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1 Introduction

In this chapter we discuss the application of two biometric techniques, face
and speaker identification , for use on mobile devices. This research has been
spurred by the proliferation of commercially-available hand-held computers.
Because of their mobility and increasing computational power, these devices
are fast becoming a pervasive part of our lifestyle. Even formerly specialized
devices, such as cellular telephones, now offer a range of capabilities beyond
simple voice transmission, such as the ability to take, transmit and display

‡ This is a preprint of Chapter 9 of the book Face Biometrics for Personal Iden-

tification: Multi-Sensory Multi-Modal Systems, edited by R. I. Hammoud, B. R.
Abidi and M. A. Abidi., Springer, Berlin 2007.
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digital images. As these devices become more ubiquitous and their range of
applications increases, the need for security also increases. To prevent impos-
tor users from gaining access to sensitive information, stored either locally on
a device or on the device’s network, security measures must be incorporated
into these devices. Face and speaker verification are two techniques that can
be used in place of, or in conjunction with, pre-existing security measures such
as personal identification numbers or passwords.

Handheld devices offer two distinct challenges for standard face and voice
identification approaches. First, their mobility ensures that the environmental
conditions the devices will experience will be highly variable. Specifically, the
audio captured by these devices can contain highly variable background noises
producing potentially low signal-to-noise ratios. Similarly, the images captured
by the devices can contain highly variable lighting and background conditions.
Second, the quality of the video and audio capture devices is also a factor.
Typical consumer products are constrained to use audio/visual components
that are both small and inexpensive, resulting in a lower quality audio and
video than is typically used in laboratory experiments.

To examine these issues we have developed a system that combines two
biometric techniques, speaker identification and face identification, for use
with a mobile device. We provide a high level overview of our speaker and
face identification technologies in Section 2. Following the description of these
technologies, the chapter will focus on the following three research questions:

1. How much improvement in speaker identification performance can be
gained by combining the audio and visual biometric information?

2. Can full video information allow for more accurate face identification than
single image snapshots?

3. How can speaker identification systems be made more robust to variable
environments?

To answer question 1, it has been found that combining speaker and face
identification technologies can have a dramatic effect on person identification
performance. In one set of experiments, discussed in Section 3, a 90% reduction
in equal error rate in a user verification system was achieved when integrating
the face and speaker identification systems.

The answer to question 2 is still largely open for debate. However, in
preliminary experiments examining the use of static and dynamic informa-
tion extracted from video, it was found that dynamic information about lip
movement made during the production of speech can be used to complement
information from static lip images in order to improve person identification.
These results are discussed in Section 4.

To answer question 3, degradation in speaker identification rates in noisy
conditions can be mitigated through the use of noise compensation techniques
and/or missing feature theory. Noise compensation involves the adjustment
of acoustic models of speech to account for the presence of previously unseen
noise conditions in the input signal. Missing feature theory provides a mech-



Multi-Modal Face and Speaker Identification 3

anism for ignoring portions of a signal that are so severely corrupted as to
become effectively unusable. In Section 5 we examine the use of two techniques
for noise robust speaker identification, the posterior union model for handling
missing features and universal compensation.

2 Person Identification Technologies

2.1 Speaker Identification

Speech has long been recognized as a reasonable biometric for person identifi-
cation. However, speech is a variable signal whose main purpose is not to spec-
ify a person’s identity but rather to encode a linguistic message. In systems
where the linguistic content of the speech is unknown (e.g. for surveillance
tasks), text-independent speaker identification systems are generally used. It
has been found for many text-independent applications that, even when lin-
guistic knowledge is ignored completely, accurate speaker identification based
purely on acoustic information can be performed. The standard approach is to
extract wide-band spectral feature vectors from the audio signal (in the form
of mel-scale cepstral coefficients or MFCCs [2]) at a fixed interval (typically
every 10 milliseconds). The full collection of acoustic features from all utter-
ances in an individual’s training set are then pooled together and modeled
with a single probability density function constructed from a Gaussian mix-
ture model (GMM). Speaker identification is performed by scoring the MFCC
feature vectors against the GMMs of enrolled speakers to generate likelihood
scores for these speakers [14].

For the problem of speaker verification (i.e., verifying with a yes or no

decision whether a user is who they claim to be), speaker likelihood scores are
typically normalized by a universal background model which captures the gen-
eral distribution of speech over all users. Mathematically, the GMM speaker
verification score for a set of acoustic feature vectors x1 through xN for pur-
ported user S is modeled probabilistically as follows:

N
∑

i=1

log
p(xi|S)

p(xi)
(1)

Here, p(xi) represents the GMM for the universal background model.
Text-independent systems have proven to work well for some applications.

However, when the linguistic content of the message is known text-dependent
speaker recognition systems generally perform better. This is because text-
dependent systems can tightly model the characteristics of the specific pho-
netic content contained in the speech signal. In security applications, where
the user is cooperative in the attempt to prove his/her identity, the linguistic
content of the speech message is typically pre-specified and can be tightly
constrained. In this case, a text-dependent system is preferred.
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In our work, we have developed a speaker identification system that uses
speaker-dependent speech recognition models to perform the speaker identifi-
cation process [12, 13]. During training, phonetically transcribed enrollment
utterances are used to train context-dependent acoustic-phonetic models for
each speaker. During testing, a speaker-independent automatic speech recog-
nition system hypothesizes a phonetic transcription for the test utterance.
This transcription is then used by the system to score each segment of speech
against each speaker-dependent acoustic-phonetic model. Modeling speakers
at the phonetic level can be problematic because enrollment data sets are typ-
ically too small to build robust speaker-dependent models for every context-
dependent phonetic model. To compensate for this difficulty, an adaptive scor-
ing approach can be used in which the specific acoustic-phonetic models for a
speaker can be interpolated with the speaker’s text-independent GMM model.
This improves the robustness of the approach when limited enrollment data
is available. Mathematically, the speaker score for our phonetic approach is
modeled probabilistically as follows:

N
∑

i=1

log

(

λi

p(xi|ui, S)

p(xi|ui)
+ (1 − λi)

p(xi|S)

p(xi)

)

(2)

Here, a phonetic label ui is provided from a speech recognition engine for
each acoustic feature vector xi. The interpolation factor λi is determined
separately for each phonetic unit ui based on the number of times it appeared
in the enrollment data:

λi =
count(ui)

count(ui) + K
(3)

Here K is a predetermined constant (typically 5 in our systems). The interpo-
lation factor prefers the context dependent model ratio for phone ui when that
phone has been observed often in the enrollment data, but it backs off toward
the global GMM approach if ui is rarely or never seen in the enrollment data.

2.2 Face Identification

Identifying people from images of their face is a widely studied problem. In
addition to discussion of this topic in other chapters of this book, a thor-
ough review of the literature on this topic is available in [19]. In this chapter,
we discuss only the technologies used in our experiments. The primary face
identification framework used in our work is largely based on work originally
presented in [7].

Face Detection

Before face identification techniques are applied, the face must first be de-
tected and located within a given image. The Viola-Jones face detection
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Fig. 1. A sample image and its face detection result with the face component regions
superimposed.

algorithm (which is based on a boosted cascade of feature classifiers) is a
commonly used approach which we have used as our baseline face detection
algorithm [16].

As an alternative, we have also used a fast hierarchical classifier to roughly
localize the face in the image [8]. The region around the face is then cropped
out from the larger image, histogram equalized, and scaled to a fixed size.
Next, a component-based face detector [7] is applied to the extracted region
to precisely localize the face and to detect facial components. This method
first independently applies component detection classifiers to the face image.
Each of these classifiers is trained to detect a particular component, such as
a nose, mouth, or left eyebrow. In all, 14 face components are used, and each
component classifier is evaluated over a range of positions in the vicinity of
the expected location of the desired component. A geometrical configuration
classifier is then applied to the combined output of each of the 14 component
classifiers from each candidate position. The candidate positions that yield
the highest output of the second-level classifier are taken to be the detected
component positions. Figure 1 illustrates an enrollment image, as well as its
selected face region with the positions of the facial components as detected
by our system.

SVM-Based Face Recognition

A common approach to visual feature extraction for face identification is to use
an appearance-based approach in which the raw image pixels are either used
directly or projected into a lower dimension subspace. Large dimension feature
vectors can only be used with classification methods which exhibit robustness
to the curse of dimensionality, e.g. support vector machines (SVMs) [15]. We
have used SVMs as the primary classification technique for face identification
in our systems.
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In our initial work, presented in [6], we used a full face image compressed
to 40x40 grey-scale pixels and histogram normalized to adjust the brightness.
Improved results were later obtained by extracting appearance-based features
from ten of the fourteen component regions found during the face detection
process [5]. The ten selected components are similarly scaled in size and nor-
malized, and then combined into a single feature vector which serves as input
to the face recognition component.

For face recognition, a one-vs-all SVM classification scheme is used, where
one classifier is trained to distinguish each person in the database from all the
others. In the training process, the feature vectors corresponding to a person’s
training images are used as positive examples for the classifier, and the feature
vectors extracted from images of all other users are used as negative examples.
The SVM training process finds the optimal hyperplane in the feature space
that separates the positive and negative data points. Since the training data
may not be separable, a mapping function corresponding to a second-order
polynomial SVM kernel function is applied to the data before training.

The runtime verification process consists of computing the output score
for the purported user’s SVM classifier [15]. The scores are zero-centered. In
other words, a score of zero means the data point lies directly on the decision
hyperplane, and positive and negative scores mean the data point lies on the
positive and negative example side of the decision hyperplane, respectively.
The absolute value of the SVM output is a multiple of the distance from the
decision hyperplane, and could be normalized to produce the distance. Thus,
a highly positive score represents a large degree of certainty that the data
point belongs to the person the SVM was trained for, and a highly negative
score represents the opposite.

GMM-Based Face Recognition

In our work on audio-visual speech recognition, we have used appearance-
based visual features extracted from the raw images of the mouth region [3].
We have since adapted this approach to person identification using Gaussian
mixture models (identical in nature to those used in the speaker identification
field). Because probabilistic classifiers, such as the GMM, typically require
lower-dimension feature spaces to avoid problems of sparse training data, a
dimensionality reducing transform is often required. In experiments discussed
in Section 4, we present results on GMM-based person identification using
visual information derived only from the lip region of the face.

2.3 Multi-Modal Fusion

In our work, a simple linear weighted summation is employed for the classifier
fusion where the weights for each classifier are trained discriminatively (on
held-out development data) to minimize classification error. For the combina-
tion of face and speech classifiers, only one fusion parameter (the ratio of the



Multi-Modal Face and Speaker Identification 7

weights of the classifiers) needs to be learned. A simple brute force sampling
of different ratios can be used in this case. More complicated techniques (such
as gradient descent training) could be used in situations where more than two
scores must be fused.

3 Multi-Modal Person ID on a Handheld Device

3.1 Overview

Our initial experiments in multi-modal person identification were performed
using iPAQ handheld computers. A login scenario that combined face and
speaker identification techniques to perform the multi-biometric user verifi-
cation process was devised. When “logging on” to the handheld device, users
snapped a frontal view of their face, spoke their name, and then recited a
prompted lock combination phrase consisting of three randomly selected two
digit numbers (e.g. “25-86-42”). The system recognized the spoken name to
obtain the “claimed identity”. It then performed face verification on the face
image and speaker verification on the prompted lock combination phrase.
Users were “accepted” or “rejected” based on the combined scores of the two
biometric techniques.

Speech data were collected utilizing the built-in electret condenser micro-
phone of the iPAQ. Face data were collected using a 640x480 CCD camera
located on a custom-built expansion sleeve for the iPAQ. The iPAQ handheld
computer, combined with the custom sleeve, was the handheld device plat-
form used for pervasive computing research in MIT’s Project Oxygen [17]. An
image of the iPAQ with the expansion sleeve is shown in Figure 2. Because
of the computation and memory limitations, the images and audio were cap-
tured by the handheld device, but then transmitted over a wireless network
to servers which perform the operations of face detection, face identification,
speech recognition, and speaker identification. In the future we expect the
computational and memory components of handheld devices to improve such
that our systems can be deployed directly on these small handhelds.

3.2 Data Collection

For our set of “enrolled” users, we collected face and voice data from 35 dif-
ferent people. Each person performed eight short enrollment sessions, four to
collect image data and four to collect voice data. For each voice session, each
user recited 16 prompted lock-combination phrases. For each image collection
session, users captured 25 frontal face images in a variety of rooms in our lab-
oratory with different lighting conditions. No specific constraints were placed
on the distribution of the locations and lighting conditions; users were allowed
to self-select the locales and lighting conditions of their images. To illustrate
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Fig. 2. The iPAQ handheld computer used in our study, along with two sample
images collected in the iPAQ.

the quality of the images, Figure 2 shows two sample images captured during
the data collection.

During image collection, the Viola-Jones face detector [16] was applied to
each captured image to verify that the image indeed contained a valid face.
This face detector occasionally rejected images when it failed to locate the face
in the image with sufficiently high confidence. When this occurred the user
was instructed to capture a new image. Due to a conservative face detection
confidence threshold, no false positives (i.e., images with incorrectly detected
faces) were observed from this face detector during the data collection.

Each voice and image session was typically collected on a different day, with
the time span between sessions often spanning several days and occasionally
a week or more. In total this yielded 100 images and 64 speech samples per
enrolled user for training. An additional set of four enrollment sessions of
audio data (i.e., 64 additional utterances) from 17 of the training speakers was
available for development evaluations and multi-modal weight fusion training.

A separate set of evaluation data was collected to perform user verification
experiments. For this evaluation set, we collected 16 sample login sessions from
25 of the 35 enrolled users. This yielded 400 unique utterance/face evaluation
pairs from enrolled users. We also collected 10 impostor login sessions from
20 people not in the set of enrolled users for an additional 200 utterance/face
evaluation pairs from unenrolled people. Each utterance/face pair collected
from out-of-set impostors was used to generate an impostor example for each
of the 35 enrolled users yielding 7000 impostor examples.
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3.3 Training

The face and speaker systems were trained on the enrollment data for the
35 enrolled users. To train the fusion weights, one of the four face enrollment
sessions was held out and a development face identification system was trained
on the remaining three face sessions. Face identification scores from this held-
out set were pairwise combined with speaker identification scores generated
for utterances from the existing speaker identification development set. The
true in-set examples and in-set impostor examples were provided to the weight
training algorithm to generate the multi-modal fusion weights.

3.4 Face Detection Issues

The performance of a face identification system is affected by the quality of
the images it is provided. If the system tightly controls the user and rejects
images in which the head is tilted or rotated, the face is contorted in any un-
usual fashion, etc., then the variance of the data will be reduced and improved
performance should be expected. In our work we initially collected facial im-
ages within a system running the Viola-Jones face detector. In our evaluations
we have used a component-based face detection algorithm which is more con-
servative in its detection decisions. As a result, a sizable number of images in
the training and evaluation data sets were rejected by the component-based
face detection algorithm.

To detail the effect of the face detection algorithm upon the face identi-
fication results, two experiments were conducted: one where the conservative
face-detection decisions were used, and a second experiment where the face
detection algorithm was forced to output a detected face even if the image’s
detection score fell below the standard acceptance threshold. These two exper-
iments allow us to examine the trade-off between the added gain in accuracy
enabled by stricter control in the input facial images, and the potential added
inconvenience of having users retake snapshot images until the face detection
algorithm accepts one.

3.5 Experimental Results

Table 1 shows our user verification results for three systems (face ID only,
speaker ID only, and our full multi-modal system) under two different face
detection conditions. The results are reported using the equal error rate met-
ric. The equal error rate (EER) is the point in the detection-error tradeoff
curve where the likelihood of a false acceptance of an impostor (i.e., a false

alarm) is equal to the likelihood of false rejection of the true user (i.e. a miss).
In the table’s forced face detection results, all evaluation sessions are used.

However, for the conservative face detection results, 12% of the images were
rejected. In this case, the system’s verification results were computed using
only the 88% of the data that passed the more conservative face detection
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Table 1. User verification results expressed as equal error rates (%), over three
systems (face only, speaker only, and multi-modal fusion), using two different face
detection scenarios.

System Forced Face Detection Conservative Face Detection

Face 4.87% 2.57%

Speaker 1.66% 1.63%

Fused 0.66% 0.15%

threshold. Though the speaker identification system is unaffected by the face
identification method that is used, the speaker identification equal error rates
are different in the two columns because rejection of an image causes the com-
panion spoken phrase from an evaluation login session to also be discarded,
thus altering the speaker identification results slightly.

In examining the results, one can see that the face identification system us-
ing conservative face detection thresholding shows a nearly 50% improvement
in EER performance over the system using forced face detection. Of course,
the improved performance does come with a cost: in a deployed system, a
user would face the added inconvenience of providing a new snapshot image
whenever the face detector rejects an image.

Next, the results show that the speaker identification system is performing
better than the face identification component, though the performance is of
the same order of magnitude. When the two systems are used in combination,
significant improvements are obtained over the use of either modality by itself.
When using conservative face detection, the addition of the face identification
system to the speaker identification system produced a 90% relative reduction
in the equal error rate from 1.63% to 0.15%. Detection error tradeoff (DET)
curves for the three systems (when using conservative face detection) are
shown in Figure 3. These results demonstrate that highly accurate biometric
authentication can be obtained via the multi-biometric approach of combining
speaker identification and face identification technology.

4 The Use of Dynamic Lip-Motion Information

When performing face identification, an interesting question to ask is whether
full motion video provides any substantive advantage over the use of indi-
vidual still images. Video has been shown to be useful for face identification
by providing a collection of temporally related images. Increased robustness
can be obtained using video because face detection results can be interpo-
lated over multiple frames, and results from frames with poor images can
be discounted or ignored when considered jointly with other better scoring
frames [9]. However, one might wonder if the actual dynamic motion of facial
features themselves, such as the motion of the lips when someone is talking,
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Fig. 3. DET curves for face and speech systems run independently and in com-
bination when tested using impostors unknown to the system and when using the
conservative face detection threshold.

can be used to identify a person. Or even more importantly, can the dynamic
lip information provide any significant improvement over using only the static
information available from the individual frames extracted from the video?

To examine this issue we have performed experiments using the AV-TIMIT
video corpus [4]. This corpus was originally collected for use in audio-visual
speech recognition experiments. It contains read sentences recorded in a quiet
room using a high-quality digital camera for the video and a far-field array
microphone for the audio. The first 10 utterances recorded for each user were
used to train the face and speaker identification system and five additional
utterances were used for our evaluation. In total the corpus contains record-
ings from 221 different people (yielding 221×5 = 1105 evaluation utterances).
Because the AV-TIMIT corpus being used was recorded in quiet office con-
ditions and the training data comes from the same session as the evaluation
data, this person identification task does not represent realistic conditions.
To make the task more challenging, our face identification system only uses
the lip region portion of the video. Despite the unrealistic conditions of the
task, we can still use this corpus to compare different visual features and to
examine the effect of fusing audio and visual information.

From each individual frame, the image of the lips are represented using the
top components from a principal component analysis (PCA) rotation applied
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Table 2. Person identification results from visual lip images using static PCA fea-
tures, dynamic PCA features, and a fusion of the static and dynamic features.

Lip Image Feature Vector Person ID Error Rate

48-dimension static PCA features 6.0%

96-dimension static PCA features 3.6%

192-dimension static PCA features 4.1%

48-dimension dynamic PCA features 6.6%

96-dimension dynamic PCA features 7.7%

192-dimension dynamic PCA features 17.8%

48 dimension static PCA features +
48 dimension dynamic PCA features 2.1%

96 dimension static PCA features +
96 dimension dynamic PCA features 2.1%

to a discrete-cosine transform of the image from the lip region (a.k.a. eigen-

lips [1]). We refer to these feature vectors as the static PCA features. The
first-order time difference between PCA vectors in sequential image frames is
used to represent the dynamic changes in lip images. We refer to these feature
vectors as the dynamic PCA features.

Because statistical classifiers require a tradeoff between the increased
specificity from larger feature space dimensionality and the susceptibility of
large dimension classifiers to over-training, we have evaluated the system us-
ing several different feature vector dimensionalities. We have also constructed
feature vectors using static PCA features only, using PCA difference features
only, and using a combination of the static and dynamic features. To perform
person identification in this system, the individual feature vectors are mod-
eled using a single Gaussian mixture model per speaker. Table 2 shows the
closed-set person recognition performance on the 221 person AV-TIMIT cor-
pus using eight different feature vector configurations used in our experiments.
The results show that static lip information is more useful than dynamic lip
information, but that improvements in person identification can be achieved
by combining the static and dynamic information.

Table 3 shows the individual results of the audio-only and visual-only
person identification system for closed set person recognition. The table also
shows the combined audio-visual result when linearly combining the audio
and visual scores. In this case, the optimal weighting of 0.95 for the audio
stream and 0.05 for the visual stream yields an error rate of 0.27% (3 errors
out of 1105 trials). When ratio of the audio weight to the visual weight is
varied between 0.8/0.2 and 0.98/0.02 the person identification is never worse
than 0.54% (6 errors out of 1105 trials).

These results on AV-TIMIT demonstrate, once again, the power of com-
bining audio and visual information for person identification. In on-going re-
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Table 3. Person identification results for audio-only, visual-only, and audio-visual
systems using audio and lip-image information from the AV-TIMIT corpus.

System Person ID Error Rate

Audio Only 1.2%

Visual Only 2.1%

Audio-Visual 0.27% to 0.54%

search, our group is currently moving beyond systems using the high-quality,
single-session AV-TIMIT video, and towards the creation of a system that
can handle video collected using commercial-off-the-shelf web cameras and
handheld devices.

5 Noise Robust Speaker Identification

As discussed earlier, one of the great challenges of performing speaker or face
identification in mobile applications is the possibility of severe variations in the
feature measurements due to the environmental conditions (i.e., background
noise, lighting conditions, etc.). One technique for addressing this problem is
the application of missing feature theory. The basic premise of missing feature
theory is that some features of the observation space may be so corrupted that
they become useless for the task of person identification and should be ignored.
For speaker identification this could involve either temporal corruption (e.g., a
brief impulsive noise such as a door slam) or spectral corruption (e.g., a noise
in a narrow spectral band such as a police siren). Comparable analogies could
also be drawn for face identification (e.g., sudden severe shadows, occlusions
of portions of the face, etc.). One could also view the problem of multi-modal
fusion within the missing feature theory framework, where either of the audio
or visual feature streams could be unreliable at any point in time and ought
to be ignored in deference to the more reliable information stream.

In some situations, the corruption may not be so severe that it completely
masks all usable information within a feature. In this case, a means of account-
ing for the corrupting noise in the observation of a feature is more desirable
than completely ignoring the feature. In an ideal situation, models for biomet-
ric features could be trained from enrollment data collected under all of the
corrupting conditions the user may encounter. Unfortunately, this is not fea-
sible for most mobile applications and methods for compensating for unseen
conditions must be employed.

In our work we have investigated the problem of robust speaker identifica-
tion in noisy environments. In particular we have examined a missing feature
approach called the posterior union model, and a noise compensation tech-
nique called universal compensation. Though we have not yet extended this
work beyond speaker identification experiments, we believe these ideas can be



14 T. Hazen, E. Weinstein, B. Heisele, A. Park, and J. Ming

extended to the problems of face identification and the fusion of multi-modal
information.

5.1 The Posterior Union Model

The basic premise behind missing feature theory (as we apply it to speaker
identification) is that improved performance can be achieved by utilizing only
information about features that can be reliably extracted from the input sig-
nal. Thus, if an input signal can be be represented as a collection of indepen-
dent features X = {x1, x2, . . . , xN}, then there exists some optimal subset of
uncorrupted features Xsub ⊆ X , that can be used as the basis for the speaker
identification decision. This problem can be expressed probabilistically as

[S′, X ′
sub] = arg max

S,Xsub

P(S|Xsub) (4)

where S represents a specific speaker and Xsub represents a specific subset of
features from X . The expression seeks to find the most likely speaker S ′ by
jointly maximizing the posterior probability over all speakers and all possible
feature subsets Xsub in X . Here X ′

sub is the optimal feature subset found for
the most likely speaker S ′. Using Bayes’ Rule the expression is rewritten as

[S′, X ′
sub] = arg max

S,Xsub

p(Xsub|S)P(S)

p(Xsub)
(5)

where P(S) is generally given a uniform distribution and p(Xsub) is a normal-
izing term that is independent of the speaker S.

The posterior union model (PUM) generalizes the problem by removing
the constraint that an exact set of optimal features, X ′

sub, be found. Instead,
for a given number of features M , PUM makes the following assumption:

p(X ′
sub|S, M) ≈

∑

Xsub⊆XM

N

p(Xsub|S) (6)

Here, XM
N is the collection of all combinations of sets of M features chosen

from the full N features in X . The approximation assumes that the sum of
p(Xsub|S) over all Xsub drawn from XM

N is dominated by the optimal subset of
M features. This reduces the problem to finding the optimal number of reliable
features M , but not the exact subset. In practice, individual features are rarely
completely reliable or completely unreliable, but somewhere in between. Thus,
the use of the union model allows a softer probabilistic decision than forcing
features to either be used or discarded. Details of the PUM implementation
can be found in [11].

5.2 Universal Compensation

If we consider that individual features may be only partially corrupted, then
the missing feature approach should be amended to account for partially cor-
rupted features. The universal compensation technique provides just such a
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mechanism. Instead of decomposing the features in X into reliable features
that are used and unreliable features that are ignored, the features can be
decomposed into subsets containing variable degrees of corruption. In this
formulation we can use the expression

p(X |S) =

L
∑

l=0

p(Xl|S, Φl)P(Φl|S) (7)

where Φl represents a level of corruption and Xl represents the specific set of
features in X which are corrupted at level Φl. In this case the posterior union
model can be extended such that it considers the optimal number of features
corrupted at each corruption level Φl and not just those that are completely
clean or completely corrupted. Details of this formulation are found in [10].

In practice for speaker identification tasks, the universal compensation
technique is applied by taking clean audio training data and adding noise at
variable signal-to-noise ratios to simulate the different corruption levels Φ0

through ΦL. We have primarily added white noise to the clean training to
simulate the corruption, but different types of noises could be used depending
on the expected environments. Models for each speaker at each corruption
level are trained. During evaluation on unseen data the posterior union model
is used to select the number of features from the full set that optimally match
each corruption level.

5.3 Experimental Results

To demonstrate the effectiveness of the posterior union model and universal
compensation techniques, we conducted experiments on a handheld-device
database collected at MIT. The database was designed to study speaker ver-
ification in realistic noisy conditions with limited enrollment data [18]. The
database contains 48 enrolled speakers (26 male, 22 female) and 40 impostors
(23 male, 17 female), each reciting short ice cream flavor phrases.

In our primary experiments, users enrolled into the system by speaking
four examples of a specific phrase into the hand-held device. The enrollment
session was conducted in a quiet office environment using an external ear-
piece microphone. For each enrolled user, speaker identification models were
trained from the four enrollment examples. Low-pass filtered white-noise was
added to each example at nine different signal-to-noise ratios between 4 and
20 dB (increasing 2 dB every step). This gives a total of ten corruption levels
(including the no corruption condition) for the training phase. To evaluate
the system, the same enrolled users and the 40 previously unseen impostors
recited new evaluation phrases using the same hand-held device. However,
the evaluation data were instead collected outdoors next to a noisy street
intersection using the internal microphone of the device.

The speaker identification system uses phrase-dependent hidden Markov
models to represent each speaker in the enrollment set. The features used to
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represent the acoustic information are modeled with sub-band spectral com-
ponents derived from decorrelated log filter-bank amplitudes collected from
20ms wide time windows sampled every 10ms. In total two energy and time
difference values were used to represent the features within 10 different spec-
tral sub-bands. The posterior union model is thus tasked with selecting the
optimal number of sub-bands corrupted at each of the 10 different noise cor-
ruption levels. Details of the system used in this experiment can be found
in [10].

For our experiments, we implemented four different systems all based on
the same set of acoustic features:

• BSLN-Cln: a baseline system trained only on the clean office data and
tested using the full set of acoustic features.

• BSLN-Mul: the baseline system trained on the full set of clean and ar-
tificially corrupted data pooled together to train a single multi-condition
model for each speaker.

• PUM: a system trained only on the clean office data but allowed to se-
lect the optimal number of reliable sub-band components using the PUM
approach.

• UC: a system trained on the clean and artificially corrupted data using
the PUM approach to optimally select number of sub-bands matching
each corruption level.

The experimental results are shown in Figure 4. The figure shows that a
baseline speaker verification system trained in a quiet environment performs
quite poorly when it is then used in a noisy environment (next to a noisy
street intersection in this case). However, by artificially adding various levels
of white noise to the training material, the equal error rate (EER) of the
system is reduced from 30.2% to 22.4%. If the posterior union model is used
in conjunction with the baseline system, the EER is reduced from 30.2% to
17.2%. Finally, if the PUM is combined with the system trained using varying
levels of artificially added noise (i.e., the universal compensation approach),
the EER is further reduced to 14.1%. These results show that techniques
do exist to improve the robustness of speaker identification even in noisy
environments that are mis-matched with the systems training conditions.

6 Summary

In this chapter, we have shown the power of combining face and speaker
identification techniques for improved person identification. In Section 3, we
demonstrated that a multi-biometric approach can reduce the equal error rate
of a user verification system on a hand-held device by up to 90% when com-
bining audio and visual information. In Section 4, we showed that dynamic
information captured from a person’s lip movements can be used to discrim-
inate between people, and can provide additional benefits beyond the use of
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Fig. 4. DET curves comparing four limited enrollment speaker verification systems
trained in a clean environment and tested in a mis-matched noisy environment.

static facial features. In Section 5, we addressed the problem of robust speaker
identification for hand-held devices and showed the benefits of the posterior
union model and the universal compensation techniques for handling cor-
rupted audio data. In future work we plan to extend the use of the posterior
union model to different facial feature vectors extracted from images as well
as to the multi-modal fusion of different audio and visual features.
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