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Abstract
A number of methods have been studied and compared for their
robustness for speaker verification using noisy speech sam-
ples. The methods include Wiener filtering, noise compensa-
tion, missing-feature technique, universal compensation, and
their combinations. Strategies for combining different tech-
niques are investigated, as a means of further improving noise
robustness. A handheld-device database, collected in realis-
tic conditions with noise corruption and transducer mismatch
between training and testing, is used in the study. The vari-
ous techniques and proposed combinations are compared within
the same feature and model framework for characterizing the
speakers. The experimental results indicate that: 1) usual noise
filtering and noise compensation provided very limited robust-
ness to noise corruption, and 2) the proposed technique combi-
nations offered significantly improved noise robustness.

1. Introduction
This paper investigates speaker verification in noisy conditions,
assuming that speech signals are corrupted by environmental
noise but the characteristics of the noise source are not known
a priori. This research is motivated in part by the potential ap-
plication of speaker recognition technologies on handheld de-
vices. While the technologies promise an additional biometric
layer of security to protect the user, the practical implementa-
tion of such systems faces many challenges, with handset trans-
ducer mismatch and environmental noise being two of the most
prominent. Recently, much research has been conducted to-
wards reducing the transducer/channel effect (see, for example,
[1]–[6]). The present study is focused on the noise issue. Due to
the mobile nature of the handheld systems, the acoustic environ-
ments and hence the noise sources can be highly time-varying
and potentially unknown. This raises the requirement for noise
robustness in the absence of information of the noise.

To date, research has targeted the impact of environmental
noise through filtering techniques such as spectral subtraction
or Kalman filtering [7], [8]. Other techniques rely on a statisti-
cal model of the noise, for example, parallel model combination
(PMC) [9], [10], or on the use of microphone arrays [11], [12].
Recent studies on the missing-feature method have shown im-
proved robustness for speech data subjected to partial noise cor-
ruption (e.g., [13], [14]).

Without assuming a prior knowledge of the noise source,
there may be two different approaches to achieving noise ro-
bustness: 1) obtaining a noise estimate from the given test sig-
nal, and then using the estimate to form a filter for noise re-
moval or to update the acoustic models for noise-effect com-
pensation; 2) building robust acoustic models with inherent ro-

bustness to noise corruption. In this paper, we consider ex-
amples for both approaches, and furthermore, for their com-
binations. Specifically, we investigate speaker verification on
handheld devices using a database recorded in real-world noisy
conditions. We study and compare the robustness of Wiener fil-
tering, noise compensation, missing-feature method, universal
compensation, and their combinations. While Wiener filtering
and noise compensation are examples of approaches that require
an estimate of the noise characteristics, the missing-feature and
universal-compensation methods studied in the paper are exam-
ples of approaches that do not require information about the
noise. Strategies for combining different techniques are in-
vestigated, as a focus of the research towards improved noise
robustness. The various methods and proposed combinations
are compared within the same framework for acoustic model-
ing. The experimental results show the superiority of the com-
bined techniques to the individual techniques, due to the weak-
ened assumptions and hence enhanced capabilities for model-
ing real-world noisy speech. This research extends our previ-
ous work [15], [16] by focusing on the combination of different
modeling techniques for potential performance improvement.

2. Database, Acoustic Modeling and
Baseline System

2.1. Database

A handheld-device database [17], designed for speaker verifica-
tion with limited enrollment data, is used in the study. The data-
base is collected in realistic conditions with the use of an inter-
nal microphone and an external headset. The database contains
48 enrolled speakers (26 male, 22 female) and 40 impostors (23
male, 17 female), each reciting a list of name and ice-cream fla-
vor phrases. The part of the database containing the ice-cream
flavor phrases is used in the experiments. There are six phrases
rotated among the enrolled speakers, with each speaker reciting
an assigned phrase 4 times for training and 4 times for verifi-
cation. The training and test data are recorded in separate ses-
sions, involving the same or different background/microphone
conditions and different phrase rotation. The same practice ap-
plies to the impostors, with each impostor repeating an assigned
phrase 4 times in each given background/micophone condition
with condition-varying phrase rotation. The impostors saying
the same phrase as an enrolled speaker are grouped to form the
impostor trials for that enrolled speaker. Then, in each test,
there are a total of 192 enrolled speaker trials and a slightly
varying number of impostor trials ranging from 716 to 876 de-
pending on the test conditions.

Data used in the experiments are recorded in two dif-
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Figure 1: Spectra of utterances in office (left) and street inter-
section (right), recorded using the internal microphone.

ferent environments: office (with a low level of background
noise) and street intersection (with a higher level of background
noise). Fig. 1 shows the typical characteristics of the environ-
ments. We assume that the speaker models are trained based
on the office data and tested in matched and mismatched con-
ditions without assuming prior information about the test envi-
ronments/microphones.

2.2. Acoustic Modeling

The noise problem may be tackled at different stages of acoustic
modeling, including signal preprocessing, feature computation
and match-score computation. The paper is focused on the ro-
bust techniques applied to the first and third stages. To make
these techniques comparable, the same feature and model struc-
tures are used for different techniques, such that any observed
improvement in recognition performance would be mainly at-
tributable to the improved robustness for the technique being
considered.

The speech signal, sampled at 16 kHz, is divided into
frames of 20 ms at a frame period of 10 ms. Each frame is
modeled by a feature vector characterizing the spectral charac-
teristics of the frame. The frame vector is calculated by first
applying a 512-point FFT to the Hamming-windowed frame
samples. The resulting 257 FFT magnitudes are then converted
to log scale and passed to a 21-channel mel-warped filter bank
to obtain 21 log filter-bank energies. The final frame vector is
obtained by decorrelating the filter-bank energies using a high-
pass filter H(z) = 1 − z−1. This results in 20 decorrelated log
filter-bank energies (DLFBE), denoted by

D = (d1, d2, ..., d20)

= (a2 − a1, a3 − a2, ..., a21 − a20)

where ai stands for the ith log filter-bank energy. DLFBE
were studied in [18] and further studied in [19], as an alterna-
tive to MFCC (mel-frequency cepstral coefficients) for speech
recognition with potentially comparable performance and with
less computation than DCT. In this paper, we use D added
with its first-order derivative as the frame vector for both the
full-feature model (which uses all the feature components for
recognition) and the missing-feature model. Denote this 40-
component frame vector by

X = (d1, d2, ..., d20, ∆d1, ∆d2, ..., ∆d20)

where dn and ∆dn represent the nth static and delta coeffi-
cients, respectively. The missing-feature model to be studied
is a subband-based model towards exploiting clean frequency-
bands while ignoring noisy frequency-bands. The subband fea-
tures can be formed conveniently from X without extra com-
putation. For example, X can be viewed as a vector consisting
of 20 independent subbands, with each subband corresponding
to a filter-bank channel. The bandwidth of the subband can be
increased conveniently by grouping neighboring subband com-
ponents together to form a new subband component. In our

experiments, we use a 10-subband, 20-stream system obtained
by grouping every two consecutive components in X into a new
component, i.e.,

({d1, d2}, ..., {d19, d20}, {∆d1, ∆d2}, ..., {∆d19, ∆d20})

→ (x1, x2, ..., x20)

where xn = {dn, dn+1} or {∆dn, ∆dn+1} stands for a new
static or delta subband stream containing two static or delta
DLFBE modeling two consecutive filter-bank channels. The
full-feature model bases recognition on the entire vector X ,
while the missing-feature model bases recognition on the sub-
band streams xn assuming least distortion. To reduce the hand-
set transducer effect, the sentence-level mean of X is calculated
and removed from X (similar to cepstral-mean subtraction).

In addition to the unified feature structure, we also adopt
a unified acoustic model structure for the various techniques to
compute match scores for verification. We treat the task as text-
dependent speaker verification and model each enrolled speaker
using an HMM with eight states for the spoken phrase and three
states (tied across all the speakers) for the beginning and end-
ing backgrounds surrounding each utterance. As such, each en-
rolled speaker is uniquely identified by a particular state subset
with the state space consisting of the HMM states of all the
enrolled speakers. Denote by XT

1 = (X1, X2, ..., XT ) an ut-
terance of T frames, where Xt is the frame vector at time t, and
by ST

1 = (s1, s2, ..., sT ) the state sequence for XT
1 . The joint

probability of XT
1 and ST

1 based on an HMM can be written as

P (XT
1 , S

T
1 ) = P (ST

1 )

T�
t=1

P (Xt|st)

= P (ST
1 )

T�
t=1

P (Xt|st)

P (Xt)
P (Xt)

= P (ST
1 )P (XT

1 )

T�
t=1

P (st|Xt)

P (st)
(1)

where P (ST
1 ) is the Markovian state-sequence probability,

P (XT
1 ) = � T

t=1 P (Xt), and P (X|s) is the HMM state-
emission probability, with P (s) being a prior probability of
state s, and P (s|X) being the posterior probability of state s

given frame X , defined by

P (s|X) =
P (X|s)P (s)

P (X)
=

P (X|s)P (s)�
s′ P (X|s′)P (s′)

(2)

where the summation in the denominator is over all possible
states for frame X . Since P (XT

1 ) is not a function of the state
index, it can be viewed as a speaker-independent background
model. As such, dividing both sides of (1) by P (XT

1 ), we ob-
tain a likelihood-ratio function expressed as a function of the
posterior probabilities of states, i.e.,

LR(XT
1 , S

T
1 ) =

P (XT
1 , ST

1 )

P (XT
1 )

= P (ST
1 )

T�
t=1

P (st|Xt)

P (st)
(3)

Equation (3) may be further simplified by assuming an equal
state prior P (s), i.e.,

LR(XT
1 , S

T
1 ) ' P (ST

1 )

T�
t=1

P (st|Xt) (4)
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Given an utterance XT
1 and a hypothesized speaker, the verifi-

cation score V S can be defined as LR(XT
1 , ST

1 ) maximized for
the state sequence of the HMM of the speaker and normalized
for the length of the utterance, i.e.,

V S(XT
1 , Ŝ

T
1 ) = max

ST

1

1

T
ln LR(XT

1 , S
T
1 ) (5)

where ŜT
1 denotes the most-likely state sequence for the hy-

pothesized speaker. The maximization in (5) can be computed
using the conventional Viterbi algorithm. Equations (4) and (5)
are used as the framework for the various techniques to com-
pute speaker scores for verification. The significance of the
framework, for unifying the full-feature model and the missing-
feature model, will become clear later.

2.3. Test Conditions and Baseline System (BL)

We conduct three tests on the given database. In all the tests,
we assume that only the office data are available for training the
speaker models. The three tests, indexed by their corresponding
enviornment/microphone conditions for training and testing, are
described below.

1. OH-OH: both training and testing are conducted in the
Office environment with the use of a Headset. This gives
matched condition training and testing.

2. OI-SI: training is conducted in the Office environment
using the Internal microphone and testing is conducted in
the Street-intersection environment also using the Inter-
nal microphone. There is a mismatch between the train-
ing and testing environments but no mismatch between
the microphone types.

3. OI-SH: training is conducted in the Office environment
using the Internal microphone and testing is conducted
in the Street-intersection environment using a Headset.
There are mismatches in both the environments and the
microphone types between the training and testing.

We first conducted the tests for a baseline system (BL). The
system was a conventional full-feature HMM, using 2 diago-
nal Gaussian mixtures per state for the eight states modeling
the phrase and 16 mixtures per state for the three tied states
modeling the backgrounds surrounding the utterance. The sys-
tem used the feature vector X described in Section 2.2 as the
frame vector and used (4) and (5) to compute the speaker score.
Fig. 3–5 present the detection-error-tradeoff (DET) curves for
the baseline system, for the three test conditions OH-OH, OI-
SI, OI-SH described above. Table 1 shows the equal error rates
(EERs) produced by the system for the three test conditions.
The baseline system accuracy degraded seriously by the noise
corruption and microphone mismatch.

3. Wiener Filtering (WF)
A two-stage Wiener filter (WF) [20] is implemented as a pre-
processing technique for removing the background noise. The
filter is based on an estimate of the noise power spectrum taken
at the beginning of each test utterance assuming a period of sig-
nal containing only background noise. Twenty frames, or 200
ms, are found suitable for the database for the estimation with-
out requiring an end-point detection. The noise power spectrum
is estimated by averaging the FFT power periodograms over the
20 frames. Although a noise tracking algorithm may be fur-
ther considered for estimating nonstationary noise (e.g., [21]),

Figure 2: Effect of Wiener filtering, showing the spectrum of a
noisy utterance before (left) and after (right) the filtering.

this is not implemented in our experiments because of the rel-
atively short duration of each test utterance giving few speech-
inactive periods within the utterance for noise estimate updat-
ing. The WF is used to modify the noisy FFT magnitudes before
they are passed to the mel-warped filter bank for calculating the
frame vector (Section 2.2). Informal listening tests indicate sig-
nificantly improved signal-to-noise ratio (SNR) for the filtered
noisy signal, along with some mechanical sound effects as usu-
ally found with speech enhancement algorithms. Fig. 2 shows
an example of the WF effect for increasing the SNR. To reduce
the training and testing mismatch, the filter is also applied to
the training data. Except for the filtered training/testing data,
the HMM structure and the score algorithm remain the same as
for the baseline system.

The DET curves for the WF technique for the three test
conditions are shown in Fig. 3–5, with the corresponding EERs
presented in Table 1. It is seen that the WF improved upon
the baseline system for the matched office training and test-
ing (OH-OH), reducing the EER from 8.85% for the baseline
system to 5.66%. However, the technique offered very limited
performance improvement for the two tests with noise (OI-SI,
OI-SH), despite the improved SNR. This may be caused by the
inaccuracy of the filter. While removing noise, the filter with
inaccurate parameters may also hurt the speech signals. This
may not necessarily affect the intelligibility but can change the
characteristics of the signal that are critical for speaker recog-
nition. Accurate filtering requires an accurate estimation of the
noise characteristics. This can be difficult when there is a lack
of data or when the noise characteristics are time varying.

4. Noise Compensation (NC)
Noise compensation (NC) techniques modify the speaker model
parameters (e.g., the mean vectors and covariance matrices of
the Gaussian mixture model) to match the noise effect on the
speech signal. Typical examples of NC include PMC [22],
which combines the parameters of a clean speech HMM and
a noise HMM to form a new HMM modeling the noisy speech,
and multi-condition or multi-style training [23], which builds
acoustic models directly on noisy training data matching the test
environments. To gain an accurate image of the effectiveness of
the method on our database, we consider re-training the speaker
models using noise data taken from the test data. As in the im-
plementation of the WF technique, the first 200 ms of each test
utterance is taken as the noise data. These are concatenated and
added to the waveforms of the office training utterances to form
the noisy training data for re-training the speaker models for
the appropriate test condition. We believe that this offers a bet-
ter model than PMC as there are fewer approximations made in
forming the noisy model, given the same amount of noise in-
formation. The re-trained model takes the same structure as the
baseline model and uses the same score algorithm, (4) and (5),
as used for the baseline model and the WF model.

Fig. 3–5 show the DET curves for the NC technique for the
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three test conditions, with the corresponding EERs included in
Table 1. Compared to the WF technique, the NC technique per-
formed worse in the OH-OH test, similarly in the OI-SI test,
and slightly better in the OI-SH test, with only small improve-
ment over the baseline model for the noisy test conditions (at
the price of losing some performance for the office training and
testing). A visual examination of the test data indicates sophis-
ticated noise variation in many utterances; the first 200 ms of
the signals are not sufficient for capturing these variations.

5. Combining WF, NC with Missing-
Feature Technique (WF+MF, NC+MF)

Missing-feature (MF) techniques focus recognition on the least-
distorted feature components, thereby reducing the effect of
noise on recognition. The techniques are effective given partial
noise corruption, a condition that may not be realistically as-
sumed for many real-world applications. This problem may be
remedied by combining the MF method with other noise-robust
techniques, e.g., WF or NC. WF or NC can be used to deal with
the trainable noise component, for example, the slowly-varying
or stationary noise component, which is not necessarily partial.
This is followed by the MF method that is used to ignore the
residual noise leftover by the WF or NC, assuming that this has
a partial corruption characteristic. The residual noise may be a
combination of the nonstationary noise component difficult to
remove by WF or NC, and the distortion caused by inaccurate
WF or NC due to inaccurate noise estimation. The combined
system thus has the potential of being able to handle full, non-
stationary noise corruption.

How to identify the reliable feature parts assuming mini-
mum noise information remains a focus of the research for the
MF method. Previous studies have suggested different meth-
ods (see, for example, [13], [14], [24]–[26]). In this paper,
we study the posterior union model (PUM) [27]. The PUM
is applied to frame vector X on a frame-by-frame basis, ob-
taining an estimate of the reliable feature components within
X that maximizes the posterior probability of the associated
state P (s|X) as defined in (2). Let χ̂ denote the estimate, then
χ̂ = arg maxχ∈X P (s|χ). The maximization can be com-
puted efficiently by approximating the state-emission probabil-
ity P (χ|s), for any subset χ ∈ X , by the probability of the
union of all subsets of the same size as χ, i.e. [28],

P (χ|s) ∝ �
all χ′∈X,size(χ′)=size(χ)

P (χ′|s) (6)

Since the sum includes all subsets, it includes the least-distorted
subset, assuming of the size of χ, that can be assumed to dom-
inate the sum due to the best data-model match. Note that the
union probability P (χ|s) is not a function of the identity of
subset χ but only a function of the size of χ. Replacing the
state-emission probability in (2) with the union probability (6),
we thus turn the maximization for the identity of the reliable
subset, maxχ∈X P (s|χ), to the maximization for the size of
the reliable subset, maxsize(χ) P (s|χ), which has a much lower
complexity. This is why we call the above model the posterior
union model.

The PUM can be conveniently incorporated into (4) by re-
placing P (st|Xt) with the state posterior optimized for the fea-
ture components, i.e.,

LR(XT
1 , S

T
1 ) ' P (ST

1 )

T�
t=1

max
χ∈Xt

P (st|χ) (7)

Comparing (4) and (7) indicates a unified score framework for
the full-feature model and the missing-feature model. The dif-
ference between the two models thus rests only on the utiliza-
tion of the feature data in deciding the score – an area exploited
by the MF method for improving noise robustness.

We repeated the above WF and NC based experiments by
using (7) instead of (4) to compute the scores. The results for
the combined models, WF+MF, NC+MF, are shown in Fig. 3–
5 and Table 1. Both combined models improved significantly
upon their previous counterparts, with WF/NC alone, for the
noisy test conditions OI-SI, OI-SH. For the office test condi-
tion OH-OH, WF+MF performed similarly to WF, and NC+MF
performed significantly better than NC. Both combined mod-
els improved upon the baseline model with significance. In all
the three tests, WF+MF performed better than NC+WF, reduc-
ing the average ERR from 19.96% for the baseline model to
11.37%, corresponding to 43% error reduction.

6. Universal Compensation (UC)

Unlike WF and NC which are built upon a noise estimate as-
suming the availability of training data from the test environ-
ments, universal compensation (UC) requires no information
about the test noise and hence is suitable for applications with-
out data for noise estimation. UC achieves noise robustness
by combining multi-condition training and the missing-feature
method. Multi-condition training is conducted using simulated
noisy data with limited noise varieties, providing a “ coarse”
compensation for the noise, and the missing-feature method re-
fines the compensation by ignoring noise variations outside the
given training conditions, thereby reducing the training and test-
ing mismatch. By properly designing the simulated noise data
for training, the UC technique has the potential of offering im-
proved robustness for a wide range of noise conditions, e.g.,
partial-band, full-band, stationary or nonstationary at varying
SNRs, without assuming information about the actual noise.
Previously we have studied the use of white noise at various
SNRs as the training noise, added to the clean training data to
form the multi-condition training data for the model [15]. In
the present study we consider an alternative, choosing to use
the low-pass filtered white noise at various SNRs as the training
noise data. The low-pass filtering simulates the high-frequency
rolloff characteristics often seen for the realistic noise data, due
to the microphone effect, and due to the relatively distant noise
sources. The PUM described in Section 5 is used to build the
multi-condition model, to exploit the model’s feature-selection
ability to focus the recognition on the matching data between
the simulated training noise condition and the realistic test noise
condition.

Let Φ0 denote the clean training data set for a speaker (Φ0

is the office data set in our experiments). The first step of the
UC method is to multiply Φ0 by adding simulated noise to Φ0

at various SNRs. This leads to multi-condition training sets Φ1,
Φ2, ..., ΦL, where Φl denotes the lth training set correspond-
ing to a specific SNR. Assume that on each training set Φl a
speaker model is estimated, which is represented by the HMM
state-emission probabilities P (X|s, Φl). The second step of
the UC method is to compose P (X|s, Φl) from different sets
Φl to form a multi-condition model, such that it is capable of
accommodating noise varieties, and at the same time capable
of ignoring noise variations not matched by the multi-condition
training data. The PUM can be extended to implement this. Fol-
lowing (2), define a posterior probability P (s, Φl|X) of state s
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and training noise condition Φl given frame X:

P (s, Φl|X) =
P (X|s, Φl)P (Φl|s)P (s)�

s′,l′
P (X|s′, Φl′)P (Φl′ |s′)P (s′)

(8)

where P (s) is a state prior, P (Φl|s) is the the prior proba-
bility of the occurrence of the noise condition represented in
Φl in state s, and the summation in the denominator is over
all all possible states and training noise conditions for frame
X . A multi-condition model, which produces a state posterior
P (s|X) required in (4) for scoring, can be obtained by inte-
grating P (s, Φl|X) over the training noise condition, and by
applying the PUM for each training condition to focus on the
best-matching test data that maximize P (s, Φl|X), i.e.,

P (s|X) =

L�

l=0

max
χ∈X

P (s, Φl|χ) (9)

We call (9) the UC model. Comparing (7) and (9) indicates
that the PUM is a special case of the UC model with single-
condition training (i.e., L = 0). As for the PUM, the maxi-
mization in (9) for the matching data subset can be turned into
a maximization for the size of the matching data subset, and
hence with a lower computational complexity, by approximat-
ing the state-emission probability P (χ|s, Φl) in (8), for any
subset χ ∈ X , by the sum

�
χ′ P (χ′|s, Φl) for all subsets

χ′ ∈ X of the same size as χ, i.e., the probability of the union
of all χ′.

In our experiments, we created nine noisy training sets (i.e.,
L = 9) by adding simulated, low-pass filtered white noise to the
office training data at nine SNRs from 4 to 20 db (increasing
2 db every step). This gives a total of ten training conditions
(including the original office data condition), each condition
characterized by a specific SNR. For each speaker, each SNR
condition was modeled by an HMM with the same structure
as the baseline model as described in Secition 2.3, with eight
states with 2 mixtures per state for the spoken phrase and three
states with 16 mixtures per state tied across all the speakers for
the speech-inactive backgrounds. The state-emission probabil-
ities of these HMMs were combined based on (9) to form the
UC model. In computing (8), we assumed a uniform state prior
P (s), and a unform noise-condition prior P (Φl|s) assuming no
prior knowledge of the structure of the test noise.

The verification results produced by the UC model are pre-
sented in Fig. 3–5 and Table 1. Compared to the previous best
WF+MF, the UC model offered comparable/better performance
for the two noisy test conditions (OI-SI, OI-SH) and a lower
average EER over all the three test conditions. Compared to
the baseline system, the UC model reduced the average ERR
from 19.96% to 10.85%, corresponding to 45.6% error reduc-
tion. Note that the UC model achieved these without having
assumed knowledge about the test noise.

7. Combining Wiener Filtering and
Universal Compensation (WF+UC)

It comes as a natural thought to combine WF and UC as an
extension of WF+MF, studied in Section 5, for possible per-
formance improvement. The new WF+UC combination has a
potential to improve over WF+MF by removing the assumption
that the residual noise leftover by the WF has a partial corrup-
tion characteristic, which is required by the WF+MF model for
the missing-feature component to function. In the new com-
bination, the residual noise/distortion from the WF can have a

full-corruption characteristic, which can be accounted for by the
simulated, full-corruption, multi-condition noisy training data,
followed by the missing-feature technique (e.g., PUM) to re-
duce the mismatch of the compensation. It may be assumed
that the variance of the residual noise is smaller than that of the
original noise. Therefore fewer SNR levels are required in the
UC model to account for the residual noise, than required for
modeling the original noise. This leads to a smaller UC model.

The idea was examined by experiments on the database.
The WF, described in Section 3, was applied to both the office
training data and the test data. The office training data, after the
filtering, was further corrupted by adding simulated, low-pass
filtered white noise to the data at six SNRs from 10 to 20 db
(increasing 2 db every step), to form the multi-condition train-
ing sets and UC model (9), with L = 6. Note that the new UC
model had fewer SNR levels than the previous UC model built
for the unfiltered noisy test data, described in Section 6. The re-
sults for the new combination are shown in Fig. 3–5 and Table 1.
The new WF+UC model improved upon the previous WF+MF
model in all the three test conditions. The new model also im-
proved over the previous UC model in two of the three test con-
ditions (OH-OH, OI-SI). The new combination produced the
lowest average EER among all the seven models studied in the
paper, reducing the average EER from 19.96% for the baseline
model to 10.19%, corresponding to 48.9% error reduction.

8. Conclusions
This paper investigated different modeling techniques for hand-
held speaker verification, using a database recorded in realis-
tic noisy conditions. The database provided limited training
data for the enrolled speakers, and involved realistic noise and
transducer mismatch between training and testing. The mod-
eling techniques being studied include Wiener filtering, noise
compensation, missing-feature method, universal compensa-
tion, and their combinations. These were studied and compared
within the same framework for acoustic featuring, modeling
and scoring. Our experimental results on the database indicated
that: 1) usual Wiener filtering and noise compensation, based on
a noise estimate taken at the beginning of test utterances over a
period of signal without speech, showed very limited robustness
to noise corruption, and 2) the proposed combined techniques
offered significantly improved noise robustness. We studied
different combination strategies, including the combination be-
tween Wiener filtering/noise compensation and missing-feature
method, the combination between multi-condition training and
missing-feature method (i.e., universal compensation), and the
combination between Wiener filtering and universal compensa-
tion (which is effectively the combination of three techniques
– Wiener filtering, multi-condition training and missing-feature
method). Ideally, the individual component techniques in the
combination are complementary to one another. Our further
research will be focused on the optimization of the individual
component techniques for an optimized combined system.
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Table 1: Equal error rates (%) produced by various modeling techniques including baseline (BL), Wiener filtering (WF), noise com-
pensation (NC), missing-feature (MF), universal compensation (UC) and their combinations, for different environment/microphone
conditions: O–office, S–street intersection, H–headset, I–internal microphone.

Training-Testing Modeling Technique
condition BL WF NC WF+MF NC+MF UC WF+UC

OH - OH 8.85 5.66 10.58 5.89 7.30 6.50 4.58
OI - SI 20.83 19.39 19.28 12.04 16.67 11.98 11.38
OI - SH 30.21 27.62 25.00 16.17 17.72 14.06 14.62
Average 19.96 17.56 18.29 11.37 13.89 10.85 10.19
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Figure 3: DET curves for matched training and testing OH-OH: training–office/headset, testing–office/headset, for various modeling
techniques including baseline (BL), Wiener filtering (WF), noise compensation (NC), missing-feature (MF), universal compensation
(UC) and their combinations.
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Figure 4: DET curves with mismatched environments OI-SI: training–office/internal microphone, testing–street intersection/internal
microphone, for various modeling techniques including baseline (BL), Wiener filtering (WF), noise compensation (NC), missing-
feature (MF), universal compensation (UC) and their combinations.
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Figure 5: DET curves with mismatched environments and microphone types OI-SH: training–office/internal microphone, testing–
street intersection/headset, for various modeling techniques including baseline (BL), Wiener filtering (WF), noise compensation (NC),
missing-feature (MF), universal compensation (UC) and their combinations.
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