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Abstract

This paper considers the separation and recognition of overlapped speech sentences

assuming single-channel observation. A system based on a combination of several differ-

ent techniques is proposed. The system uses a missing-feature approach for improving

crosstalk/noise robustness, a Wiener filter for speech enhancement, hidden Markov

models for speech reconstruction, and speaker-dependent/-independent modeling for

speaker and speech recognition. We develop the system on the Speech Separation

Challenge database, involving a task of separating and recognizing two mixing sen-

tences without assuming advanced knowledge about the identity of the speakers nor

about the signal-to-noise ratio. The paper is an extended version of a previous confer-

ence paper submitted for the challenge.
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1 Introduction

There are currently two major approaches to speech enhancement. One approach assumes

the availability of single-channel data (i.e., the speech and noise are available only in a

single mixed form), and the other assumes the availability of multi-channel data (i.e., the

speech and noise are available in different combination forms, from a set of two or more

spatially-distributed transducers). Many current single-channel systems are built upon the

principles of optimal filtering, for example, spectral subtraction, Wiener filtering, Kalman

filtering, or subspace decomposition (see, for example, Boll, 1979; Lim & Oppenheim,

1979; McAulay & Malpass, 1980; Ephraim & Trees, 1995; Gannot, Burshtein & Weinstein,

1998; Jensen & Heusdens, 2007). Other existing single-channel systems are built upon the

principles of optimal estimation, for example, minimum mean-square error, or maximum

a posteriori, estimators (Ephraim & Malah, 1984; Ephraim, 1992; Sameti, Sheikhzadeh,

Deng & Brennan, 1998; Lotter & Vary, 2005; Hendriks & Martin, 2007). These systems

produce short-time spectral estimates for the speech by suppressing the noise components,

which are predicted using previous data without significant speech contents (e.g., Martin,

2001; Cohen, 2003). These algorithms work for stationary or slowly-varying noise, but less

so for speech-like or heavily nonstationary noise. This is because of the weak detectability

and predictability of fast-varying noises.

In some applications (e.g., meeting-room or car environments), it is possible to place

several microphones to simultaneously record speech and background sounds. Based on the

multi-channel data, it is possible to separate the individual source signals without having to

assume prior information. The approach, so called blind source separation, has been studied

in speech enhancement as a means of removing the requirement for prior information about

the noise (see, for example, Cichocki & Ehlers, 2007). The multi-channel approach is not

the focus of this paper.

In this paper, we study the problem of separating and recognizing overlapped speech

sentences assuming single-channel data. In this research, the background noise is crosstalk

speech. This problem is challenging not only because the noise is nonstationary, but also

because the noise has characteristics of speech signals. It could be more difficult to sepa-

rate this type of noise from the targeted speech than for other non-speech noises. In the

paper, we describe an approach that combines several techniques as a possible solution.

We develop the approach on the Speech Separation Challenge database (Cooke & Lee,
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2006), involving a two-talker speech recognition task. In the database, each test signal is

a mixed signal of two speech sentences, one being the “target” sentence characterized by

the inclusion of a specific keyword, and the other being the “masker” sentence without

containing this keyword. The task is to retrieve the target sentence from the mixed signal,

without assuming advanced knowledge about the identity of the two speakers, nor about

the target-to-masker ratio (i.e., signal-to-noise ratio). The database offers clean training

data for each involved speaker. We will exploit knowledge about the involved speakers, in

the form of speaker-dependent acoustic-linguistic models, for the separation. Our proposed

system includes speaker-dependent/-independent modeling for speaker and speech recogni-

tion, missing-feature processing for crosstalk/noise robustness, Wiener filtering for speech

enhancement, and hidden Markov models (HMMs) for speech reconstruction.

The remainder of the paper is organized as follows. Section 2 provides an overview of

the proposed system for the speech separation challenge, for separating and recognizing two

mixing sentences given single-channel data. Section 3 presents the details of the algorithms

used to implement the system. Speech separation experiments are described in Section 4,

followed by a summary in Section 5.

2 Overview of Propose System

Fig. 1 illustrates the structure of the proposed system. The input speech waveform is divided

into short-time frames, denoted by wt. Each wt is a mixed signal of target and masker, of

unknown speaker identities and an unknown target-to-masker ratio. For convenience, we

note the sentence with a higher energy ratio as the primary sentence, and the sentence with

a lower energy ratio as the secondary sentence. The system separates the two sentences in

five steps, operating in sequence.

In Step 1, the system aims to identify the primary sentence by exploiting its higher

energy ratio and hence potentially highr recognition accuracy. In the recognition, the lower

energy secondary sentence is treated as noise. A speaker-dependent (SD) recognition system

is used to maximize the separation. The SD system consists of a set of acoustic-linguistic

HMMs, one for each speaker. Each speaker HMM is a subband union model (Ming, Lin &

Smith, 2006), which uses a missing-feature approach to improve robustness to the crosstalk

noise. It is assumed that the HMM for the primary sentence will likely produce maximum

probability due to the higher energy ratio of the sentence, and due to the improved noise
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robustness and speaker distinction of the HMM. The HMM producing maximum probability

is selected to output the recognition result.

In Step 2, the primary sentence recognized in Step 1 is reconstructed using an algorithm

exploiting the most-likely state sequence of the sentence. The reconstructed speech process

consists of short-time spectral estimates X̂1
t , and the corresponding waveform estimate x̂1

t .

The short-time spectral estimates will be passed to Step 3 for enhancing the secondary

sentence, described below.

In Step 3, a Wiener filter is used to enhance the signal of the secondary sentence by

filtering out the primary sentence from the mixed signal. The short-time spectral estimates

for the primary sentence, produced in Step 2, are used in the operation. The operation takes

the short-time spectra of the mixed signal Wt as input, and generates enhanced short-time

spectra Ŵ 2
t for the secondary sentence.

In Step 4, speech recognition is performed on the enhanced signal for the secondary

sentence. A speaker-independent (SI) system is used for the recognition, which consists

of an acoustic-linguistic HMM trained using data from all the speakers. The SI system is

again a subband union model, for improving robustness to the residual noise in the enhanced

signal. The use of an SI system in place of the SD system is found to be important for the

recognition – for greater robustness to the distorted speaker characteristics in the enhanced

signal, caused by the Wiener filtering operation.

In Step 5, the secondary sentence recognized in Step 4 is reconstructed, using an al-

gorithm similar to that for reconstructing the primary sentence. Again, the reconstructed

speech process consists of short-time spectral estimates X̂2
t and the corresponding waveform

estimate x̂2
t .

Along the process, the system produces speech recognition results for both the pri-

mary and secondary sentences. The system therefore implements a “complete” separation

process: taking the mixed speech waveform as input, and producing separated target and

masker waveforms as output, along with the speech recognition results for both mixing

sentences. In the following section we describe each component of the system in more

detail.
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3 More Details of Propose System

3.1 Subband union model for recognition

The subband union model is used to build both the SD and SI recognition components.

As shown in Fig. 1, they have input yt and y2
t , respectively, both representing a short-

time feature vector consisting of subband features. The union model is a missing-feature

approach, aiming to focus the recognition on uncorrupted subbands thereby improving

the robustness to crosstalk interference and/or noise. Let y = {y(1), y(2), ..., y(B)} be a

feature vector, consisting of B independent subbands y(b), subject to crosstalk and/or noise

corruption. The union model is used to select the clean or usable subbands for recognition.

Without assuming prior information about the corruption, the reliable subbands may be

defined as the subbands that maximize the probability of the state for y. Denote by ŷ an

estimate for the reliable subbands, which is a subset in y, then

ŷ = arg max
z⊂y

p(s|z) (1)

where p(s|z) is the probability of state s given z. Using Bayes’ Rules this can be expressed

as

p(s|z) =
p(z|s)p(s)∑
s′ p(z|s′)p(s′)

(2)

where p(z|s) is the state-conditioned probability of z, p(s) is a state prior, and the sum-

mation in the denominator is over all possible states for frame z. For clean-data trained

HMMs, clean data are most likely to produce maximum probabilities for the correct states.

Therefore, it is likely to find the clean or reliable subbands by selecting the subbands that

maximize the probability of a potential state, as implemented in Eq. (1).

Search for the optimal set of reliable subbands to maximize the state probability can

be computationally expensive, of a complexity O(2B), for a system using a large number

of subbands B. This problem can be improved by replacing the probability p(ŷ|s), for the

sought optimal set ŷ, with the probability of the union of all subsets in y of the same size as

ŷ. Assuming that ŷ contains Q subbands, the union probability can be expressed as (Ming,

Jancovic & Smith, 2002)

p(
⋃

z⊂yQ
B

z|s) ∝
∑

z⊂yQ
B

p(z|s) (3)

where yQ
B is the collection of all subsets of Q subbands chosen from the full B subbands in

y, and the proportionality is due to ignoring the joint probabilities between the different
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subsets. Since Eq.(3) contains probabilities of all possible subsets, it contains the probability

of the optimal subset that can be assumed to dominate the sum because of the best data-

model match. Therefore, Eq.(3) can be used in place of p(ŷ|s) for maximum-probability

based recognition. Note that the union probability is not a function of the identity of ŷ but

only a function of the size of ŷ. Therefore, substituting Eq. (3) into Eq. (2) for p(z|s), we

reduce the problem of finding the optimal set of reliable subbands to finding the optimal

number of reliable subbands, but not the exact set, resulting in a lower complexity O(B).

This can be expressed as

Q̂ = arg max
Q

p(s|Q) (4)

where, by definition,

p(s|Q) =

∑
z⊂yQ

B
p(z|s)p(s)

∑
s′

∑
z⊂yQ

B
p(z|s′)p(s′)

(5)

As noted by us (Jancovic, 2002) and independently by Chan & Siu (2005), an efficient,

recursive algorithm exists for calculating the union probability Eq. (3). The above model,

named posterior union model, can be incorporated into an HMM by replacing the con-

ventional state-emission probability with the state probability optimized for the number of

reliable subbands, i.e., maxQ p(s|Q) (Ming, Lin & Smith, 2006). Operating on a frame-by-

frame basis, the optimal subband selection offers robustness to nonstationary corruption.

3.2 HMM-based speech reconstruction

An algorithm is developed for reconstructing the short-time spectral sequences X̂1
t , X̂2

t ,

and waveforms x̂1
t , x̂2

t , of the primary and secondary sentences based on the recognition

results from the SD and SI components (Step 2 and 5). In training the SD/SI subband

HMMs, a prototype spectrum – suitable for speech reconstruction – is estimated for each

HMM state or mixture component using the training data frames assigned to the state or

mixture component. In the system, the average log FFT magnitude, taken over all the

training frames within the state or mixture component, is used as the prototype spectrum

(codeword). Consider the SD recognition component. Denote by Am,i the codeword for

speaker m in state i. Given a mixed test sentence wt, t = 1, 2, ..., T , the subband SD model

produces an estimate for the primary speaker/sentence, which can be represented by m̂ for

the speaker and ŝt, t = 1, 2, ..., T , for the most-likely state sequence of the primary sentence

spoken by the speaker. The m̂ and ŝt can be used to retrieve a clean codeword sequence

Am̂,ŝt , t = 1, 2, ..., T , for reconstructing the spectra and waveform of the primary sentence,
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thereby separating the sentence from the mixed signal. Let ln X̂1
t = Am̂,ŝt represent the

estimate of the short-time log FFT magnitude of the primary sentence. The correspond-

ing waveform estimate, x̂1
t , can be obtained from X̂1

t by an inverse FFT, assuming that

the short-time phase can be approximated by the phase of the mixed frame, Pt (Lim &

Oppenheim, 1979).

The above method, modified slightly, can be applied within the SI recognition compo-

nent for reconstructing the signal of the secondary sentence based on the SI recognition

result. The difference is that in the SI model a codeword is estimated for each mixture

component within each state, thereby obtaining a good resolution for reconstructing the

speaker individualities. Denote by Ak,i the codeword for mixture component k in state i.

The maximization described in Section 3.1, for estimating the reliable subbands, can be

moved inside the state and applied over the individual mixture components, to obtain a

most-likely mixture component for each given frame for reconstruction. Let y2 denote an

input frame consisting of subband features for the SI HMM system. The maximized state

probability, used as the state-emission probability within the system, is defined as

max
Q

p(s|Q) =
∑

k

max
Q

p(s, k|Q) (6)

where p(s, k|Q) is the union-based probability of state s and mixture component k given

y2, defined similarly to Eq. (5) as

p(s, k|Q) =

∑
z⊂(y2)Q

B
p(z|s, k)p(k|s)p(s)

∑
s′,k′

∑
z⊂(y2)Q

B
p(z|s′, k′)p(k′|s′)p(s′)

(7)

where p(z|s, k) is the probability of z on state s and mixture component k, p(k|s) is the

mixture weight in state s, and p(s) is a prior probability of state s. Given the most-likely

state ŝt for frame y2
t , the most-likely mixture component can be obtained by choosing the

maximum-probability component within the state: k̂t = arg maxk,Q p(ŝt, k|Q). Therefore a

codeword sequence Ak̂t,ŝt
, t = 1, 2, ..., T , addressed jointly by the most-likely state sequence

ŝt and most-likely mixture-component sequence k̂t, can be retrieved as an estimate for the

short-time log FFT magnitudes of the secondary sentence: ln X̂2
t = Ak̂t,ŝt

. The correspond-

ing waveform estimate x̂2
t can be obtained from X̂2

t by an inverse FFT, using the short-time

phase Pt from the mixed input signal wt.
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3.3 Wiener filtering for speech enhancement

Given the estimate X̂1
t for the primary sentence, we can obtain an estimate Ŵ 2

t for the

secondary sentence by removing X̂1
t from the mixed input Wt, assuming all three quantities

in the same short-time FFT magnitude format. The enhanced signal Ŵ 2
t is then used as

the input for the SI component for recognizing the secondary sentence. In the system, a

Wiener filter is used for the enhancement: Ŵ 2
t (f) = Ht(f)Wt(f). The short-time filter

function has a simple form:

Ht(f) =
PŴ 2

t
(f)

PWt(f)
(8)

where PWt(f) is a smoothed periodogram of the mixed input signal wt, and PŴ 2
t
(f) is a

smoothed periodogram of the secondary sentence estimated using the following spectral

subtraction

PŴ 2
t
(f) = PWt(f)− [gX̂1

t (f)]2 (9)

where [X̂1
t (f)]2 is the codeword-based periodogram for the primary sentence treated as

noise, and g is a gain factor for matching the gain of the codeword to the gain of the

primary sentence in the mixed observation Wt(f). In the system, g is decided on a sentence-

by-sentence basis, by minimizing the sentence-level mean square error between X̂1
t (f) and

Wt(f) over all periodogram bins and frames:

g = arg min
g′

T∑

t=1

∑

f

[Wt(f)− g′X̂1
t (f)]2 (10)

Solving Eq. (10) results in

g =
∑T

t=1

∑
f Wt(f)X̂1

t (f)
∑T

t=1

∑
f [X̂1

t (f)]2
(11)

It is assumed that PŴ 2
t
(f) = αPWt(f) if the subtraction in Eq. (9) results in a negative

value, where α defines the maximum attenuation. An α = 0.3 is used in the system.

4 Experimental Results

4.1 Database and acoustic-linguistic modeling

The above system has been tested on the Speech Separation Challenge database (Cooke

& Lee, 2006), containing a two-talker speech recognition task. The database consists of

34 speakers (16 female, 18 male). The sentences by each speaker have a command-like

form, for example, “place blue at F 2 now”, all of an identical syntactical structure: L =
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<command:4> <color:4> <preposition:4> <letter:25> <digit:10> <adverb:4>, where the

number in the brackets indicates the number of choices at each point. Of the six words

forming a sentence, the color, letter and number are defined as the keywords for recognition.

For each speaker, 500 sentences are available for training. For testing, pairs of sentences, one

being treated as “target” and the other being treated as “masker”, are mixed at different

target-to-masker ratios (TMRs) to form the test sentences. The database provides test

data at 7 different TMRs: 6, 3, 0, -3, -6, -9 dB and clean, where “clean” corresponds to the

test data without masker speech. Each test TMR condition contains 600 test sentences,

of which, one third are masked by the same talker, one third are masked by talkers of the

same gender, and the remaining are masked by talkers of different genders.

By definition of the database, of the two mixing sentences forming a test case, one will

contain the word “white”. This is the target sentence. The recognition task is to identify

the letter and number in the target sentence. The database further assumes that the target

and masker will not speak the same color/letter/number, although the two may share the

other non-keywords in the same test case.

The speech signal, sampled at 25 kHz, is divided into frames of 20 ms at a frame period

of 10 ms. Each frame is analyzed by a 512-point FFT, followed by a 27-channel mel-

warped filter bank producing 27 log-scale energies. The 27 log filter-bank energies are then

passed to a high-pass filter H(z) = 1−z−1 for decorrelation (Nadeu, Hernando & Gorricho,

1995), resulting in 26 decorrelated log filter-bank energies (DLFBE). The final frame feature

vector, i.e., yt and y2
t , is formed by grouping the 26 DLFBE uniformly into 13 subbands,

with the addition of the first-order and second-order derivatives for each subband, resulting

in a 13-subband, 39-stream feature vector for being modeled by the SD/SI union models

for recognition. The 257 short-time FFT magnitudes derived from the FFT are used to

form the codewords, associated with the states/mixture components of the SD/SI model,

for speech reconstruction.

Each word is modeled by a 14-state left-to-right HMM without state skipping, with one

mixture per state in the SD model and 32 mixtures per state in the SI model. Each mix-

ture component is a Gaussian density with a diagonal covariance matrix. Both the SD and

SI recognizers adopt a word bigram language model applied to the Viterbi algorithm for

finding the most-likely state sequence given a test signal. The language models reflect the

syntactical/grammatical constraint L defined above for identifying the primary/secondary

sentences; the SI recognizer is additionally subjected to a no-repetition constraint in identi-
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fying the secondary sentence, i.e., the keywords that have been recognized for the primary

sentence are not assumed to occur again in the secondary sentence. This is indicated in

Step 4, Fig. 1, as an additional input containing the disallowed primary words into the SI

component. To cope with the condition that there may be only one sentence/speaker in

the test signal, a silence state, trained using data without speech and allowed to have an

unlimited number of self loops, is included in the SI model to absorb the signal from the

Wiener filter with the only sentence being removed from the input signal.

In the following we describe two separation experiments. The first shows the system

for recognizing the target sentence containing the specified keyword. The second shows the

system for recognizing and reconstructing both mixing sentences.

4.2 Recognizing target sentence

Of the two mixing sentences, the target sentence contains keyword “white”. The task is to

recognize the remaining keywords, letter and number, in this target sentence. We achieve

this by simultaneously identify the target sentence and recognize the target keywords using

the system described in Fig. 1. We run the recognition with two system configurations.

In the first configuration, the language model for the SD recognition component forces the

word “white” while the language model for the SI recognition component disallows the

word “white”. This produces two recognized sentences, with respective probability scores

pSD(w) (for the primary sentence from the SD component with word “white”), and pSI(no w)

(for the secondary sentence from the SI component without word white). In the second

configuration, the language models for the SD and SI components are swaped, i.e., SD

disallowing word “white” while SI forcing word “white”. This produces two new recognized

sentences, with respective probability scores pSD(no w) (for the primary sentence without

word “white”), and pSI(w) (for the secondary sentence with word “white”). Then a decision

is made to choose either the first or second configuration result as output dependent on

which of the joint probabilities, pSD(w)pSI(no w) or pSD(no w)pSI(w), is greater. Table 1

presents the recognition results by the system.

4.3 Recognizing and reconstructing both mixing sentences

The following describes further experiments of using the proposed system to recognize and

reconstruct both mixing sentences from the mixed signal. The task is slightly different from

the above task in that we do not aim a specific sentence; instead, we aim to recognize
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the keywords for each of the mixing sentences. In the experiments, we run the system

only once for each mixed test signal, using the more “general” language models described

in Section 4.1 without aiming a specific sentence. Also, we consider all three keywords,

color/letter/number, in the recognition instead of two keywords in the above experiments.

As described in Section 2, the proposed system is capable of producing both speech recogni-

tion results and reconstructed speech waveforms simultaneously for both mixing sentences.

For each test signal, the system produces two recognized sentences, one for the target

and the other for the masker. There are two possible matches: primary sentence is target

and secondary sentence is masker, or vice versa. The closer match, with fewer word er-

rors, is chosen for calculating the accuracy rates. Table 2 shows the word accuracy rates

for color/letter/number in the target and masker sentences, respectively, produced by the

system.

As indicated in Fig. 1, the proposed system uses the union model, Wiener filtering, and

speaker-independent modeling for improved separation and recognition performance. To

understand the contribution of each of these components, we rerun a set of experiments

from using a basic system without these components, to using a refined system with these

components added one after another, till the final system. Table 3 shows the improvement

on the word accuracy rates for the target and masker sentences, averaged over all the

talkers. With reference to Fig. 1, the basic system uses the same speaker-dependent models

(in Step 1) for recognizing both the primary and secondary sentences; it uses the full

set of subband features for recognition and has no Wiener filter. Therefore, it separates

the two sentences by just disallowing repetition of the primary keywords in the secondary

sentence. The use of union model for the speaker-dependent models allows the selection

of optimal set of subbands for recognition, which reduces the crosstalk noise and offers

improved recognition accuracy throughout all noisy conditions. The addition of Wiener

filtering improves recognition accuracy for the sentences with low signal-to-noise ratios.

For example, it increase the accuracy rate for the target sentences at TMR = -9 dB, from

26.7% to 31.8%, and the accuracy rate for the masker sentences at TMR = 6 dB, from

38.2% to 42.1%. The improvement, however, is smaller for the sentences with high signal-

to-noise ratios. This is because the filtering operation tends to alter the characteristics of

the speaker while removing the crosstalk noise, thereby causing a mismatch between the

speaker-dependent model and the filtered signal for recognition. Replacing the speaker-

dependent model with a speaker-independent model may help reduce the mismatch and
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thereby gain more benefit from the noise reduction. This is evident in Table 3, which

shows that the use of a union-based speaker-independent model improves the recognition

performance for the filtered signals.

Finally, Fig. 2 shows an example of the reconstructed signals for the target and masker

sentences, generated by the codeword-based algorithms described in Section 3.2. More

examples of the reconstructed signals in a WAV format can be found in (Ming, Hazen &

Glass, 2007).

5 Summary

This paper described a system for the separation and recognition of two overlapped sen-

tences, given only single-channel data. The system was built upon a combination of differ-

ent techniques, aiming to exploit simultaneously the speaker, energy ratio, language-model

constraint, training data and acoustic model information, enhanced by the missing-feature

theory for ignoring mismatches, to identify and separate the two mixing sentences. The

system was tested on the two-talker database from the Speech Separation Challenge, and

showed useful improvements. Some of the techniques used in the system were applied earlier

to speaker verification (Ming, Hazen & Glass, 2006).
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Figure 1: Schematic diagram of the proposed system for speech separation.
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Table 1: Word accuracy rates (%) for recognizing the letter/number keywords in the target

sentences containing keyword “white”, for different target-to-masker ratios (TMRs), and

for two mixing sentences from the same talker (ST), same gender (SG), and different gender

(DG).

TMR (dB) ST SG DG Average

clean 95.17

6 73.08 85.75 86.75 81.42

3 61.54 80.45 82.25 74.08

0 52.49 65.36 72.75 63.08

-3 46.15 56.42 62.75 54.75

-6 38.24 41.89 49.25 43.00

-9 32.81 31.56 38.00 34.17
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Table 2: Simultaneous recognition of both mixing sentences, showing the respective word

accuracy rates for the target and masker sentences for the color/letter/number keywords.

TMR Target Masker

(dB) ST SG DG Average ST SG DG Average

clean 96.94

6 79.94 89.01 90.00 86.00 48.72 55.87 55.50 53.11

3 70.44 83.79 87.17 80.00 55.35 67.04 69.83 63.67

0 60.03 74.67 80.50 71.22 57.92 74.86 80.83 70.61

-3 54.45 66.67 69.00 62.94 66.67 83.99 88.33 79.06

-6 48.72 54.38 58.50 53.67 75.57 89.76 94.00 85.94

-9 43.59 43.95 48.17 45.22 85.82 93.29 95.67 91.33

Table 3: Contribution of individual techniques, showing improvement on average word

accuracy for the target/masker keywords (color, letter, number), from a basic system to

the proposed system with the additions of union model, Wiener filtering, and speaker-

independent modeling.

TMR (dB) Basic system + Union + Wiener filter + SI modeling

clean 97.44 96.72 96.67 96.94

6 77.78 / 26.89 84.11 / 38.28 83.89 / 42.17 86.00 / 53.11

3 66.22 / 35.72 76.00 / 48.72 76.39 / 53.44 80.00 / 63.67

0 52.78 / 47.78 63.28 / 62.72 66.06 / 65.22 71.22 / 70.61

-3 38.06 / 65.11 49.28 / 74.78 54.22 / 76.28 62.94 / 79.06

-6 28.89 / 77.89 36.39 / 84.11 40.78 / 84.22 53.67 / 85.94

-9 22.67 / 86.17 26.72 / 90.50 31.83 / 90.39 45.22 / 91.33
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Figure 2: Separation and reconstruction of sentence t20-lwwd7n-m6-lrwe8a, TMR = 0 dB.

From top: mixed signal, reconstructed target sentence, reconstructed masker sentence.
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