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Abstract

This paper considers the recognition of speech given in the form
of two mixed sentences, spoken by the same talker or by two dif-
ferent talkers. The database published on the ICSLP’2006 web-
site for Two-Talker Speech Separation Challenge is used in the
study. A system that recognizes and reconstructs both sentences
from the given mixture is described. The system involves a combi-
nation of several different techniques, including a missing-feature
approach for improving crosstalk/noise robustness, Wiener filter-
ing for speech restoration, HMM-based speech reconstruction,
and speaker-dependent/-independent modeling for speaker/speech
recognition. For clean speech recognition, the system obtained a
word accuracy rate 96.7%. For the two-talker speech separation
challenge task, the system obtained 81.4% at 6 dB TMR (target-
to-masker ratio) and 34.1% at -9 dB TMR.
Index Terms: speech recognition, speech separation, speech en-
hancement, robustness.

1. Introduction
This paper investigates the problem of recognizing speech as-
suming that the test signal, from a single channel, is a mixed
signal consisting of two overlapped speech utterances. The re-
search is conducted on the Speech Separation Challenge data-
base [1], defined as the two-talker speech recognition task. The
database consists of 34 speakers (16 female, 18 male). The sen-
tences by each speaker have a command-like form, for example,
“place blue at F 2 now”, all of an identical syntactical structure:
S = <command:4> <color:4> <preposition:4> <letter:25>
<digit:10> <adverb:4>, where the number in the brackets in-
dicates the number of choices at each point. Of the six words
forming a sentence, the color, letter and number are defined as
the keywords for recognition. For each speaker, 500 utterances
are available for training. For testing, pairs of utterances, one be-
ing treated as “target” and the other being treated as “masker”, are
mixed at different target-to-masker ratios (TMRs) to form the test
utterances. The database provides test data at 7 different TMRs: 6,
3, 0, -3, -6, -9 dB and clean, where “clean” corresponds to the test
data without masker speech. Each test TMR condition contains
600 test utterances, of which, one third are masked by the same
talker, one third are masked by talkers of the same gender, and the
remaining are masked by talkers of different genders. In experi-
ments, no advanced knowledge of the TMR and speaker identities
is assumed. The database also provides an additional clean test
set, of 600 utterances, for testing clean speech recognition perfor-
mance assuming prior knowledge of no masker interference.
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By definition of the database, of the two mixing sentences
ing a test case, one will contain the word “white”. This is the
t sentence. The recognition task is to identify the letter and
ber in the target sentence. The database further assumes that
arget and masker will not speak the same color/letter/number,
ugh the two may share the other non-keywords in the same
ase.

This paper describes a system that recognizes the target key-
s through the recognition and reconstruction of both the tar-
nd masker sentences. The system involves a combination

everal different techniques, including a missing-feature ap-
ch for improving crosstalk/noise robustness, Wiener filter-
for speech restoration, HMM-based speech reconstruction,
speaker-dependent/-independent modeling for speaker/speech
gnition. The combination aims to implement a “complete”
ration process: taking the mixed speech waveform as input,
producing separated target and masker waveforms as output,
g with the word recognition results for both mixing utterances.

2. Proposed System
An overview

1 illustrates the structure of the proposed system. The input
ch waveform is divided into short-time frames, denoted by wt.
wt is a mixed signal of target and masker, of an unknown
. For convenience, we note the sentence with a higher energy
as the primary sentence, and the sentence with a lower en-
ratio as the secondary sentence. The system separates the two
nces in five steps, operating in sequence.

In Step 1, the system aims to identify the primary sentence
the mixed signal by treating the secondary sentence as noise.
eaker-dependent (SD) system, consisting of HMMs for the
idual speakers, is used in the recognition to exploit both the

ker and the energy ratio information of the primary sentence.
speaker HMM is a subband union model [3], implementing a

ing-feature technique for reducing the crosstalk noise from the
ndary sentence. It is assumed that the model for the primary
nce will produce maximum probability due to the matched

ker characteristics, higher energy ratio, and improved noise
stness.
In Step 2, the spectra and waveform of the primary sentence
econstructed using an algorithm exploiting the most-likely
sequences of the primary sentence. The reconstructed signals
sed for waveform output and for Wiener filtering – for restor-
he signal of the secondary sentence by removing the signal of
rimary sentence from the mixed input. The Wiener filtering
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operation forms Step 3.
In Step 4, the restored signal for the secondary sentence is

recognized for words by using a speaker-independent (SI) system,
trained using data from all the speakers. The SI system is again
a subband union model, for reducing the residual noise in the fil-
tered signal for recognition. The use of an SI system in place of
the SD system is found to be important for the filtered signals – for
greater robustness to the alteration/mismatch of the speaker char-
acteristics caused by the filtering operation. Step 5 involves the
reconstruction of the waveform for the secondary sentence, using
an algorithm similar to that for the primary sentence in Step 2. The
following describes each component of the system in more detail.

2.2. Subband union model for recognition

The subband union model is used to build both the SD and SI
recognition components. The model is a missing-feature method,
aiming to focus the recognition on uncorrupted frequency-bands
thereby reducing the crosstalk interference/noise on recognition.
Let y = (y(1), y(2), ..., y(B)) be an input speech frame consist-
ing of B independent subbands y(b) subject to crosstalk/noise cor-
ruption (the frame-time subscript is omitted for simplicity). The
union model is used to select the clean or usable subbands for
recognition. Without assuming prior information on the corrup-
tion, the reliable subbands may be defined as the subbands that
maximize the probability of the state for y. Denote by ŷ the esti-
mate, which is a subset in y, then ŷ = arg maxy′∈y p(s|y′), where
p(s|y) is the probability of state s given y, defined below:

p(s|y) =
p(y|s)p(s)

s′ p(y|s′)p(s′)
(1)

where p(y|s) is the state-conditioned probability of y, p(s) is a
state prior, and the summation in the denominator is over all possi-
ble states for frame y. For clean-data trained HMMs, the clean data
are most likely to produce maximum probabilities for the matched
states. Therefore it is likely to find the clean/usable subbands by
maximizing the probability of the state for the subbands, as imple-
mented in the above algorithm.

The above model can be incorporated into an HMM by using
the maximized state probability, maxy′∈y p(s|y′), as the HMM
state-emission probability [3]. The maximization for estimating
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eliable subbands can be computed efficiently by approximat-
he probability p(y′|s) in (1), for any subset y′, by the proba-

of the union of all subsets of the same size as y′, i.e.,

p(y′|s) ∝
all y∗∈y,size(y∗)=size(y′)

p(y∗|s) (2)

that the union probability (2) is not a function of the identity
bset y′ but only a function of the size of y′. This approx-

ion turns the maximization for the identity of the subset of
eliable subbands to the maximization for the size of the sub-
which has a much lower complexity. Thus we call the above
el the union model.

HMM-based speech reconstruction

lgorithm is developed for reconstructing the spectra X̂1
t , X̂2

t ,
waveforms x̂1

t , x̂2
t , of the primary and secondary sentences

d on the recognition results from the SD/SI components. In
ing the SD/SI subband HMMs, a prototype spectrum – suit-
for speech reconstruction – is estimated for each HMM state
ixture component using the training data frames assigned to
tate or mixture component. In the system, the average log
magnitude, taken over all the training frames within the state
ixture component, is used as the prototype spectrum (code-
). Consider the SD recognition component. Denote by Am,i

odeword for speaker m in state i. Given a mixed test utterance
t = 1, 2, ..., T , the subband SD model produces an estimate
he primary speaker/sentence, which can be represented by m̂
he speaker and by ŝt, t = 1, 2, ..., T , for the most-likely state
ence of the primary sentence spoken by the speaker. The m̂
ŝt can be used to retrieve a clean codeword sequence Am̂,ŝt ,
1, 2, ..., T , for reconstructing the spectra and waveform of the
ary sentence, thereby separating the sentence from the mixed
al. Denote the estimate for the short-time log FFT magnitude
he primary sentence as ln X̂1

t = Am̂,ŝt . The corresponding
form estimate, x̂1

t , can be obtained by an inverse FFT of X̂1
t ,

ming that the short-time phase can be approximated by the
e of the mixed signal, Pt [5].
The above method, modified slightly, can be applied within
I component for reconstructing the signal of the secondary
Figure 1: Schematic diagram of the proposed system for speech separation.



sentence based on the SI recognition result. The difference is that
in the SI model a codeword is estimated for each mixture com-
ponent within each state, thereby obtaining a good resolution for
reconstructing the speaker characteristics. Denote by Am,i the
codeword for mixture component m in state i. The maximiza-
tion described in Section 2.2, for estimating the reliable subbands,
can be moved inside the state and applied over the individual mix-
ture components, to obtain a most-likely mixture component for
each given frame for reconstruction. Let y2 denote an input frame
consisting of subband features for the SI model. The maximized
state probability, used as the state-emission probability within the
model, is defined as

max
y′∈y2

p(s|y′) =
m

max
y′∈y2

p(s, m|y′) (3)

where p(s, m|y) is the probability of state s and mixture compo-
nent m given y, defined similarly to (1) as

p(s, m|y) =
p(y|s, m)p(m|s)p(s)

s′,m′ p(y|s′, m′)p(m′|s′)p(s′)
(4)

where p(y|s, m) is the probability of y on state s and mixture com-
ponent m, p(m|s) is the mixture weight in state s, and p(s) is
a prior probability of state s. Given the most-likely state ŝt for
frame y2

t , the most-likely mixture component can be obtained by
choosing the maximum-probability component within the state:
m̂t = arg maxm,y′∈y2

t
p(ŝt, m|y′). Therefore a codeword se-

quence Am̂t,ŝt , t = 1, 2, ..., T , addressed jointly by the most-
likely state sequence ŝt and mixture-component sequence m̂t, can
be retrieved as an estimate for the short-time log FFT magnitudes
of the secondary sentence: ln X̂2

t = Am̂t,ŝt . The corresponding
waveform estimate x̂2

t can be obtained from X̂2
t by an inverse FFT,

using the short-time phase Pt from the mixed input signal wt.

2.4. Wiener filtering for speech enhancement

Given the estimate X̂1
t of the primary sentence, we can obtain an

estimate Ŵ 2
t for the secondary sentence by removing X̂1

t from the
mixed input Wt, assuming all three quantities in the same short-
time FFT magnitude format. The enhanced signal Ŵ 2

t is then used
as the input for the SI model for recognizing the secondary sen-
tence. In the system, a Wiener filter is used for the enhancement:
Ŵ 2

t (f) = Ht(f)Wt(f). The short-time filter function has a sim-
ple form:

Ht(f) =
PŴ2

t
(f)

PWt(f)
(5)

where PWt(f) is a smoothed periodogram of the mixed input sig-
nal wt, and PŴ2

t
(f) is a smoothed periodogram of the secondary

sentence estimated using the following spectral subtraction

PŴ2
t
(f) = PWt(f) − gX̂1

t (f)
2

(6)

where X̂1
t (f)

2
is the codeword-based periodogram for the pri-

mary sentence treated as noise, and g is a gain factor for match-
ing the gain of the codeword to the gain of the primary sentence
in the mixed observation Wt(f). In the system, g is decided
on a sentence-by-sentence basis, by minimizing the sentence-
level mean square error between X̂1

t (f) and Wt(f) over all pe-
riodogram bins and frames:

g = arg min
g′

T

t=1 f

Wt(f) − g′X̂1
t (f)

2
(7)

Solv

It is
resu
tion.

The
of 2
by a
bank
ergie
deco
gies
26 D
first-
ing i
the S
mag
asso
for s

out s
32 m
is a G
pose
ing a
the S
expe
cons
for r

3.1.

The
with
nitio
the s
iden
ditio
seco
for t
onda
one
data
self
Wien
sign
sente
are t
sente
word
rates
TMR

mask
algo
struc

95

INTERSPEECH 2006 - ICSLP
ing (7) gives

g =

T
t=1 f Wt(f)X̂1

t (f)

T
t=1 f X̂1

t (f)
2 (8)

assumed that PŴ2
t
(f) = αPWt(f) if the subtraction in (6)

lts in a negative value, where α defines the maximum attenua-
An α = 0.3 is used in the system.

3. Experimental Results
speech signal, sampled at 25 kHz, is divided into frames

0 ms at a frame period of 10 ms. Each frame is analyzed
512-point FFT, followed by a 27-channel mel-warped filter
producing 27 log-scale energies. The 27 log filter-bank en-

s are then passed to a high-pass filter H(z) = 1 − z−1 for
rrelation [4], obtaining 26 decorrelated log filter-bank ener-
(DLFBE). The final frame vector is formed by grouping the
LFBE uniformly into 13 subbands, with the addition of the
order and second-order derivatives for each subband, result-
n a 13-subband, 39-stream frame vector for being modeled by
D/SI union models for recognition. The 257 short-time FFT

nitudes derived from the FFT are used to form the codewords,
ciated with the states/mixture components of the SD/SI model,
peech reconstruction.
Each word is modeled by a 14-state left-to-right HMM with-
tate skipping, with one mixture per state in the SD model and
ixtures per state in the SI model. Each mixture component
aussian density with a diagonal covariance matrix. The pro-

d system is first tested on the clean test set (ssn) for recogniz-
ll three keywords and achieves 96.79% word accuracy rate by
D model component. The following describes two separation
riments. The first shows the system for recognizing and re-
tructing both mixing sentences. The second shows the system
ecognizing the target sentence constraining a certain keyword.

Recognition and reconstruction of two mixing sentences

experiment considers recognizing both target and masker,
all three keywords, color/letter/number, included in the recog-
n. In the system, both the SD and SI models are subjected to
yntactical/grammatical constraint S defined in Section 1 for
tifying the primary/secondary sentences. The SI model is ad-
nally subjected to a no-repetition constraint in identifying the
ndary sentence, i.e., the keywords that have been recognized
he primary sentence are not assumed to occur again in the sec-
ry sentence. To cope with the condition that there may be only
sentence/speaker in the signal, a silence state, trained using
without speech and allowed to have an unlimited number of

loops, is included in the SI model to absorb the signal from the
er filter with the only sentence being removed from the input

al. For each test sentence, the system produces two recognized
nces, one for the target and the other for the masker. There
wo possible matches: primary sentence is target/secondary
nce is masker, or vice versa. The closer match, with fewer
errors, is used for scoring. Table 1 shows the word accuracy
for color/letter/number for the target and masker at different
s, calculated based on the algorithm defined in [2].

Fig. 2 shows an example of reconstructing the target and
er signals, produced by the system using the codeword-based

rithm described in Section 2.3. More examples of the recon-
ted signals in a WAV format can be found in [6].
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Figure 2: Separation and reconstruction of sentence t20-lwwd7n-
m6-lrwe8a, TMR = 0 dB. From top: mixed signal, reconstructed
target, reconstructed masker.

3.2. Recognizing target

A new experiment is conducted to meet the Challenge requirement
– recognizing the letter/number in the target sentence that con-
tains keyword “white”. This is slightly different from the above
two-sentence recognition task, requiring explicit identification of
the target sentence from the mixed signal by correctly recogniz-
ing the color keyword. To achieve this, we re-run the recogni-
tion of the mixed signal with two recognizer configurations. In
the first configuration, the grammar for the SD component forces
the word white while the grammar for the SI component disallows
the word white. This produces two recognized sentences, with re-
spective probability scores PSD(w) (for the primary sentence from
the SD component with word white), and PSI(no w) (for the sec-
ondary sentence from the SI component without word white). In
the second configuration, the grammars for the SD and SI compo-
nents are swaped, i.e., SD disallowing word white while SI forcing
word white. This produces two new recognized sentences, with
respective probability scores PSD(no w) (for the primary sentence
without word white), and PSI(w) (for the secondary sentence with
word white). Then a decision is made to choose either the first
or second configuration result as output dependent on which of
the joint probabilities, PSD(w)PSI(no w) or PSD(no w)PSI(w), is
greater. Table 2 presents the recognition results by the system.
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e 2: Word accuracy rate (%) for letter/number in recognized
t containing word “white”.

TMR (dB) ST SG DG Average
clean 95.17

6 73.08 85.75 86.75 81.42
3 61.54 80.45 82.25 74.08
0 52.49 65.36 72.75 63.08
-3 46.15 56.42 62.75 54.75
-6 38.24 41.89 49.25 43.00
-9 32.81 31.56 38.00 34.17

4. Conclusions
paper described a system for the recognition and reconstruc-
of two overlapped sentences, given only the mixed sinal. The
m was built upon a combination of different techniques, aim-
o exploit simultaneously the speaker, energy-ratio, grammati-
onstraint, training data and acoustic model information, en-
ed by the missing-feature theory for ignoring mismatches.
system was tested on the two-talker database from the Speech
ration Challenge, and was found to perform significantly bet-
an our baseline, ‘do-nothing’ model. Some of the techniques
in the system were applied earlier to speaker verification [7].
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	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by Timothy J. Hazen
	------------------------------

