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ABSTRACT

In general, most systems for face and speaker identification
are tested on high quality data collected in well-lit and quiet
environments. In this study, we investigate the application
of existing face and speaker identification techniques to the
task of user authentication on a handheld device. In this
context, the audio/visual capture hardware is of lower qual-
ity than equipment typically used in laboratory experiments.
Additionally, variable background conditions which can de-
grade the audio/visual signal may be present. These fac-
tors can be expected to harm the performance of the system.
Under these circumstances, using a combination of biomet-
ric modalities can improve the robustness and accuracy of
the person identification task. In this paper, we present our
approach for combining both face and speaker identifica-
tion technologies on a handheld device, and experimentally
demonstrate a fused multi-modal system which achieves a
90% reduction in equal error rate over the better of the two
independent systems.

1. INTRODUCTION

This paper investigates the integration of two biometric tech-
niques, face and speaker identification, into handheld de-
vices. This research is spurred by the recent increased popu-
larity of commercially-available handheld computers which
have allowed computation to become more mobile and per-
vasive. Formerly specialized devices, such as cellular tele-
phones, now offer a range of capabilities beyond simple
voice transmission, such as the ability to take, transmit and
display digital images. As these devices become more ubiq-
uitous and their range of applications increases, the need
for security also increases. To prevent impostor users from
gaining access to sensitive information, stored either locally
on a device or on the device’s network, security measures
must be incorporated into these devices. Face and speaker
verification are two techniques that can be used in place of,
or in conjunction with, pre-existing security measures such
as personal identification numbers or passwords.

Handheld devices offer two distinct challenges for stan-
dard face and voice identification approaches. First, their
mobility ensures that the environmental conditions the de-
vices will experience will be highly variable. Specifically,
the audio captured by these devices could contain highly
variable background noises producing potentially low signal-
to-noise ratios. Similarly, the images captured by the de-
vices can contain highly variable lighting and background
conditions. Second, the quality of the video and audio cap-
ture devices is also a factor. Typical consumer products are
constrained to use audio/visual components that are both
small and inexpensive, resulting in a lower quality audio
and video than is typically used in laboratory experiments.

To examine these issues we have developed a prototype
system for incorporating two biometric techniques, speaker
identification and face identification, into a mobile device.
Results of an early evaluation of this system were previ-
ously reported in [1]. In our previous study, we evaluated
a combined face and speaker identification system within
a user verification “login” scenario on an iPAQ handheld
computer. The combined system was able to achieve a 50%
reduction in the verification equal error rate (EER) over a
system using only our speaker identification technology. This
large improvement in performance was attained despite the
fact that speaker identification system achieved an EER that
was 75% smaller than that of the face identification system.
This result was surprising because it showed that large im-
provements could be obtained through the combination of
different biometric systems, even when one of the systems
was vastly superior in accuracy to the other. In the work
conducted in this paper, we improve upon our previous re-
sults by replacing our older, simpler face identification sys-
tem with a newer state-of-the-art system.

The rest of the paper is organized as follows. We first
present an overview of our two biometric techniques and the
fusion technique for combining them. Next, we discuss the
mobile-device paradigm in which we are conducting our ex-
periments and the methods of data collection employed. We
follow this with experimental results showing the perfor-
mance of the two biometric techniques on the data we have
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collected, both individually and in combination. Finally, we
summarize and discuss the results and present plans for fu-
ture directions of our work.

2. PERSON IDENTIFICATION

2.1. Speaker Identification

Speech has long been recognized as a reasonable biometric
for person identification. However, speech is a variable sig-
nal whose main purpose is not to specify a person’s identity
but rather to encode a linguistic message. In systems where
the linguistic content of the speech is unknown (e.g. for
surveillance tasks), text-independent speaker identification
systems are generally used. However, in security applica-
tions where the user is cooperative in the attempt to prove
his/her identity, the linguistic content of the speech mes-
sage is typically known and can be tightly constrained. In
this case, a text-dependent system can be used. When the
linguistic content of the message is known, text-dependent
speaker recognition systems generally perform better than
text-independent systems because they can tightly model
the characteristics of the specific phonetic-content contained
in the speech signal.

A common technique used in speech-based person iden-
tification is to prompt the user with a randomly generated
challenge phrase. During authentication, automatic speech
recognition can be used to verify that the spoken utterance
matches the prompted utterance. For this type of scenario,
it is both reasonable and beneficial to use the automatic
speech recognition (ASR) output to leverage the phonetic
constraints that give text-dependent systems their advan-
tage. In [2], two techniques were described that use the ASR
output during the analysis of the phonetic content from the
test utterance.

In our speaker adaptive ASR approach, the system uses
speaker-dependent speech recognizers to model each speaker.
During training, phonetically transcribed enrollment utter-
ances are used to train context-dependent phonetic mod-
els for each speaker. During testing, a speaker-independent
ASR component generates a phonetic transcription from the
test utterance. This transcription is then used by the sys-
tem to score each segment of speech against each speaker-
dependent phonetic model. Modeling speakers at the pho-
netic level can be problematic because enrollment data sets
are typically too small to build robust speaker-dependent
models for every context-dependent phonetic model. To
compensate for this difficulty, we use an adaptive scoring
approach in which the speaker-dependent (SD) score is in-
terpolated with a speaker-independent (SI) score.

Mathematically, if the word recognition hypothesis as-
signs each feature vector x from the utterance X to phonetic

unit j, then the score for speaker Si, p(X |Si), is given by

1

|X |

∑

x∈X

log

(

λi,jpSD(x|Mj , Si) + (1 − λi,j)pSI(x|Mj)

pSI(x|Mj)

)

where Mj is the model for phonetic unit j and λi,j is an
interpolation factor given by

λi,j =
ni,j

ni,j + τ
.

In this equation, ni,j is the number of training examples of
phonetic unit j observed for speaker Si, and τ is a global
tuning parameter that is set empirically using a separate
development set. The log ratio in the equation generates
positive scores when the input speech is a good match to
a particular speaker’s models and negative scores when the
speech is a poor match.

This scoring strategy results in models that capture de-
tailed phonetic-level characteristics for a speaker when suf-
ficient training data is available, but relies more on speaker
independent models for phonetic units with sparse training
data. Thus, for cases with limited training data, the speaker
independent model provides a more neutral score. In the
limiting case, if no speakers have training data for any of
the phones observed in a particular test utterance, then they
will all receive the same neutral score of zero, which is an
intuitively consistent result.

2.2. Face Identification

The face identification framework used in our work is simi-
lar to the one described in [3], but with some differences in
detection and classification methods.

2.2.1. Face Detection

A two-step process is used for face detection. First, a fast
hierarchical classifier similar to the one described in [4] is
applied to the captured image, to roughly localize the face
in the image. The region around the face is then cropped out
from the larger image, histogram equalized, and scaled to a
fixed size.

Next, a component-based face detector [3] is applied
to the extracted region to precisely localize the face and to
detect facial components. This method first independently
applies component detection classifiers to the face image.
Each of these support vector machine (SVM) classifiers is
trained to detect a particular component, such as a nose,
mouth, or left eyebrow. In all, 14 face components are used,
and each component classifier is evaluated over a range of
positions in the vicinity of the expected location of the de-
sired component. A geometrical configuration classifier is
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Fig. 1. A sample image and its face detection result with the
face component regions superimposed.

then applied to the combined output of each of the 14 com-
ponent classifiers from each candidate position. The candi-
date positions that yields the highest output of the second-
level classifier are taken to be the detected component posi-
tions.

Ten out of the 14 components are used for face recog-
nition. The remaining four are not used because they ei-
ther overlap heavily with other components, or display few
structures of use in distinguishing people from one another.
The gray values of the ten selected components are normal-
ized in size and combined into a single feature vector. The
feature vector serves as input to the face recognizer. Fig-
ure 1 illustrates an enrollment image, as well as its selected
face region with the positions of the facial components as
detected by our system.

2.2.2. Face Recognition

For recognition, a one-vs-all SVM scheme is used, where
one classifier is trained to distinguish each person in the
database from all the others [5]. In the SVM training pro-
cess, for each person’s classifier, the feature vectors corre-
sponding to that person’s training images are used as posi-
tive examples, and the feature vectors corresponding to all
the others’ images are used as negative examples. The SVM
training process finds the optimal hyperplane in the feature
space that separates the positive and negative data points.
Since the training data may not be separable, a mapping
function corresponding to a second-order polynomial SVM
kernel function [5] is applied to the data before training.

The runtime recognition process consists of computing
the SVM classifier output score for each person’s SVM clas-
sifier [5]. The scores are zero-centered – that is, a score of
zero means the data point lies directly on the decision hy-
perplane, and positive and negative scores mean the data
point lies on the positive and negative example side of the
decision hyperplane, respectively. The absolute value of
the SVM output is a multiple of the distance from the de-
cision hyperplane, and could be normalized to produce the
distance. Thus, a highly positive score represents a large
degree of certainty that the data point belongs to the per-
son the SVM was trained for, and a highly negative score
represents the opposite. The output scores from all SVM
classifiers make up the n-best list that we treat as our face
recognition result.

For our face identification task, we collected and tested
frontal face image data only. Most state of the art face iden-
tification systems attempt to account for rotations in and
out of the image plane, and/or occlusions – which would
be present in a typical surveillance task. However, for the
handheld face identification problem, the user will be coop-
erating with the identification process; and in general, the
user certainly will be looking at the screen of the hand-
held device as he or she is using it. Thus, accounting for
heavily rotated or occluded faces is not important in this
project. Generally, rotations or occlusions in face images
make the problem of identification more challenging; thus,
our problem is easier in this respect. Nonetheless, the vari-
able lighting and background conditions and inexpensive
camera present an orthogonal challenge, to ensure the non-
triviality of our problem.

2.3. Multi-Modal Fusion

Past work on fusing face and speaker classifiers has gener-
ally used very simple combination strategies. Poh and Ko-
rczak used a logical AND rule on the results of their inde-
pendent face and speaker systems [6]. This rule is most
useful when the goal is to limit false acceptances, since
both classifiers must accept the user in order to produce
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an acceptance by the fused-classifier. Brunelli and Falav-
igna [7] and Kittler et al [8] use basic probabilistic com-
bination operators on the outputs from their independent
recognizers. Bigün et al utilize a Bayesian statistics ap-
proach which compensates for biases and interdependen-
cies between different classifiers [9]. An alternative to these
statistical fusion approaches is the use of discriminatively
trained methods such as decision trees or linear discrimi-
nant functions [10].

In our work, a linear weighted summation is employed
for the classifier fusion where the weights for each classi-
fier are trained discriminatively on a held-out development
set using minimum classification error (MCE) training. The
MCE training optimizes the equal error rate of false accep-
tances and false rejections under the user verification sce-
nario. Because the final decision only requires the combi-
nation of two independent classifiers, only one additional
parameter (the ratio of the weights of the classifiers) needs
to be learned. A simple brute force sampling of the param-
eter space is used for this MCE training. More complicated
techniques (such as gradient descent training) could be used
in situations where more than two scores must be fused.

3. EXPERIMENTS

3.1. The Handheld Device

For our experiments we utilized a collection of iPAQ hand-
held computers. Speech data were collected utilizing the
built-in microphone of the iPAQ. Two different models of
iPAQs were used, with two different models of off-the-shelf,
inexpensive electret condenser microphones. Face data were
collected using a 640x480 CCD camera located on a custom-
built expansion sleeve for the iPAQ. The iPAQ handheld
computer, combined with the custom sleeve, is the hand-
held device platform used for pervasive computing research
in the MIT Oxygen Project [11]. An image of the iPAQ with
the expansion sleeve is shown in Figure 2. Because of the
current computation and memory limitations of the iPAQ
handhelds, the images and audio are captured by the hand-
held device, but then transmitted over a wireless network
to servers which perform the operations of face detection,
face identification, speech recognition, and speaker identi-
fication. In future work we hope to improve the computa-
tional efficiency and memory footprints of our systems so
they can be deployed directly on small handheld devices.

3.2. The Login Scenario

Our experiments were conducted using a login scenario that
combined face and speaker identification techniques to per-
form the multi-biometric user verification process. When
“logging on” to the handheld device, users snapped a frontal
view of their face, spoke their name, and then recited a

Fig. 2. The iPAQ handheld computer used in this study.

prompted lock combination phrase consisting of three ran-
domly selected two digit numbers (e.g. “25-86-42”). The
system recognized the spoken name to obtain the “claimed
identity”. It then performed face verification on the face
image and speaker verification on the prompted lock com-
bination phrase. Users were “accepted” or “rejected” based
on the combined scores of the two biometric techniques.

3.3. Data Collection

For our set of “enrolled” users, we collected face and voice
data from 35 different people. Each person performed eight
short enrollment sessions, four to collect image data and
four to collect voice data. For each voice session, each user
recited 16 prompted lock-combination phrases. Each im-
age collection session consisted of the user taking 25 frontal
face images in a variety of rooms in our lab with differ-
ent lighting conditions. No specific constraints were placed
on the distribution of the locations and lighting conditions;
users were allowed to self-select the locales and lighting
conditions of their images. To illustrate the quality of the
images, Figure 3 shows two sample images captured during
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Fig. 3. Two sample images collected on the iPAQ.

the data collection.
During image collection, a fast face detector [12] was

applied to each captured image to verify that the image in-
deed contained a valid face. This face detector occasionally
rejected images when it failed to locate the face in the im-
age with sufficiently high confidence. When this occurred
the user was instructed to capture a new image. Due to a
conservative face detection confidence threshold, no false
positives (i.e., images with incorrectly detected faces) were
observed from this face detector during the data collection.
It is important to note that the face detector used during our
data collection was not the same one used in the experi-
ments in this paper.

Each voice and image session was typically collected
on a different day, with the time span between sessions of-
ten spanning several days and occasionally a week or more.
Each enrollment session typically lasted less than 5 min-
utes with the total enrollment time taking approximately 30
minutes on average. In total this yielded 100 images and
64 speech samples per enrolled user for training. An ad-
ditional set of four enrollment sessions of audio data (i.e.,
64 additional utterances) from 17 of the training speakers

was available for development evaluations and multi-modal
weight fusion training.

For our evaluation, we collected 16 sample login ses-
sions from 25 of the 35 enrolled users. This yielded 400
unique utterance/face evaluation pairs from enrolled users.
We also collected 10 impostor login sessions from 20 peo-
ple not in the set of enrolled users for an additional 200
utterance/face evaluation pairs from unenrolled people.

We used the evaluation data to perform our user veri-
fication experiments. Each utterance/face pair from in-set
speakers was used as a positive example of that user. This
yielded a total of 400 positive examples for our evaluation.
Each utterance/face pair from each in-set user could also be
used as an impostor for the other 34 users in the enrolled set.
This yielded 13600 impostor examples from in-set speakers.
Each utterance/face pair collected from out-of-set impostors
was also used to generate an impostor example for each of
the 35 users in the enrolled set. This yielded 7000 impostor
examples from users not in the enrollment set. In general,
it is expected that impostors that have never been observed
by the system will generate more classification errors than
enrolled users who try to impersonate other enrolled users.
This is because the models are trained to discriminate be-
tween users observed in the training data and thus may not
generalize well to unseen users.

3.4. Training

The face and speaker systems were trained on the enroll-
ment data for the 35 enrolled users. To train the fusion
weights, one of the four face enrollment sessions was held
out and a development face ID system was trained on the
remaining three face sessions. Face identification scores
from this held-out set were pairwise combined with speaker
identification scores generated for utterances from the exist-
ing speaker identification development set. The true in-set
examples and in-set impostor examples were provided to
the MCE weight training algorithm previously described to
generate the multi-modal fusion weights.

3.5. Face Detection Issues

For the experiments presented in this paper, the face detec-
tion algorithm used during the evaluation is not the same
as the face detection algorithm used during the data collec-
tion. The detection algorithm used during the evaluation
was specifically tuned to accept facial images that are well
suited to the component-based classification method used
for face identification. Because this classification method
works best with frontal images of faces that are not tilted or
contorted, the face detection algorithm was initially tuned
such that tilted or contorted faces were rejected. The face
detection algorithm used during our data collection was less
conservative in its accept/reject decision of a hypothesized
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Table 1. User verification results expressed as equal error
rates (%), when forcing the face detector to output a de-
tected face, on three systems (face only, speaker only, and
multi-modal fusion) under two impostor conditions (known
in-set impostors vs. unknown out-of-set impostors).

System In-set Impostors Out-of-set Impostors
Face 3.21% 4.87%

Speaker 0.75% 1.66%

Fused 0.24% 0.66%

face in an image. As a result, a sizable number of images
in the training and evaluation data sets were rejected by the
new face detection algorithm.

Because of the reduced number of images for our evalu-
ation, we could not make a direct comparison with our pre-
vious test results. To allow us to make this comparison, we
elected to run two experiments, one where the conservative
face-detection decisions were used and a second experiment
where the face detection algorithm was forced to output a
detected face even if the image’s detection score fell below
the standard acceptance threshold. These two experiments
allow us to examine the trade-off between the added gain
in accuracy enabled by stricter control in the input facial
images, and the potential added inconvenience of requiring
users to provide an untilted, uncontorted frontal image.

3.6. Experimental Results

3.6.1. Forced Face Detection Results

Table 1 shows our user verification results for three systems
(face ID only, speaker ID only, and our full multi-modal sys-
tem) under two different impostor conditions (using only
known in-set impostors vs. using only unknown out-of-
set impostors). This experiment uses a detection threshold
which forces the face detector to output a face hypothesis for
all of the images, even when the detection confidence score
is low. Figure 4 shows the results for the out-of-set impostor
evaluation on a detection error trade-off (DET) curve.

Several observations should be made from these results.
First, the speaker ID system has an equal error rate (EER)
which is three times smaller than that of the face ID system
when evaluated with unknown out-of-set impostors. These
face ID results are better than our previously reported results
in which the face ID system produced an EER which was
four times larger than the speaker ID EER.

Next, the combined system has a 60% reduction in EER
from 1.66% in the speech only system to 0.66% in the com-
bined system. This is a slightly better improvement than
the 50% reduction we had observed in our previous study.
This demonstrates that sizable improvements can be ob-
tained when multiple independent biometric techniques are
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Fig. 4. DET curves for face and speech systems run inde-
pendently and in combination when tested using impostors
unknown to the system and when using a face detector that
is forced to output a detected face for each input image.

combined even when one biometric technique performs sub-
stantially better than others.

Finally, it is interesting to note that the combined sys-
tem achieves an EER of only 0.24% on the in-set impostor
experiment. In other words, the EER when using the un-
known impostors is 2.75 times greater than the EER of the
in-set impostor experiment. This shows the importance of
evaluating the system using people that are not part of the
training data.

3.6.2. Conservative Face Detection Results

When applying the conservative face detection threshold
to the evaluation utterances, 12% of the images were re-
jected. To evaluate the system under these conditions, the
face ID system was first re-trained using the same threshold

Table 2. User verification results expressed as equal er-
ror rates (%), when using the conservative face detection
threshold on three systems (face only, speaker only, and
multi-modal fusion) under two impostor conditions (known
in-set impostors vs. unknown out-of-set impostors).

System In-set Impostors Out-of-set Impostors
Face 1.66% 2.57%

Speaker 0.77% 1.63%

Fused 0.00% 0.15%
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Fig. 5. DET curves for face and speech systems run in-
dependently and in combination when tested using impos-
tors unknown to the system and when using the conservative
face detection threshold.

for detection. The system’s verification results were then
re-computed using the 88% of the data that passed the more
conservative face detection threshold.

Table 2 shows the equal error rates under these new
constraints. The face ID system shows a nearly 50% im-
provement in EER performance over the forced detection
result when the images with poor face detection scores were
discarded. When used in conjunction with the speaker ID
component, the combined system achieved an EER of only
0.15% when testing with out-of-set impostors. This a size-
able 90% reduction in EER from the speech only system!
This combined system also achieved perfect separation be-
tween true users and in-set impostors resulting in a 0.0%
EER on the in-set impostor experiment. This demonstrates
that highly accurate biometric authentification can be ob-
tained if the user is willing accept additional constraints on
the verification process that may increase the inconvenience
of the system. Unfortunately, because so few errors are ob-
served, due to the limited size of our evaluation set, it is not
possible to make any firm claims about the absolute level of
the error rate of the system. We plan to increase the size of
our evaluation set in future experiments.

3.6.3. Comparison with YOHO Corpus

To examine the degradation that might be experienced when
our speaker identification technique is utilized in a mobile
environment, we compared the performance of closed-set

speaker recognition on the mobile handheld data set against
the performance of our system on the tightly constrained
YOHO corpus, which uses the same lock combination phrase
approach that we employed [13]. It is important to note
that the YOHO corpus was collected using a single close-
talking telephone handset in a quiet office, and thus does
not suffer from the degradations that are present in our mo-
bile devices due to the low quality far-field microphone and
the variable background conditions. In [2], it was shown
that our system’s speaker recognition error rate was 0.31%
over YOHO’s closed-set of 138 speakers. Using our 400 ut-
terance in-set speaker evaluation set, our system’s speaker
recognition error rate was 0.25% over our closed set of 35
enrolled speakers (i.e., only one misrecognition in 400 tri-
als). Thus we have achieved roughly the same error rate as
on YOHO, but only with a much smaller set of speakers.

4. SUMMARY AND FUTURE WORK

In summary, our initial study in biometric fusion for user
verification has demonstrated the benefits of combining face
and speaker identification even when one of the biometric
techniques has superior performance to the other. A 90%
reduction in user verification equal error rate was observed
when our speaker identification system was fused with a
face identification system. This result was achieved with a
system that forces the user to provide a frontal image that
can be automatically detected with a high-level of confi-
dence. By adjusting the confidence-level of the face detec-
tor, the system can reduce the inconvenience of re-capturing
images when the face detector fails, but at the expense of re-
duced user verification accuracy.

Though this study demonstrated the feasibility of our
approach, our current evaluation set is quite small. In fu-
ture work we plan to expand the size of evaluation set and
examine the specific types of errors the system makes. We
also plan to investigate the performance of the system un-
der the conditions where impostors are specifically selected
based on resemblances of their voice or facial properties
(i.e., same gender or ethnicity) to particular enrolled users.
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