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ABSTRACT

Document similarity measures are required for a variety of data
organization and retrieval tasks including document clustering, doc-
ument link detection, and query-by-example document retrieval.
In this paper we examine existing and novel document similar-
ity measures for use with spoken document collections processed
with automatic speech recognition (ASR) technology. We compare
direct vector space approaches using the cosine similarity measure
applied to feature vectors constructed with various forms of term fre-
quency inverse document frequency (TF-IDF) normalization against
latent topic modeling approaches based on latent Dirichlet alloca-
tion (LDA). In document link detection experiments on the Fisher
Corpus, we find that an approach that applies bagging to models
derived from LDA substantially outperforms the direct vector space
approach.

Index Terms— document similarity, document link detection,
latent topic modeling

1. INTRODUCTION

There are a variety of useful data organization and retrieval tech-
niques that can be applied to collections of audio documents. These
include document clustering (where groups of topically related doc-
uments are clustered together), document link detection (where doc-
ument pairs which are topically related or linked are identified), and
query-by-example document retrieval (where documents which are
topically related to an example or query document are listed and
ranked). All of these applications require an accurate method for
computing the similarity between pairs of documents.

In order to compare two audio documents, the first step is to
construct a vector of content bearing features extracted from each
document. Generally, the feature vector contains simple counts of
observed words or short word n-grams. In fact, the basic bag-of-
words approach using only counts of individual word unigrams (de-
void of any local contextual information) has proven surprisingly
effective for a variety of document modeling tasks [9, 11]. After ob-
served features have been extracted, there are two primary methods
in which documents are commonly compared during the similarity
computation process: (1) with direct comparison of the observed fea-
tures extracted the documents, or (2) via comparison of latent topic
variables inferred from the observed features.

In the direct modeling approach, the bag-of-words feature vec-
tors typically lie in a high-dimensional but generally sparse space
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containing one dimension for every word in the known vocabulary.
Vectors are typically normalized in some fashion (e.g. using stop-
listing and/or inverse document frequency weighting) to reduce the
impact of common words that possess little or no content bearing
information. The feature vectors for two documents are often com-
pared in the vector space using the cosine similarity measure. This
widely-used method was the primary approach employed by systems
performing the link detection task in NIST’s Topic Detection and
Tracking (TDT) Evaluations conducted from 1999 to 2004 [1, 13].

In the latent topic modeling approach, a set of hidden topics are
learned from the data collection using a technique such as latent
semantic analysis (LSA) [5], probabilistic latent semantic analysis
(PLSA) [8], or latent Dirichlet allocation (LDA) [2]. Given a learned
set of latent topics, a weighting or probabilistic distribution of the la-
tent topics is inferred from the observed features for each document
in the collection. The similarity of the vectors of latent topic weights
for two documents can then be compared in the latent vector space.

This paper explores the use of both direct and latent approaches
to the document modeling problem. In addition to examining tra-
ditional methods for both approaches, several variations on these
techniques which can further improve their performance are also
presented. In particular, this paper shows that the use of bootstrap
aggregation (or bagging [3]) of multiple randomly initialized proba-
bilistic latent models can yield substantial improvements in the accu-
racy of latent topic similarity measures. Evaluations of the explored
techniques are conducted for the document link detection task us-
ing a collection of spoken conversations from the Fisher Corpus that
have been processed using an automatic speech recognition (ASR)
system.

2. DIRECT MODELING OF DOCUMENTS

2.1. The Cosine Similarity Measure

In the direct modeling approach, a high dimension feature vector,
represented as &, is constructed to describe each document d; in a
collection D. Within this vector space, the similarity between the
two documents d; and d;, represented by vectors, Z; and Z;, is com-
monly computed using the cosine similarity (CS) measure as fol-
lows:
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Scs(di,dj) = cos ¢ = (L
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Here ¢ is the angle between the vectors Z; and Z;. If we assume
that every element of &; and Z; is non-negative then 0 < cos¢ <
1 with values closer to 1 representing document pairs with greater
similarity.
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2.2. The TF-IDF Representation

Each element x,, of a feature vector & represents the contribution
of a particular feature w. These features are typically unique words,
though any type of countable feature is possible including word n-
grams, local word co-occurrences, etc. Each word w is an element of
the vocabulary V', which is comprised of Ny pre-determined words.
This vector space representation of a document based on the counts
of the individual words, independent of their ordering in the docu-
ment, is commonly referred to as the bag-of-words representation.
Using this representation, each element x., is derived from the un-
derlying observed count c,, of word w in the document as follows:

Tw = AwCuw 2)

Here, A, is a weighting term which can be determined in a variety of
ways. In general \,, is intended to boost the contribution of word w
when it contains a large amount of content bearing information or re-
duce its contributions when w possesses little or no content bearing
information. If no weighting function were applied to the collection
of counts, the computation of the cosine similarity measure would
be dominated by common words ( e.g., articles, conjunctions, auxil-
iary verbs, etc.) which are devoid of content information. It is also
worth noting that the true value of c¢,, is generally unknown for au-
dio documents and ¢, is typically estimated from hypothesis lattices
generated by an automatic speech recognition (ASR) system.

The most commonly used weighting function is inverse docu-
ment frequency (IDF) weighting. Standard IDF weighting is ex-
pressed as:

Ao = idf(w) = log Np

3
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Here Np is the total number of total documents in the collection
and Npnw is the number of those documents containing the word
w. Using this expression, words that appear in fewer documents
are presumed to carry more content information than more common
words and hence receive more weight. The use of the log function
prevents extremely rare words (i.e., those appearing in only one or
a few documents) from getting an excessively large weight. The ap-
plication of IDF weighting to feature counts is commonly referred to
as the term frequency - inverse document frequency (TF-IDF) repre-
sentation.

When applying document modeling techniques to spoken docu-
ments, it is important to note that the actual words in each document
are not known and as such Npn., is also not known and must be
estimated [14]. In our work, Npn., is estimated from the document
collection as:

Npnw = max <H, Z min(cy, 1)> 4)

vdeD

Here, ¢, is an estimated count of word w in document d as predicted
using an ASR system. It is important to note that, for any given
document, the estimate of c,, can have a positive value less than
one. The parameter x sets a floor on Npn., thus providing an upper
bound on idf (w). In our work, we set k = 0.01.

2.3. Stop-Listing

While TF-IDF weighting has proven effective for many tasks, it has
its flaws. In particular, it still allows large numbers of common func-
tion words to receive non-zero weight despite their apparent lack of
content information. Towards this end many systems employ the
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use of an explicit stop list, i.e., a list of words that are pre-selected
to receive a weight of zero and hence to be ignored. While these
stop lists are often manually crafted, they can also be automatically
generated based on the document frequency of words. Similarly, ex-
tremely rare words, by their sporadic nature, may not contain enough
trustworthy information to be useful for topical comparisons either.

To incorporate these constraints, Equation 3 can be re-expressed
as follows:

-0 Npaw
0 if =70 > tq

Aw =194 0 if N < tc &)
idf(w) otherwise

Here, the weight A, for word w is set to zero if the document fre-
quency for w exceeds the threshold tq4 or if the total count N,, of
word w over all documents does not exceed the threshold ¢.. This
weighting scheme will be referred to as TF-IDF with hard stop-
listing.

2.4. Soft Stop-Listing

As an alternative to hard stop-listing, we introduce a new softer de-
emphasis of the very common and very rare words which we will
call soft stop-listing. This is expressed as:

log Npaw

s e | (1-5%) @

Aw = idf(w)

In this expression, hard cut-offs on the document frequency and total
word count are replaced with functions that vary smoothly between
Oand 1.

3. LATENT MODELING OF DOCUMENTS

3.1. Probabilistic Latent Semantic Analysis

When using latent modeling, documents in a collection are mod-
eled as a weighted combination of latent topics from a set Z =
{z1,...,2n,}. In the probabilistic latent semantic analysis (PLSA)
approach, each latent topic possesses a probabilistic unigram lan-
guage model P(w|z) representing the probability that word w could
be generated by topic z. Each document d; in the document collec-
tion D is then assumed to have been generated by a weighted mixture
of the latent topic unigram models. If a document is modeled by a
collection of word counts C' = {c1, ..., cn,, }, the generative PLSA
model for observing the word count collection C' for document d; is:

P(Cld) =[] <Z P(wz)P(z|di)> @)
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3.2. Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) is a generalization of PLSA in
which the point estimate of P(z|d;) for document d; in PLSA is re-
placed by a prior probabilistic Dirichlet distribution over all possible
latent topic distributions within Z. The specific details of incorpo-
ration of the Dirichlet distribution into the formulation are available
in [2], so we will not cover them here. It is important, however, to
note that the Dirichlet distribution in LDA constrains the topic dis-
tribution over z € Z through a shared « variable in which ov < 1



places a strongly preference on distributions which are dominated
by one single topic, while a@ > 1 gives preference to distributions
which spread the weight evenly across all topics. In practice, the «
value is typically estimated during the LDA learning process, and
because documents often discuss only one specific topic (or at most
a few topics), it is usually the case that o < 1. When a fixed value
of @ = 1 is used, LDA assumes all topic distributions over Z are
equally likely.

When LDA uses the a = 1 constraint in conjunction with the ap-
plication of MAP estimation in its inference stage, it has been shown
that LDA is equivalent to PLSA [6]. In practice though, LDA typi-
cally uses either a variational technique or a sampling technique in
its inference stage, so the equivalence between LDA and PLSA when
a = 1 is only loosely approximate.

3.3. Latent Topic Representations of Documents

Using latent topic modeling (either PLSA or LDA), documents are
represented by a set of estimated latent topic probabilities P(z|d;)
over the set of N different latent topics z € Z, with the P(z|d;)
values for each document being inferred using some form of the EM
algorithm. These weights can equivalently be represented in the vec-
tor form Z; such that:

P(z1]d;)
5= : ®)
P(zn,|di)

3.4. Similarity Measures for Latent Topic Representations

Given a set of estimated latent topic probabilities for each document,
there are several measures that can be used to compare the similarity
of two documents [12]. To begin with, the cosine similarity (CS)
measure can be applied to two latent vectors Z; and 2, as was done
in the direct modeling case, as follows:

77

Scs(di,dj) = )
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An alternative to the cosine similarity measure is the unnormalized
dot product (DP) similarity measure:

Spp(di,di) = Zi - Z; 10)

The dot product of Z; and Z; is equivalent to the estimated probabil-
ity that the two documents were derived from the same underlying
latent topic, under the assumption that only one topic was used to
derive each document.

The symmetric Kullback-Leibler (KL) divergence measure can
also be used to compare latent topic distributions as follows:

Drcp(diydy) = P(zld:) log Bz +
z2€Z

P(z|d;
P(2|d;)log 7|53 (11)

The KL divergence is 0 for documents with identical topic distribu-
tions and gets larger as the latent topic distributions get more dis-
similar. The KL divergence can be converted to a similarity measure
(ranging from O to 1) using this expression:

Skr(di,d;) = exp(—Dxr(ds,d;)) 12)

356

3.5. Bagging of Latent Topic Representations

In PLSA or LDA, the EM training algorithm requires an initial es-
timate of either P(w|z) for each z or P(z|d) for each d. The most
common practice is to randomly initialize a P(w|z) for each z. The
EM algorithm is only guaranteed to converge to a locally optimal
maximum likelihood solution and not the globally optimal solution.
Thus, in practice, different random initializations of PLSA or LDA
models will yield different final models.

Because different initializations lead to different final models,
latent models derived from PLSA or LDA are ideally suited for the
application of bootstrap aggregation or bagging, in which multiple
models generated with different bootstrapped initializations are ag-
gregated [3]. Bagging of PLSA models has previously been success-
fully applied to the task of image scene recognition [10].

When using the bagging technique, we begin by assuming that
K different latent topic models M; through Mg are trained from
K different random model initializations. From each model M,
an estimate of the topic distribution P(z|d;, M}) is produced for
each document d;. The aggregation stage is most easily performed
by averaging the document similarity measures between two docu-
ments d; and d; produced by each of the K models. In this case, we
represent a similarity score produced using model M, generically
as S(d;, d;, My). In our work we examine two different averaging
methods, the arithmetic mean and the geometric mean. The arith-
metic mean is realized as:

K
1
San(di,d;) = EZS(di,dj,Mk) 13)
k=1

The geometric mean is realized as:

K
1
SGM(di, dj) = exp <E Zlog S(dz, dj, Mk)> (14)

k=1
4. EXPERIMENTAL CONDITIONS

4.1. Corpus

For our experiments we have used a collection of 1374 calls ex-
tracted from the English Phase 1 portion of the Fisher Corpus [4].
The corpus consists of 10-minute long recorded conversations be-
tween two people connected over the telephone network. At the start
of each conversation, the two participants were given prompted in-
structions to discuss a specific topic. Data was collected from a set
of 40 different topics. The topics were varied and included relatively
distinct topics (e.g. “Movies”, “Hobbies”, “Education”, etc.) as well
as topics covering similar subject areas (e.g. “Issues in Middle East”,
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“Arms Inspections in Iraq”, “Foreign Relations”).

4.2. Link Detection Evaluation

To assess the various approaches to measuring document similarity
proposed in this paper, we use a document link detection evalua-
tion. In this evaluation, we attempt to detect whether a given pair of
documents are topically related or not. For the Fisher Corpus, two
documents are considered topically related when the topic the par-
ticipants in the conversation were prompted to discuss is the same
for both documents. Over our 1374 conversation experimental data
set, the evaluation paradigm yields 943,251 unique document pairs
of which 30,921 pairs are deemed topically linked.

To evaluate link detection performance, we compute a ranked
list of document pairs from our corpus for each document similarity



measure. From the ranked list, we generate a detection/error trade-
off (DET) curve which measures the miss rate (i.e., the fraction of
topically linked document pairs we fail to detect) against the false
alarm rate (i.e., the fraction of document pairs that are not topically
related that we falsely detect) as the detection threshold is swept
through all valid values. We report performance using the equal error
rate (EER) of the DET curve (i.e., the point on the curve where the
miss rate and the false alarm rate are equal). We choose to use this
evaluation paradigm because it provides a mechanism for assessing
document similarity measures which is straightforward to implement
and easy to interpret.

4.3. Automatic Speech Recognition

In our experiments, word-based automatic speech recognition (ASR)
is applied to each audio segment of each conversation. The ASR sys-
tem generates a network, or lattice, of speech recognition hypotheses
for each audio segment. Within each lattice, the posterior probability
of all hypothesized word arcs in the lattice is estimated. From these
lattices an expected count for each word within each conversation
is computed by summing the posterior scores over all hypothesized
instances of that word over all lattices from that conversation.

We use the MIT SUMMIT speech recognizer as our ASR sys-
tem [7]. The system’s acoustic models were trained using a standard
maximum-likelihood approach on a separate 553 hour set of Fisher
Corpus data. For language modeling, the system uses a basic tri-
gram language model with a 31.5K word vocabulary trained using
the transcripts of the recognizer’s training set. Because this recog-
nizer applies very basic modeling techniques with no adaptation, the
system performs recognition faster than real time (on a current work-
station) but word error rates can be high (typically over 40%).

4.4. Latent Dirichlet Allocation Implementation

For our latent modeling experiments we use David Blei’s C imple-
mentation of latent Dirichlet allocation (LDA).? This implementa-
tion was modified slightly to accommodate the use of floating point
estimated counts of words instead of the integer counts typically
used in text processing. We have explored using both the standard
LDA approach where the o Dirichlet parameter is estimated, and
also the constrained form of LDA where o = 1 and remains fixed
(which can be viewed as a loose approximation of PLSA). For all
of our experiments the latent topic unigram models are initialized
by seeding each individual unigram model with the statistics from a
randomly selected document from the data collection.

Because common function words are also known to impede the
performance of LDA, automatic stop word selection is employed us-
ing the minimum word count threshold ¢. and maximum document
frequency threshold ¢4 parameters as previously applied in the direct
modeling approach. In all of the LDA experiments these parameters
are set to t. = 5 and tq4 = .5. These settings result in the exclusion
of 268 words that are estimated to appear in more than half of the
documents and over 22K words that are estimated to occur 5 times
or less over all documents. This leaves the LDA model with an active
vocabulary of 7,615 words in these experiments.

The final collection of latent topic posteriors P(z|d;) for each
d; in the corpus are extracted from the inferred latent Dirichlet y pa-
rameters produced during the variational EM process in Blei’s LDA
implementation. A MAP estimate of the topic distribution P(z|d;)

2David Blei’s open source LDA implementation is available from:
http://www.cs.princeton.edu/ blei/lda-c/
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Term Weighting te ta EER (%)
Standard TF-IDF N/A | N/A 12.8
TF-IDF w/ hard stop-listing | 150 | 0.5 11.5
TF-IDF w/ soft stop-listing | 300 | 0.05 10.4

Table 1. Document link detection EER results for the direct model-
ing approach using the cosine similarity measure with three different
term weighting schemes.

Max

Avg

T Min

Equal Error Rate (%)
s 2

20 30 40 50 60 70
# Latent Topics

Fig. 1. Link detection EER using individual randomly initialized
LDA training trials with o« = 1 over latent topic sets varying from
20 topics to 70 topics. The comparison of latent vectors of document
pairs was performed with the dot product similarity measure.

is derived by performing an L1 norm over the collection of Nz dif-
ferent  parameters produced by the LDA process for document d;.

5. EXPERIMENTAL RESULTS

5.1. Direct Modeling Experiments

In our first experiment, we examine the link detection EER perfor-
mance of the three direct modeling approaches proposed in Sec-
tion 2, i.e., the use of the cosine similarity measure in conjunction
with (1) standard TF-IDF weighting, (2) TF-IDF weighting with
hard stop-listing, and (3) TF-IDF weighting with soft stop-listing.
Results for these three approaches are provided in Table 1. For the
stop-listing approaches, results are shown for the optimal word count
threshold ¢. and document frequency threshold ¢4 as determined by
a grid search over the range of appropriate values for these terms.
Thus, these results provide a lower bound on the EER achievable by
these techniques on this data set. The best result of 10.4% EER was
acheived using TF-IDF with soft stop-listing.

5.2. Baseline Latent Modeling Experiments

Our initial set of latent modeling experiments are shown in Fig-
ure 1. In this experiment, LDA is applied to the data set using a
fixed Dirichlet parameter of & = 1. The number of latent topics is
varied by 10 from 20 to 70. For each specific number of latent topics,
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Fig. 2. Average link detection EER for LDA training trials over la-
tent topic sets varying from 20 topics to 70 topics. Results are com-
pared using a fixed Dirichlet parameter value of o = 1 versus an
estimated value of o when using three different document similarity
measures: the dot product (DP) measure, the cosine similarity (CS)
measure, and the KL divergence measure.

25 different training trials are run with a different random initializa-
tion of the models for each trial. The documents are compared using
the latent vector dot product similarity measure.

In the figure, we observe average link detection EER measures
ranging from 8.6% using 30 latent topic to 11.5% for 70 topics. The
average performance of this baseline LDA system outperforms the
best TF-IDF direct modeling approach when the number of latent
topics is between 20 and 50, but the worst performing LDA training
trials across all latent topic set sizes are all worse than the best TF-
IDF direct model system.

Figure 2 explores the effect of varying two aspects of the model-
ing process. First, results are examined when the Dirichlet o param-
eter is fixed to a value of o = 1 versus the standard LDA approach in
which « is estimated from the data. In our experiments the estimated
« values range from o ~ .05 for 20 latent topics to o ~ .02 for 70
latent topics. In general, these small o values force the estimated
latent topic distributions to be heavily skewed towards one topic.
The figure also explores the effect on performance of the three dif-
ferent similarity measures: the dot product (DP) measure, the cosine
similarity (CS) measure, and the symmetric KL divergence measure.
In Figure 2, it is observed that the three similarity measure all per-
formed similarly when the LDA « parameter is estimated, though
the DP measure yields a consistently better EER than the CS and
KL measures.

The most interesting result in Figure 2 is the effect of fixing
a = 1 during LDA estimation. This forces the LDA algorithm to
learn smoother distributions over the latent topics than when « is
estimated. When o = 1, obvious improvements in link detection
accuracy are observed for the DP measure, while the CS and KL
measures see obvious degradations in performance.

Intuitively, it makes sense that the DP measure would outper-
form the CS and KL measures on this data, because the Fisher Cor-
pus explicitly contains one topic per audio document and the link
detection evaluation used in these experiments assumes links exist
only between documents discussing the same labeled topic. If there
is a close association between the latent topics learned via LDA and
the actual topics in the Fisher Corpus, then the DP measure would
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Fig. 3. Minimum, average and maximum EER performance of ge-
ometric mean bagging as the number of aggregated LDA training
trials is varied from 1 to 25 when the number of latent topics is fixed
at 40.
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Fig. 4. Average EER performance of bagging with a geometric mean
as the number of aggregated LDA training trials is varied from 1 to
25 and the number of latent topics is varied from 20 to 70.

explicitly capture the probability of two documents discussing the
same underlying topic. The CS and KL measures may be more ap-
propriate for data in which multiple topics are present in each doc-
ument, because they explicitly measure the similarity of the topic
distributions and make no assumptions about the actual number of
topics that may be relevant to the document.

5.3. Bagged Latent Modeling Experiments

As observed in Figure 1, the performance of an LDA estimated
model on the link detection evaluation is highly dependent on the
initialization of the model, leading us explore the use of bootstrap
aggregation or bagging. In our experiments we generated 25 dif-
ferent models from 25 different randomly initialized training trials
for each condition we explored. Figure 3 shows the EER perfor-
mance as the number of aggregated models is varied from K = 1 to
K = 25. For each K, 25 pseudo-randomly selected subsets of K



8.0

7.5+ i
— 5 Trials - AM3
X R
T 7.0
® 5 Trials - GM
x N Q)
15 6.5 4 25 - Trials AM "~ .
2 .-
w
§ 6.0 4 25 Trials - GM
o
v D NN
5.5
5.0 T T T T T T T
0 10 20 30 40 50 60 70

# of Latent Topics

Fig. 5. Average EER performance of bagging using the arithmetic
mean (AM) versus the geometric mean (GM) during averaging. Re-
sults are shown when using 5 or 25 aggregated training trials as the
number of latent topics is varied from 20 to 70.

models were created and the minimum, average and maximum EER
results using these 25 subsets of K models are presented. For all
results in this figure, 40 latent topics are trained using a fixed o« = 1,
the DP measure is used for document similarity, and the geometric
mean is used for similarity score averaging. The figure shows that
the average link detection EER can be reduced from 9.0% to 5.6%
simply by aggregating the scores produced by 25 different randomly
initialized LDA models.

Figure 4 shows results using the bagged LDA approach with
geometric averaging, as the number of latent topics is varied from
20 to 70. Bagging substantially improves performance regardless
of the number of latent topics used. With 30 latent topics, bagging
reduces the EER by a relative 37% (from 8.6% to 5.4%). For 70
latent topics, the error rate reduction is 43% (from 11.5% to 6.5%).
The results obtained from 25 bagged LDA models for the range of
latent topics from 20 to 70 are all significantly better than the best
direct modeling system which only achieved an EER of 10.4%. The
best LDA system performance of 5.4% EER represents a relative
48% reduction in link detection EER over the best direct modeling
performance of 10.4% EER.

Figure 5 compares the use of arithmetic mean averaging and ge-
ometric mean averaging during bagging. Results are shown for the
aggregation of 5 training trials and 25 training trials as the number
of latent topics is varied from 20 to 70. Here geometric averaging
performs better than arithmetic averaging when the number of la-
tent topics is 50 or less, but the two averaging techniques perform
similarly when the number of latent topics grows larger than 50.

6. CONCLUSION

In this paper we have explored the use of both direct and latent mod-
eling techniques for the purpose of computing similarity measures
for comparing spoken audio documents. On experiments conducted
using the Fisher Corpus of human-human conversations, we have
shown that similarity measures based on the bagging of similarity
scores derived from randomly initialized latent Dirichlet allocation
(LDA) models dramatically outperformed the direct modeling ap-
proach using various measures based on TF-IDF. On a link detection
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task, the EER of the best LDA-based system was a relative 48%
lower than the EER of the best TF-IDF system.

Though we have focused this work on the task of document link
detection, the methods explored in the paper are applicable to any
task that requires the use of a document similarity measure. In future
work we plan to apply these techniques to the tasks of spoken audio
document clustering and query-by-example document retrieval.
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