mlerspeech

uuuuuuuu lmq ::I 08

n||'||||'|nn||| |""“”“|Iu.

A Hybrid SVM/MCE Training Approach for Vector Space
Topic Identification of Spoken Audio Recordings

Timothy J. Hazen and Fred Richardson

MIT Lincoln Laboratory
Lexington, Massachusetts, USA

Abstract

The success of support vector machines (SVMs) for classifica-
tion problems is often dependent on an appropriate normaliza-
tion of the input feature space. This is particularly true in topic
identification, where the relative contribution of the common
but uninformative function words can overpower the contribu-
tion of the rare but informative content words in the SVM ker-
nel function score if the feature space is not normalized prop-
erly. In this paper we apply the discriminative minimum classi-
fication error (MCE) training approach to the problem of learn-
ing an appropriate feature space normalization for use with an
SVM classifier. Results are presented showing significant error
rate reductions for an SVM-based system on a topic identifica-
tion task using the Fisher corpus of audio recordings of human-
human conversations.

Index Terms: topic identification, topic spotting, MCE train-
ing, support vector machines

1. Introduction

Over the last ten years, support vector machines (SVMs) have
become a popular choice of classifier for use in topic identifi-
cation (topic ID) problems, achieving state-of-the-art results on
various tasks [1]. The core training algorithm of an SVM clas-
sifier is well defined [2]. Thus, the ultimate success of SVMs
for topic ID problems is often dependent on the creation and
normalization of an appropriate input feature space and the se-
lection of the SVM kernel function. In feature spaces based di-
rectly on word counts or relative word frequencies, the relative
contribution of the common but uninformative function words
can overpower the contribution of the rare but informative con-
tent words in the SVM kernel function score if the feature space
is not normalized properly. Thus, in this paper we focus on the
issue of feature normalization within an SVM classifier using a
linear kernel. We will demonstrate how a minimum classifica-
tion error (MCE) training algorithm for feature weighting can
be adapted for use within a linear SVM approach to topic ID.

The work in this paper is motivated by our earlier success
in applying an MCE training technique to the problem of learn-
ing feature weights within a naive Bayes approach to the topic
ID problem [3]. In our earlier work we were able to separate
the process of learning Bayesian statistics from the process of
discriminatively learning feature weights. This allowed us to
preserve the basic advantages of Bayesian learning while simul-
taneously providing significant accuracy improvements from a
discriminative MCE training process.
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As we will show in Section 2, the SVM and naive Bayes
classifier both use a linear projection matrix for discriminating
between classes. Because of this fundamental similarity, we
will show in Section 3 that our MCE approach to learning fea-
ture weights for a naive Bayes classifier can also be used with
a linear SVM classifier. In Section 4 we demonstrate how our
MCE training technique leads to significant improvements in
the accuracy of an SVM system within topic ID experiments
conducted on spoken audio files from the Fisher corpus.

2. Vector Space Topic Identification
2.1. The Naive Bayes Assumption

In traditional text-based topic ID systems, a document is repre-
sented as a sequence of words . Probabilistic systems attempt
to model the likelihood of W given a topic ¢, i.e. P(W|t). Be-
cause of the difficulty in modeling this expression directly, a
conditional independence (or naive Bayes) assumption between
the words is typically applied. The use of this assumption re-
sults in the following log likelihood expression:

= cwlog P(wlt)

Yw

log P(Wt) M

Here c,, is the occurrence count of each unique vocabulary word
w within W, and the sum is computed over all words in the full
vocabulary of the classifier. The order of the words in W is thus
completely ignored when using the naive Bayes assumption.

In our naive Bayes system we apply a hypothesis testing
log likelihood ratio approach in which the score for any docu-
ment/topic pair, W and ¢, can be expressed as:

P(w|t)

P(W|t)
=2 e loE By

P(WIE)
Here,  refers to the hypothesis that the topic is not ¢.

S(W,t) = log )

2.2. The Vector Space Interpretation

The naive Bayes classifier is a specific instance of a larger set of
classifiers known as linear (or vector space) classifiers. A stan-
dard linear classifier can be described in terms of the following
matrix operation:

§=RZ 3)
Here & is a feature vector describing the test data, R is a matrix
representing the linear classifier, and § is a vector of classifier
scores, one per topic. Borrowing from prior work in call rout-
ing, we will refer to the matrix R as the routing matrix [4].

The naive Bayes classifier is easily represented in this vec-
tor space interpretation. The feature vector & is simply com-
prised of the count information for each word in the vocabu-
lary. The dimension of this vector, Ny, is the number of unique
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words in the system’s vocabulary. In the experiments presented
in this paper, the count values are all normalized into relative
frequency distributions as follows:

Cw
Tw = —— 4
W]
Thus, the L1 norm of & is always equal to one:
®)

me =1
Yw

When using the naive Bayes approach, the routing matrix is
populated with the estimated log likelihood ratios described in
Equation 2. Thus, the routing matrix has dimension Ny X Ny
(where N7 in the number of topics in the topic set) and the
individual elements of the matrix R can be defined as:

Pl
=19 p(ulp)

(6)

Tt,w

2.3. The SVM Approach

The support vector machine (SVM) approach finds a hyperplane
which (if possible) maximally separates positive and negative
training instances in some vector space. In its standard form,
an SVM is a two-class classifier. Thus, for each topic ¢, we
will produce a one-vs.-all (or in-topic vs. not-in-topic) SVM
classifier with the following scoring function:

S(E 1) = —bi + Y 0 K (5, %)
Vi

(N

Here, each vector ¥; is a unique relative frequency training in-
stance from the full collection of training documents covering
all topics. Each «;,; value represents the learned support vector
weight for the specific training instance ¢ for the SVM classifier
for topic ¢. The b; value represents the decision boundary value
for the SVM hyperplane projection. The function K (¥, %) is a
kernel function for comparing the vectors v and Z. While many
kernel functions are possible, linear kernel functions have typi-
cally been found to be sufficient for topic ID problems (i.e., the
positive and negative training instances are fully separable by a
single linear hyperplane in the original vector space). The linear
kernel function is simply the dot product ' - Z.

2.4. SVM Term Weighting

In practice, using the raw relative frequencies within the SVM
approach is sub-optimal because the dot product ¢’ - & will be
dominated by the most frequently used words, which are typ-
ically non-informative function words (e.g., articles, conjunc-
tions, prepositions, etc.). To compensate for this effect a variety
of term normalization techniques, such as inverse document fre-
quency weighting, have been proposed for the purpose of giving
greater weight to the less frequent words which are generally
more information for topic ID. Applying term normalization is
equivalent to using the following kernel function:

K(U,Z) = (¢ +0) - (¢ * T) ®)
Here gz? is a term weighting vector, and the expression (gz; * U)
generates a new vector whose value for each word (or feature)
w 18 equal to PV .
In experiments, our best accuracies have come from weight-
ing each feature w by the inverse square root of the feature’s
global frequency such that each element ¢, within 5 is:

w =1/v/P(w) ©)
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Here, P(w) is a maximum a posteriori probability (MAP) esti-
mate learned from the training data. As shown in [5], the use of
this normalization within a linear kernel function results in an
SVM whose scoring function can be viewed as a linear approx-
imation of a probabilistic log likelihood ratio scoring function.

2.5. The SVM Routing Matrix

The kernel function of Equation 8 can be inserted into Equa-
tion 7 to yield this expression:

—be+ Y i(§xT) - (G 7)

Vi

S(Z,t) = (10)

To view the SVM approach in the same form as Equation 3, we
first convert Equation 10 into this equivalent form:

—bt +Zai,t($* (g* f);) If"
Vi

S(Z,1) (1)

Next, let us define a vector l;t as an Ny dimension vector in
which every dimension has the value of b;. Using this defini-
tion in conjunction with the L1 norm constraint on Z given in
Equation 5, we can state:

(12)

By substituting by - & for by, we can rewrite Equation 11 as:

171)> - T

From this definition, it is easy to see that the SVM model for
each topic reduces to a single projection vector. Furthermore,
the collection of SVM trained vectors can be stacked to form an
Nt x Ny dimension routing matrix R whose elements are:

S(&,t) = <—z§t + (g g (13)
Vi

Tow=—bi+ Y Qiiduviw (14)

Vi

Here v; ., is the relative frequency of word w within vector vj.

3. MCE-Based Feature Weighting
3.1. MCE Algorithm

In our previous work [3], we have introduced an MCE training
approach for learning weighting factors for each feature con-
tained in the feature vector &. To achieve this, we incorporate a
new feature weighting vector \ into Equation 3 as follows:
§=R(A\ ) (15)
Thus, each individual element A\, in X serves to rescale the con-
tribution of the individual feature x.,.
We use a standard form of MCE training [6], where we be-
gin by defining a misclassification measure:
M(2) = F(Z,tc) — S(Z,tc) (16)
Here, S(Z,tc) represents the classifier score for the correct
topic tc and F(Z,tc) is a function of the scores of all of the
incorrect topics defined as follows:

1
Nt —1

F(f7 tc)

(17)

S exp(nS(@,1))

1
— log
N Vi£to



In this expression, all competing hypotheses contribute to the
misclassification measure with the highest scoring competitors
contributing the most.

The misclassification measure is then mapped by a sigmoid
loss function onto the [0, 1] continuum as follows:

1
1+ exp(—BM(T))

Here, (3 represents the slope of the sigmoid function. The loss
function will be close to zero for documents with large negative
values of M (Z) and close to one for documents with large pos-
itive values of M (Z). This loss function can be differentiated
with respect to the individual features weights and optimized
via an iterative gradient descent algorithm. The partial deriva-
tive of the loss function £(Z) with respect to a specific feature
weight A, is:

0U(Z)

(@) (18)

ar. = BUE (L= L@) (~Teowt Y Wrw)zw (19)

Vi£to

Here, the ~+’s are posterior-like weights over the incorrect top-
ics as defined by:

_ enS(@1)
thﬁetc eXP(ﬁS(fv tl))

In this expression, we can interpret the variable 7 as a posterior
scaling factor. As 7 — oo then v;;, — 1 for the best scoring
incorrect topic ¢7, and ; — 0 for all other topics.

In our system, the learning algorithm performs sequential
updating as the trainer sweeps through the training vectors, i.e.,
the weights are updated immediately after each training vector
is presented to the algorithm. The form of this update is:

L0
M

e (20)

Ay = Aw — (21)
Here € is a learning rate parameter. We do not allow any A, to
go negative in our experiments, and we further constrain A by
regularizing it as follows:

> A =Ny
Vw

Ideally, when computing the partial derivatives of £(Z), the
routing matrix used in the calculation should be trained from
data which excludes Z, thus allowing Z to appear as unseen data
in the eyes of the trainer. This can be accomplished via a jack-
knifing process over the training data. In our experiments, the
topic ID training data was subdivided into ten partitions, and
each vector Z was scored using an R matrix that was trained
from only the nine partitions of the data that did not include Z.

22)

3.2. Hybrid SVM/MCE Training

When performing MCE training of the vector X, the SVM rout-
ing matrix R remains fixed. However, after the MCE training
converges (or is otherwise halted), SVM training can be reap-
plied using an updated term weighting vector ¢7 in its linear ker-
nel function. After a full run of MCE training, each individual
term ¢, inside of q? can be updated using this expression:

P = VA * bu

Following the update, the SVM training is re-executed to learn
a new set of support vector weights given the newly updated

(23)
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kernel function. The hope is that the improved weights learned
from the MCE procedure will yield further improved perfor-
mance from the SVM retraining. However, there is no guaran-
tee that improvements will ensue as the MCE training objective
(i.e. minimum average loss) is quite different from the SVM
training objective function (i.e. maximum margin).

4. Experimental Results
4.1. Data Set

For the data set for our experiments we have used the English
Phase 1 portion of the Fisher Corpus [7]. This corpus consists
of 5851 recorded telephone conversations. During data collec-
tion, two people were connected over the telephone network
and given instructions to discuss a specific topic for 10 min-
utes. Data was collected from a set of 40 different topics. Fixed
prompts designed to elicit discussion on the topics were played
to the participants at the start of each call. For our experiments
the corpus was subdivided into four subsets:

1. Recognizer training set (3104 calls; 553 hours)

2. Topic ID training set (1375 calls 244 hours)

3. Topic ID development test set (686 calls; 112 hrs)
4. Topic ID evaluation test set (686 calls; 114 hrs)

We perform closed-set topic ID over the 40 topics in the
Fisher corpus. We evaluate our approach on both the original
text transcripts of the data as well as on the outputs of an auto-
matic speech recognition system. The topic classifier is trained
on the topic ID training set. The development set is used for
optimizing training parameters and selecting training stopping
criteria. Final results are reported on the evaluation test set.

4.2. Speech Recognition Details

In our ASR-based experiments, a network, or /attice, of speech
recognition hypotheses is generated for every audio segment
from both conversation sides of every call. Within each lat-
tice the posterior probability is computed for each hypothesized
word. An expected count for each word within a call is then
computed by summing the posterior scores over all instances of
each word over all lattices from both sides of the call.

For ASR we have used the MIT SUMMIT speech recogni-
tion system [8]. The system’s acoustic models were trained us-
ing a standard maximum-likelihood approach on the full 553
hour recognition training set specified above without any form
of speaker normalization or adaptation. For language modeling,
the system uses a basic trigram language model with a 31.5K
word vocabulary trained using the transcripts of the recognizer
training set. Because this recognizer applies very basic model-
ing techniques with no adaptation, the system performs recog-
nition faster than real time (on a current workstation) but top-
choice word error rates can be high (typically over 40%).

4.3. SVM/MCE Training Details

In our experiments we use the SVMTorch software package for
training of the SVM « and b values [2]. An initial set of 40 topic
SVM models are trained over the full training set and merged
into a single routing matrix. The same process is used to created
10 different SVM routing matrices for each jack-knifed parti-
tioning of the training data used for MCE training. It is worth
noting that our training data in all experiments is fully separa-
ble, i.e. the SVM error rate over the full training set is 0%. The
feature weights \,, are initially all set to a value of one, and the
MCE training is then applied over the training data using the



Training Topic Error Rate (%)
Iterations | Initial SVM | SVM+MCE
0 14.1 9.6
1 11.5 8.5
2 10.6 8.2
3 10.1 83
4 9.8 8.6
5 9.9 8.6
6 10.0 8.9

Table 1: Closed-set topic ID error rate using the outputs from
the ASR system on the development test set. Error rates are
shown over multiple iterations of SVM/MCE hybrid training.

sequential training algorithm described earlier. We use test runs
on the development test set to determine appropriate settings
for the training parameters (3, n and ¢) as well as the appropri-
ate number of MCE passes to run per SVM/MCE iteration, and
total number of iterations of SVM/MCE retraining to perform.
Table 1 shows the performance on the development test set
when using the ASR outputs for the settings of 5 = 10.0,
n = 1000, and ¢ = 0.1. For these results 10 MCE passes
through the data were run after each SVM retraining. Thus, the
initial SVM error rate of 14.1% is improved to 9.6% after 10
MCE passes. The weights learned from the MCE process are
then folded back into the SVM term weighting vector and the
SVM is retrained. This yields the new SVM error rate of 11.5%
which is reduced by MCE training to 8.5%, and so forth. Opti-
mal performance on the development test set was achieved after
MCE training of the second SVM retraining. Further iterations
of the SVM/MCE hybrid training harm performance on the de-
velopment set indicating over-tuning to the training set.

4.4. Back-End Calibration

In the fields of language ID and speaker ID, it has become stan-
dard practice to apply a back-end (BE) classification stage to the
output scores produced by an initial classifier. The BE classi-
fier is intended to calibrate the classifier scores, i.e. to com-
pensate for estimation errors or biases inherent in the initial
model. Our system uses a regression-based classifier from the
FoCal toolkit [9]. The BE classifier takes a feature vector of 40
topic scores as its input, and outputs a set of 40 calibrated topic
scores. It is trained using the held-out development test set.

4.5. Results

Table 2 shows the performance of our approach on the final test
set under various conditions. The two columns represent the
system performance when using the original text transcripts vs.
when using the ASR lattice outputs. The top four rows show the
performance of the SVM system both before and after the hy-
brid SVM/MCE training and when either using or not-using the
back-end (BE) classifier. For comparison, the bottom four rows
present results using the naive Bayes (NB) system discussed in
our earlier work [3] (the results here are slightly different due to
minor changes in the systems’ training parameters).

The table shows that the MCE training algorithm produces
significant improvements in both the SVM and naive Bayes sys-
tems. When no back-end classifier is used, the MCE algorithm
produces relative error rate reductions between 26% and 52%
over the various SVM and naive Bayes systems. Also, the use
of back-end calibration is particularly helpful at improving the
SVM performance when MCE training is not employed, pro-
ducing error rate reductions of 35% in the text case and 26% in
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Topic Error Rate (%)
Classifier Text ASR
Initial SVM 10.9 11.2
Initial SVM + BE 7.1 8.3
SVM + MCE 5.4 8.3
SVM + MCE + BE 5.1 7.7
Initial NB 9.8 14.7
Initial NB + BE 9.3 13.1
NB + MCE 4.7 7.9
NB + MCE + BE 5.4 7.8

Table 2: Closed-set topic ID error rate for naive Bayes (NB) and
SVM classifiers on the final test set under various conditions.

the ASR case. After MCE training, the back-end classifier only
reduces the error rate of the SVM text-based system by 5% and
the SVM ASR-based system by 7%. A similar trend is observed
in the naive Bayes case. It can be argued that the MCE feature
weight training produces scores with better calibration, though
this is a topic that needs further investigation.

5. Summary

In this paper we have presented a new hybrid SVM/MCE ap-
proach for training SVM-based topic ID systems. We have ap-
plied this approach to topic ID for human-human telephone con-
versations using both text transcripts and ASR output. The new
algorithm has significantly reduced the error rate of our SVM-
based systems, bringing them on par with our pre-existing naive
Bayes systems which are similarly trained with MCE.
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