighbors. Specif-
ically, each point j in the training set has a probability
pij of assigning its label to a point i that decays as the
distance between points i and j increase.

pij =
exp(−||Axi − Axj ||

2)∑
k �=i exp(−||Axi − Axk||2)

, pii = 0

The method attempts to maximize the expected num-
ber of points correctly classified in a leave-one-out set-
ting over the training set. This optimization criterion can
be defined using the soft-neighbor assignments. First a
quantity pi is defined that denotes the probability of a
point i being assigned the correct class label.

pi =
∑
j∈Ci

pij

Ci = {j|yj = yi}

The final optimization criterion f(A) can then be defined
simply as the sum of the probabilities of classifying each
point correctly.

f(A) =
∑

i

pi

This criterion gives rise to a gradient rule that can be
used to optimize the matrix A. (Note that xij is short-
hand for xi − xj .)

∂f

∂A
= 2A

∑
i

⎛
⎝pi

∑
k

pikxikx
T
ik −

∑
j∈Ci

pijxijx
T
ij

⎞
⎠

This function can be optimized using a number of gradi-
ent methods, such as stochastic gradient ascent, or con-
jugate gradient ascent. Note that the function f(A) is
not convex, so care needs to taken when initializing the
matrix A in order to avoid sub-optimal solutions.

2.1. Computational Performance

The calculation of the above gradient can be computa-
tionally quite expensive. Calculating the soft-neighbor
probabilities alone requires O(N 2p) calculations. How-
ever, many of these probabilities will be very close to
zero, allowing us to truncate the gradient calculation.

Additionally, we can reduce the amount of computa-
tion by re-arranging terms of the gradient as follows.

∂f

∂A
= 2

∑
i

⎛
⎝pi

∑
k

pik(Axik)xT
ik −

∑
j∈Ci

pij(Axij)x
T
ij

⎞
⎠

In our experiments we optimize f(A) using conju-
gate gradient ascent, which we parallelize across several
machines.

2.2. Regularization

We can introduce regularization into the NCA optimiza-
tion criterion in order to alleviate a few possible prob-
lems with the method. Regularization can help coun-
teract over-fitting effects we might see with the training
data. The other problem we seek to address with reg-
ularization is specifically related to the definition of the
soft-neighbor assignments used by the method. Because
soft-neighbor assignments pij decay very rapidly with
distance, as the magnitude of A increases the effective
number of nearest neighbors influencing the labeling of a
point decreases. If the magnitude of A grows sufficiently
large, the method might simply consider just the one clos-
est neighbor, which could lead to a quite suboptimal pro-
jection of the data. We therefore introduce the following
regularized version of the optimization function where C

is a constant chosen by optimizing the leave-one-out per-
formance over a development set.

freg(A) =
1

N

∑
i

pi − C
∑
j,k

A2

j,k

where Aj,k indicates the element at the jth row and kth
column of matrix A.

3. Experiments

We compare NCA and HLDA using speech recognition
experiments on academic lectures [3, 4]. We train the
HLDA projection using the code provided by [1] for
HLDA using full covariance matrices. For training we
have 121 hours of speech collected from a wide variety
of lectures predominantly obtained from the MIT World
collection [5, 6]. For testing we have 6 hours of similar
data. We use the SUMMIT recognizer [7] in our experi-
ments.

Each acoustic sample is represented using a 112-
dimensional feature vector, consisting of the concatena-
tion of eight 14-dimensional feature vectors. Each of
these vectors contain 14 MFCC measurements taken at
eight telescoped time intervals around the point of the
acoustic sample.

The training set was manually transcribed, with time
alignments of words and phonetic events obtained via
forced transcription using our baseline recognizer. From
the forced transcriptions, labels for each acoustic feature
vector are extracted. These labels correspond to 1837
phonetic classes including context independent phone in-
ternal labels (e.g. /f/ or /ae/) and diphone transition
labels (e.g. /f/ -> /ae/ or /s/ -> /t/). In our
experiments, we make use of 53 context-independent in-
ternal phone classes only. We use a small portion of this
data, 500 samples from each of 53 phonemic classes, to
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Figure 1: WER of HLDA and NCA on a test set for sev-
eral different dimensionalities.

train a projection using the NCA method. These samples
are randomly selected and come from a number of differ-
ent speakers. To train the HLDA projection we use all of
the training data across the 53 phonemic classes, around
4 million samples.

Because the optimization function for NCA is non-
convex, care needs to be taken when initializing A. In
our experiments, we initialize the matrix randomly for
both the NCA and regularized NCA projections.

3.1. Speech Recognition

Our end goal is to use NCA in order to reduce speech
recognition word error rates. Because our recognizer
employs mixtures of Gaussians with diagonal covari-
ance matrixes, and because we model 1837 instead of
53 classes used to train the projections, we apply a
class-based PCA after learning NCA and HLDA. This
class-based whitening transform is performed by apply-
ing PCA to a covariance matrix obtained by pooling the
covariances of the individual phonetic classes. We com-
pare the WER achieved by both the unregularized version
of NCA and HLDA for a number of dimensions in the
projected space in Figure 1. As the number of dimen-
sions is increased, initially large improvements in WER
are achieved for both methods, but these level-off quickly
at around 40 dimensions. The minimal WER achieved by
NCA occurs at 50 dimensions. As the number of dimen-
sions increases beyond 90, the performance of the rec-
ognizer begins to deteriorate, indicating an over-training
effect. A similar trend is seen with the HLDA method,
with optimal performance achieved at 40 and 50 dimen-
sional projections.

In Table 1 we compare the performance of the rec-
ognizer using class-based PCA, HLDA, NCA, and the
regularized version of NCA for 50-dimensional projec-
tions. Regularized NCA achieves a large improvement
over classed-PCA alone of 2.7%, and a significant im-
provement over HLDA as well of 0.7% (1.9% relative
improvement). Regularization also improves the perfor-
mance of NCA, with the regularized method achieving an

WER
PCA 38.8

HLDA, all training data 36.8
HLDA, 500 samples per class 37.1
NCA, 500 samples per class 36.3

NCA (regularized), 500 samples per class 36.1

Table 1: Word error rate of recognizer using PCA,
HLDA, NCA, and regularized NCA to learn 50 dimen-
sional projections.

improvement of 0.2% over the baseline NCA method.
We additionally experimented with increasing the

number of data points per class used to train NCA to 1000
and 5000. These experiments led to neglible differences
in speech recognition WER.

3.2. Discussion

By looking at the classification accuracy achieved in a
kNN setting using both HLDA and regularized NCA,
we can identify some of the differences between the
two methods. We can calculate the accuracy of a kNN
classifier on a test set of acoustic samples (i.e. a set
of samples not used to train the NCA or HLDA pro-
jections). The classification performance of the inter-
nal phonemic classes ordered by reduction in error rate
achieved using regularized NCA are shown in Table 2.
A 50-dimensional projection is learned for both regu-
larized NCA and HLDA and both are trained with 500
samples from each of the 53 internal phonemic classes.
NCA achieves large improvements in classification accu-
racy across almost all the phonemic classes.

Another fact to note is that while the kNN perfor-
mance of NCA and HLDA are very different, the differ-
ence in recognition performance of the two methods in
terms of WER is not as large. This suggests that large
increases in kNN performance does not necessarily mean
large improvements in WER. A direction for future work
would be to try to more directly employ the kNN frame-
work to acoustic modeling, as there may be a mismatch
between the NCA framework and the mixture of Gaus-
sians employed by the acoustic model.

4. Related Work

There are several alternatives to HLDA that also learn dis-
criminative projections. In [8], an alternative to HLDA
is presented that optimizes a minimim phoneme error
(MPE) criterion. This type of discriminative projection
can also be used for speaker adaptation [9]. One prob-
lem with NCA is that because the optimization function
is non-convex, it is easy to converge to local optima. An
alternative method to NCA [10] presents a convex opti-
mization function related to NCA that may help solve this
problem.
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Phoneme NCA Acc. HLDA Acc. % Red. in Err.
/epi/ 88.60 62.40 69.68
/em/ 79.00 56.60 51.61

/ah fp/ 72.80 48.80 46.88
/g/ 77.80 58.80 46.12
/b/ 80.40 66.40 41.67

/pcl/ 63.40 39.80 39.20
/zh/ 78.00 65.20 36.78
/p/ 67.80 50.00 35.60
/jh/ 55.00 34.20 31.61
/uw/ 56.60 37.20 30.89
/oy/ 51.80 30.60 30.55
/sh/ 67.00 52.60 30.38
/w/ 72.20 60.40 29.80
/ey/ 62.40 46.60 29.59
/tcl/ 49.60 28.80 29.21
/y/ 67.20 54.40 28.07
/ay/ 48.00 28.40 27.37
/uh/ 58.20 42.60 27.18
/axr/ 56.00 40.20 26.42
/v/ 53.60 37.00 26.35
/en/ 55.60 40.60 25.25
/d/ 46.40 29.00 24.51
/z/ 56.40 43.00 23.51
/f/ 63.80 52.80 23.31

/ch/ 51.00 37.00 22.22
/ng/ 59.40 48.00 21.92
/k/ 62.20 52.40 20.59

/dx/ 49.60 36.60 20.50
/th/ 52.40 40.60 19.87
/dh/ 55.80 45.80 18.45
/t/ 53.40 43.40 17.67

/ae/ 37.40 24.40 17.20
/aw/ 39.40 27.60 16.30
/hh/ 54.20 45.40 16.12
/dcl/ 39.20 27.80 15.79
/bcl/ 50.00 41.80 14.09
/ao/ 45.20 36.40 13.84
/iy/ 55.40 48.40 13.57
/gcl/ 42.00 33.00 13.43
/er/ 43.40 35.20 12.65
/el/ 66.80 62.00 12.63
/l/ 25.40 14.80 12.44

/ow/ 31.80 22.80 11.66
/r/ 40.40 33.00 11.04
/ih/ 32.60 25.40 9.65
/eh/ 31.80 24.60 9.55
/aa/ 30.00 23.40 8.62
/ah/ 27.20 21.20 7.61
/n/ 39.00 34.20 7.29
/ax/ 25.60 20.60 6.30
/m/ 31.60 27.60 5.52
/kcl/ 45.20 43.20 3.57
/s/ 57.20 57.40 -0.47

Table 2: Accuracy of a kNN classifi er on a test set of acoustic
vectors with their associated phonemic labels. Vectors are fi rst
projected into a 50-dimensional space using HLDA or regular-
ized NCA trained on a training set of 500 points per class.

HLDA has also been effectively applied to speaker
adaptation [11, 12]. For a single speaker, HLDA
will most likely perform better than in the speaker-
independent projections we learn here because multiple
speakers can introduce a high amount of variability in
the data. Specifically, the Gaussian assumption made by
HLDA may be more likely to hold for a single speaker.
When training a projection for a single speaker, it is pos-
sible that some of the gains seen when using NCA instead
of HLDA would diminish.

5. Conclusion and Future Work
We have shown that NCA can deliver significant im-
provements in speech recognition WER over PCA and
HLDA. However NCA has drawbacks, including com-
putational cost and a non-convex optimization function.
Efficient online methods of optimizing the NCA crite-
rion should be investigated. Additionally, future work
can compare NCA against similar methods with a con-
vex optimization function. Finally, there is a mismatch
between the nearest neighbor framework used by NCA
and the mixture of Gaussians used by the recognizer. A
more direct application of the NCA framework within the
recognizer is a promising area for future exploration.
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