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2Abstra
tThis paper introdu
es two novel te
hniques for rapid speaker adaptation, referen
espeaker weighting and 
onsisten
y modeling. Also presented is an adaptation te
h-nique 
alled speaker 
luster weighting whi
h provides a means for improving upongeneri
 hierar
hi
al speaker 
lustering te
hniques. Ea
h of these adaptation meth-ods attempts to utilize the underlying within-speaker 
orrelations that are presentbetween the a
ousti
 realizations of di�erent phones. By a

ounting for these 
orre-lations, a limited amount of adaptation data 
an be used to adapt the models of everyphoneti
 a
ousti
 model, in
luding those for phones whi
h have not been observed inthe adaptation data. Results were obtained using the DARPA Resour
e Management
orpus for a set of rapid adaptation experiments where single test utteran
es wereused for adaptation and re
ognition simultaneously. Using the new adaptation te
h-niques relative word error rate redu
tions ranging from 4.9% to 8.4% were obtainedunder various 
onditions. Using a 
ombination of hierar
hi
al speaker 
lustering te
h-niques and the novel adaptation te
hniques, a word error rate redu
tion of 20% hasbeen a
hieved from the baseline speaker independent re
ognition system.



31 Introdu
tionWhen developing a speaker independent (SI) automati
 spee
h re
ognition system,it is important to a

ount for the wide variability that 
an be present in any spee
hwaveform. This variability 
an result from 
hanges in the individual speaker, thespeaker's environment, the mi
rophone and 
hannel of the re
ording devi
e, and/orthe me
hanism whi
h 
onverts the signal into its digital representation. However, itis important not to overlook the fa
t that the sour
es of variability often remain �xedthroughout any single spoken utteran
e. In other words, typi
al spee
h utteran
es
ome from one speaker who stays in the same environment and is re
orded usinga �xed set of equipment. This knowledge 
an be used to provide 
onstraints tothe re
ognizer. Thus, by obtaining a little information about the 
urrent speaker,environment, mi
rophone, and 
hannel, a spee
h re
ognizer should be able improveits performan
e by adapting to the 
hara
teristi
s parti
ular to the 
urrent utteran
e.In this paper, we will 
on
entrate our e�orts on the spe
i�
 issues surrounding theutilization of speaker 
onstraint within a speaker independent system and will leavethe issues regarding environmental, 
hannel and mi
rophone 
onstraint for anothertime. The goal of the resear
h is to be able to rapidly adapt a spee
h re
ognitionsystem to a speaker using only a small amount of adaptation data.Over the last ten to twenty years, dramati
 improvements in the quality of speakerindependent spee
h re
ognition te
hnology have been made. With the develop-ment and re�nement of the Hidden Markov Model (HMM) approa
h [Baker 1975,Bahl 1983, Lee 1988℄, today's spee
h re
ognition systems have been shown to worke�e
tively on various large vo
abulary, 
ontinuous spee
h, speaker independent tasks.However, despite the high quality of today's speaker independent systems [Bahl 1995,Gauvain 1995, Kubala 1997℄, there 
an still be a signi�
ant gap in performan
e be-tween these systems and their speaker adaptive (SA) or speaker dependent (SD)
ounterparts. The redu
tion in a system's error rate between its speaker independentmode and its speaker dependent mode 
an be more then 50%[Hazen 1998℄.The reason for the gap in performan
e between SI and SD systems 
an be at-tributed to 
awed assumptions used in the probabilisti
 framework and trainingmethods employed by typi
al spee
h re
ognizers. One primary problem lies in thefa
t that almost all spee
h re
ognition approa
hes, in
luding the prevalent HMM ap-proa
h, assume that all observations extra
ted from the same spee
h waveform arestatisti
ally independent after being 
onditioned on the underlying phone string. Ithas been observed that di�erent a
ousti
 observations extra
ted from spee
h from thesame speaker 
an be highly 
orrelated [Hazen 1998℄. Thus, assuming independen
ebetween observations extra
ted from the same utteran
e ignores speaker 
orrelation



4information whi
h may be useful for de
oding the utteran
e. Speaker 
orrelation in-formation will be de�ned here as the statisti
al 
orrelation between di�erent spee
hevents produ
ed by the same speaker.In SI systems, the independen
e assumption is parti
ularly troublesome be
ausethe SI a
ousti
 models are usually trained from a pool of data whi
h in
ludes all ofthe available observations from all available training speakers. Using this trainingte
hnique, SI a
ousti
 models have a mu
h larger varian
e than a typi
al SD a
ousti
model trained on spee
h from only one speaker. Be
ause of this, SI models do notmat
h any one speaker well despite the fa
t that they may perform adequately a
rossall speakers. One the other hand, SD models work well be
ause they tightly mat
hthe a
ousti
 
hara
teristi
s of the one speaker on whi
h they are trained and used.In this paper we will dis
uss the problem of introdu
ing speaker 
onstraint intoa speaker independent spee
h re
ognition system. This dis
ussion will begin witha presentation of the probabilisti
 framework of the system we will utilize for ourexperiments. Next, we will present three methods for introdu
ing speaker 
onstraintinto the probabilisti
 framework. The �rst method, 
alled speaker 
luster weightingis a means of applying adaptation to a standard hierar
hi
al speaker 
lustering ap-proa
h. The se
ond method is a novel adaptation te
hnique 
alled referen
e speakerweighting whi
h 
an rapidly adapt the parameters of a set of models to mat
h the
urrent speaker, based on the 
urrent speaker's similarity to a set of referen
e speak-ers from the training data. The �nal method is a new and unique approa
h 
alled
onsisten
y modeling whi
h utilizes speaker 
orrelation information in the a
ousti
modeling pro
ess without performing any expli
it speaker adaptation. The paperwill 
on
lude with a presentation and dis
ussion of our experimental results whenusing our te
hniques to perform rapid speaker adaptation.



52 Probabilisti
 FrameworkIn this paper we are 
on
erned with the a
ousti
 modeling problem, i.e., given asequen
e of a
ousti
 observations, we must determine the likelihood that these ob-servations were produ
ed by a parti
ular string of phoneti
 units. To des
ribe theproblem mathemati
ally, let U represent a sequen
e of phoneti
 units. If U 
ontainsa sequen
e of N units then let it be expressed as:U = fu1; u2; : : : ; uNg (1)Here ea
h un represents the identity of one phoneti
 unit in the sequen
e. Next, letX be a sequen
e of feature ve
tors whi
h represent the a
ousti
 information of anutteran
e. In standard HMM systems, ea
h feature ve
tor would represent one shortframe of spee
h where ea
h phoneti
 segment may span multiple frames. However, inthe system used in this work, segment-based feature ve
tors are used. These ve
tors
ontain a
ousti
 information spanning multiple frames and are mapped one-to-onewith hypothesized phoneti
 segments. If X 
ontains one feature ve
tor for ea
h unitin U then X 
an be expressed as:X = f~x1; ~x2; : : : ; ~xNg (2)Given the above de�nitions, the likelihood of observing the feature ve
tors in X giventhe string of phoneti
 units U is represented as p(XjU). This expression is referredto as the a
ousti
 model.In order to develop e�e
tive and eÆ
ient methods for estimating the a
ousti
model likelihood, typi
al re
ognition systems use a variety of simplifying assumptions.To begin, the general expression 
an be expanded as follows:p(XjU) = p(~x1; ~x2; : : : ; ~xN jU) = NYn=1 p(~xnj~xn�1; : : : ; ~x1; U) (3)At this point, spee
h re
ognition systems almost universally assume that the a
ousti
feature ve
tors are independent. With this assumption the a
ousti
 model is expressedas follows: p(XjU) = NYn=1 p(~xnjU) (4)Be
ause this is a standard assumption in most re
ognition systems, the term p(~xnjU)will be referred to as the standard a
ousti
 model.Spee
h re
ognition systems often simplify the problem further by utilizing onlya portion of the 
ontext available in U when s
oring any given feature ve
tor ~xn.



6The most extreme simpli�
ation is the assumption of 
ontext independen
e. In this
ase the output feature ve
tor is dependent only on the identity of its 
orrespondingphone. Thus, a 
ontext independent a
ousti
 model is represented as:p(XjU) = NYn=1 p(~xnjun) (5)All of the experiments presented in this paper will be performed using a 
ontextindependent system. However, the probabilisti
 framework that will be developedin this se
tion does not make any assumptions about the amount of 
ontext thatwill be used during modeling. Thus, the full phoneti
 string U is used in all ofthe probabilisti
 expressions that will be presented in the remainder of this se
tioneven though only a small amount of phoneti
 
ontext is likely to be used by typi
alre
ognition systems.In Equation (3), the likelihood of a parti
ular feature ve
tor is deemed dependenton the observation of all of the feature ve
tors whi
h have pre
eded it. In Equation (4),ea
h feature ve
tor ~xn is treated as an independently drawn observation whi
h is notdependent on any other observations, thus implying that no statisti
al 
orrelationexists between the observations. What these two equations do not show is the nete�e
t of making the independen
e assumption. Consider applying Bayes rule to thelikelihood expression ~xn as expressed in Equation (3). In this 
ase the likelihoodexpression for ~xn 
an be rewritten as:p(~xnj~xn�1; : : : ; ~x1; U) = p(~xnjU)p(~xn�1; : : : ; ~x1j~xn; U)p(~xn�1; : : : ; ~x1jU) (6)After applying Bayes rule, the 
onditional probability expression 
ontained in (3) isrewritten as a produ
t of the standard a
ousti
 model p(~xnjU) and a probability ratiowhi
h we refer to as the 
onsisten
y ratio. The 
onsisten
y ratio is a multipli
ativefa
tor whi
h is ignored when the feature ve
tors are 
onsidered independent. Itrepresents the 
ontribution of the 
orrelations whi
h exist between the feature ve
tors.To understand what information is 
onveyed by the 
onsisten
y ratio, it is impor-tant to understand the di�eren
e between the numerator and denominator. Both thenumerator and denominator provide a likelihood s
ore for all of the feature ve
torspre
eding the 
urrent feature ve
tor ~xn. In the numerator, this likelihood s
ore is
onditioned on ~xn while in the denominator it is not. In essen
e, this ratio is de-termining if all of the previous observed feature ve
tors are more likely or less likelygiven the 
urrently observed feature ve
tor ~xn and the given phoneti
 sequen
e U .Consider what this ratio represents during re
ognition when the phoneti
 stringU is merely a hypothesis whi
h may 
ontain errors. When s
oring a hypothesis, the



7standard a
ousti
 model would be responsible for s
oring ea
h ~xn as an independentelement. The 
onsisten
y ratio would then be responsible for determining if the
urrent feature ve
tor and its phone hypothesis is 
onsistent with the previous featureve
tors and their phone hypotheses under the assumption that the entire utteran
ewas spoken by the same speaker. If the hypotheses for all of the previous featureve
tors are 
onsistent with the hypothesis for the 
urrent feature ve
tor then it isexpe
ted that the value of the numerator will be greater than that of the denominator.However, if the 
urrent feature ve
tor's hypothesis is in
onsistent with the hypothesesof the previous feature ve
tors then it is expe
ted that the numerator would be lessthan the denominator.Given the above des
ription, it is easy to see that the 
onsisten
y ratio 
an be usedto a

ount for the within-speaker 
orrelations whi
h exist between phoneti
 events.As su
h the 
onsisten
y ratio provides a measure of speaker 
onstraint whi
h is la
k-ing in the standard SI a
ousti
 model. Hypotheses whose aggregate 
onsisten
y ratiois greater than one are deemed 
onsistent with the assumption that all of the phoneswere spoken by the same person. These hypotheses thus have their standard a
ous-ti
 model likelihoods boosted by the appli
ation of the 
onsisten
y ratio. Likewise,hypotheses deemed to be in
onsistent by the 
onsisten
y ratio have their standarda
ousti
 model likelihoods redu
ed.If an a

urate estimate of the 
onsisten
y ratio 
an be obtained then all of thespeaker 
orrelation information whi
h is ignored in the standard a
ousti
 model willbe a

ounted for in the estimate for p(XjU). However, this ratio requires an estimatefor the likelihood of a large joint feature ve
tor (~xn�1; : : : ; ~x1) under two di�erent
onditions. This is a very diÆ
ult modeling problem whi
h will be dis
ussed inSe
tion 5.The independen
e assumption is a major weakness of typi
al SI systems. Byignoring the 
orrelations whi
h exist between di�erent observations, these systems areunable to provide any speaker 
onstraint. On the other hand, SD systems provide fullspeaker 
onstraint. Be
ause SD systems have been trained with a large amount ofspee
h from the one speaker of interest, there is relatively nothing new to be learnedabout the speaker's models from newly observed spee
h from that speaker. Be
auseof this, if we assume that the only signi�
ant sour
e of 
orrelation between a
ousti
observations is the individual speaker, the 
onsisten
y ratio for a speaker dependentsystem 
an be approximated as follows:psd(~xn�1; : : : ; ~x1j~xn; U)psd(~xn�1; : : : ; ~x1jU) � 1 (7)Taking this into a

ount, the a
ousti
 model 
an utilize the following approximation



8when the re
ognition is performed in speaker dependent mode:psd(~xnj~xn�1; : : : ; ~x1; U) � psd(~xnjU) (8)In short, this states that the independen
e assumption is relatively sound for SDsystems.In this resear
h, be
ause we fo
us on modeling a
ousti
 
orrelation due to thespeaker only, we are are impli
itly assuming that 
orrelations from other e�e
ts donot exist. Stri
tly speaking, the independen
e assumption is not 
ompletely validatedwhen the system is a well trained SD system. Other fa
tors 
ould 
ontribute to theexisten
e of 
orrelations between di�erent observations. Some additional sour
es of
onstraint whi
h may also a�e
t the spee
h signal are the speaker's physiologi
al state(healthy or si
k), the speaker's emotional state (happy or sad), and the speaking style(read spee
h or spontaneous spee
h).If it is assumed that the independen
e assumption is valid for SD systems, then itis reasonable to believe that the invalidity of the independen
e assumption in SI modeis a major fa
tor in the severe drop in performan
e when a system is moved from SDmode to SI mode. This being said there are two ways of addressing the problem. The�rst way is to try to adjust the set of standard a
ousti
 models used during re
ognitionto mat
h, as 
losely as possible, the 
hara
teristi
s of the 
urrent speaker (even if the
urrent speaker is a stranger in the system's eyes). This is the approa
h taken by sys-tems whi
h utilize speaker adaptation. The most 
ommon approa
hes to speaker adap-tation in
lude maximum a posteriori probability (MAP) adaptation [Gauvain 1994℄,extended maximum a posteriori probability (EMAP) adaptation [Lasry 1984℄, andmaximum likelihood linear regression (MLLR) adaptation [Leggetter 1995℄. The se
-ond possible way to atta
k the problem is to utilize speaker 
orrelation informationdire
tly within the probabilisti
 framework of the SI system. One way to a

omplishthis is to 
reate models whi
h 
an be used to estimate the 
ontribution of the 
onsis-ten
y ratio. This approa
h will be 
alled 
onsisten
y modeling. Both approa
hes areexamined in this paper.



93 Speaker Clustering Te
hniques3.1 Hierar
hi
al Speaker ClusteringOne method of providing speaker 
onstraint to spee
h re
ognition systems that hasproven su

essful is hierar
hi
al speaker 
lustering [Furui 1989, Kosaka 1994a, Kosaka 1994b,Mathan 1990℄. Hierar
hi
al speaker 
lustering allows similar training speakers to be
lustered to 
reate models whi
h represent spe
i�
 speaker types. In this approa
h,similar referen
e speakers are grouped together into a speaker 
luster for whi
h onemodel is trained.There are a variety of ways in whi
h a hierar
hi
al speaker 
luster tree 
an be
onstru
ted. The 
onstru
tion 
an be performed using unsupervised bottom-up 
lus-tering based on an a
ousti
 similarity measure [Kosaka 1994a, Kosaka 1994b℄, unsu-pervised top-down 
lustering based on an a
ousti
 similarity measure [Furui 1989,Mathan 1990℄, or some supervised method. In our 
ase, a very simple 
luster tree is
reated in a supervised fashion. This tree �rst 
lusters speakers by gender and theninto three 
lasses of speaking rate, fast, medium and slow. This yields a total of sixdi�erent models at the leaves of the tree. Figure 1 illustrates the hierar
hi
al speaker
lustering that we utilized.When using speaker 
lustering, there is a trade-o� between robustness and spe
i-�
ity. Large 
lusters are more general but 
an be trained more robustly. Smaller
lusters 
an represent more spe
i�
 speaker types but may la
k a suÆ
ient amountof training data required for a

urate density fun
tion estimation (i.e., the sparsedata problem). To in
rease the robustness of the models in the tree, model interpo-lation is utilized. For example, the �nal interpolated a
ousti
 models used for ea
hgender dependent phone model, pigd(~xju), are an interpolation of the maximum like-lihood trained gender dependent model, pgd(~xju) and the speaker independent model,psi(~xju). The form of this interpolation is:pigd(~xju) = �pgd(~xju) + (1� �)psi(~xju) (9)Similarly, an interpolated gender and speaking rate dependent model, pigrd(~xju), 
anbe 
reated using the expression:pigrd(~xju) = �1pgrd(~xju) + �2pgd(~xju) + (1� �1 � �2)psi(~xju) (10)The � values are determined from the training data using deleted interpola-tion [Bahl 1991, Huang 1996℄. Deleted interpolation optimizes the � values by maxi-mizing the likelihood of data ja
k-knifed from the training set using the Expe
tation
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�������� ������ QQQQQQ ��������Fast Medium Slow

All SpeakersMales Fast Medium SlowFemalesGender
Speaking RateFigure 1: Hierar
hi
al 
luster tree utilized by our system.Maximization (EM) algorithm. Using the deleted interpolation algorithm, ea
h phonemodel re
eives a di�erent set of interpolation weights. If a parti
ular speaker 
lusterhas plenty of data to reliably estimate the density fun
tion for a parti
ular phone,then the interpolation weights typi
ally favor the more spe
i�
 
luster model. On theother hand, if a 
luster 
ontains only a small amount of data for a parti
ular phone,then the interpolation weights typi
ally pla
e emphasis on the more general model.There are a variety of ways in whi
h the 
luster models 
an be used during re
ogni-tion. One potential system 
ould run all of the 
luster models in parallel and 
hoosethe model whi
h produ
es the best s
oring path. In our experiments a serial ap-proa
h is utilized, i.e., re
ognition is performed with a two-pass strategy. First, thetest utteran
e is passed through the speaker independent (SI) re
ognizer. The bestpath using the SI models is then res
ored by gender spe
i�
 models to determinethe gender of the speaker. The best path is also utilized to estimate the speakingrate. The appropriate gender and speaking rate spe
i�
 model is then used for ase
ond re
ognition pass. In our experiments di�erent re
ognition experiments were
ondu
ted using either gender dependent (GD) 
lusters or six gender and speakingrate dependent (GRD) 
lusters.3.2 Speaker Cluster WeightingWhen using hierar
hi
al speaker 
lustering, re
ognition is performed using a model setsele
ted from a �nite set of predetermined model sets. The individual models in ea
hpredetermined model set are themselves interpolations of various general and spe
i�
models. The weightings used to perform the interpolation are pre
omputed using thedeleted interpolation algorithm. An alternative approa
h is an interpolation s
heme



11whi
h determines the weighting fa
tors on the 
y to mat
h the 
urrent speaker. Thisis the basi
 idea behind speaker 
luster weighting (SCW) adaptation.In speaker 
luster weighting, a predetermined set of L di�erent model sets exists.The �nal SCW model set used for re
ognition uses weighted 
ombinations of themodels from the predetermined set of L di�erent models sets. Let pl(~xju) representthe a
ousti
 model from model set l for phoneti
 unit u. The �nal SCW modelfor phoneti
 unit u is a weighted 
ombination of the L di�erent models and 
an berepresented as: ps
w(~xju) = LXl=1 wlpl(~xju) (11)The diÆ
ult part of the problem is to determine the values for ea
h wl weight. Theseweights 
an be di�erent for ea
h phoneti
 unit or they 
an be shared amongst phoneti
units belonging to a 
ommon 
lass. Sharing the weighting fa
tors a
ross all phoneti
units within a predetermined phoneti
 
lass helps provide weighting fa
tor estimateswhi
h are more robust in the fa
e of limited or sparse adaptation data. For ea
h
lass of phones the goal is to �nd the set of weights whi
h maximizes the likelihood ofthe adaptation data for that phoneti
 
lass for the 
urrent speaker. To illustrate theSCW pro
ess, 
onsider the problem of �nding the single optimal set of global weights.The problem is 
ast in a maximum likelihood framework as follows:~w0 = argmax~w p
sw(XjU; ~w) (12)Here, the weights are represented in the weighting ve
tor ~w as follows:~w = 2664 w1...wL 3775 (13)By assuming ea
h observation is independent of other observations and its surround-ing 
ontext, this maximization pro
ess be
omes:~w0 = argmax~w NYn=1 ps
w(~xnjun; ~w) (14)This maximization pro
ess is easily performed by the EM algorithm.To perform the maximization pro
ess for �nding the optimal weights, the pho-neti
 trans
ription U must be provided. The phoneti
 trans
ription from the bestpath provided by the SI re
ognizer 
an be used to approximate the true phoneti
trans
ription.



12There are two �nals steps in 
onstru
ting an SCW system. The �rst step isdetermining the set of 
luster models used by the SCW algorithm. The set of modelsused in these experiments 
ontain the same nine ML trained model sets appearing atthe nine nodes of the hierar
hi
al tree shown in Figure 1. In other words, the set ofmodels 
ontains one SI model set, two GD model sets, and six GRD model sets.The se
ond step is determining the di�erent phoneti
 
lasses, ea
h of whi
h willre
eive a di�erent weighting ve
tor. Experiments have shown that a very simple setof three phoneti
 
lasses works best [Hazen 1998℄. The experiments in this paperuse three di�erent weight ve
tors: one for standard phoneti
 models, one for silen
emodels, and one for the anti-phone model (see [Glass 1996℄ for a des
ription of theanti-phone model and how it is used to normalize segment model s
ores).



134 Referen
e Speaker WeightingIn this se
tion we will dis
uss an adaptation te
hnique whi
h we refer to as referen
espeaking weighting (RSW). This te
hnique is designed to 
ombine the strengths ofthe parameter sharing te
hniques utilized by many standard adaptation te
hniques,su
h as maximum likelihood linear regression (MLLR) adaptation, with the strengthsof speaker 
onstraint present in typi
al speaker 
lustering te
hniques. The primarystrength of the MLLR adaptation algorithm lies in its ability to jointly adapt the pa-rameters of multiple a
ousti
 models using a shared linear transformation. However,the MLLR assumption that di�erent a
ousti
 models 
an be jointly adapted using thesame linear transformation ignores a priori knowledge about the a
tual underlyingrelationship between di�erent phoneti
 events produ
es by the same speaker. Ideally,the adaptation of a set of models should utilize a priori knowledge obtained fromtraining data about how the models of di�erent phoneti
 units are likely to be jointly
onstrained. Speaker 
lustering te
hniques are one means of de�ning this 
onstraint.The basi
 premise behind referen
e speaker weighting is that the model parametersof a speaker adapted model 
an be 
onstru
ted from a weighted 
ombination of modelparameters from a set of individual referen
e speakers. As with hierar
hi
al speaker
lustering, the robust training of model parameters is an important issue. Be
ausethe amount of data available from ea
h referen
e speaker may be limited, it might notbe possible to robustly train a full a
ousti
 model for every phone for every referen
espeaker. Thus, our referen
e speaker weighting te
hnique limits its fo
us to a smallset of model parameters whi
h 
an be robustly trained for ea
h speaker. Our systemonly utilizes the 
entroid or 
enter of mass of a model (we use these terms insteadof the term mean to distinguish between the 
entroid of a mixture Gaussian modeland the means of the individual mixture 
omponents). The 
entroid of a mixtureGaussian model with M 
omponents 
an be expressed as:~
 = MXi=1 !i~�i (15)In this expression ~�i is a mixture 
omponent's mean ve
tor and !i is the 
omponent'sweight. Using ~
, we 
an re-express ea
h mixture 
omponent mean ve
tor as follows:~�i = ~
+ ~�i (16)In this expression ~�i is simply an o�set whi
h, when added to ~
, yields the mixture
omponent mean, ~�i. Using these de�nitions it 
an be seen that the lo
ation of amodel 
an be altered without 
hanging the model's shape simply by adjusting theve
tor ~
. This type of adjustment will be referred to as model translation.



14In deriving the RSW approa
h, we begin by assuming a set of R di�erent referen
espeakers exists within the training data. We also assume that for ea
h referen
espeaker a reasonably a

urate estimate of the 
entroid of the a
ousti
 model for ea
hof P di�erent phoneti
 units has been obtained. In our experiments, a small numberof speakers had little or no training for some of the less 
ommon phoneti
 units.Be
ause this prevents robust estimation of the 
entroids for these phones using MLestimation, MAP estimation of the 
entroids was used. Let the 
entroid for phone pof referen
e speaker r be represented as ~
p;r. Furthermore, the 
olle
tion of 
entroidve
tors for an individual speaker 
an be 
on
atenated into a single speaker ve
tor.Let the speaker ve
tor for referen
e speaker r be de�ned as ~mr. The mathemati
alrepresentation of the speaker ve
tor ~mr is thus given as:~mr = 266664 ~
1;r~
2;r...~
P;r 377775 (17)Furthermore, the entire set of referen
e speaker ve
tors 
an be represented by thematrix M whi
h will be de�ned as:M = [ ~m1 ; ~m2 ; : : : ; ~mR ℄ = 266664 ~
1;1 ~
1;2 � � � ~
1;R~
2;1 ~
2;2 � � � ~
2;R... ... . . . ...~
P;1 ~
P;2 � � � ~
P;R 377775 (18)The portion ofM whi
h 
ontains only the 
enter of mass ve
tors for the pth model
an be represented as Mp and is expressed as:Mp = [~
p;1 ; ~
p;2 ; � � � ; ~
p;R ℄ (19)This allows M to be expressed as: M = 2664 M1...MP 3775 (20)During adaptation, the goal is to determine the most likely speaker ve
tor, ~m,for a test speaker given the available adaptation data. It is also desirable to utilizethe a priori knowledge provided by the referen
e speaker ve
tors about the 
orre-lations between the 
entroids of di�erent models. However, past approa
hes whi
h



15have attempted to build statisti
al models to govern the adaptation of ~m, su
h asthe extended maximum a posteriori (EMAP) adaptation approa
h, have run intodiÆ
ulty be
ause of the sparse data problem asso
iated with training the large setof 
orrelation parameters required by their models. To avoid this problem we seek asolution where these 
orrelations 
an be a

ounted for without having to expli
itlytrain a large a priori statisti
al model 
ontaining many parameters. One possiblesolution is to use the speaker ve
tors in M to 
onstrain the speaker spa
e in whi
h~m may fall. Spe
i�
ally, the value of ~m 
an be 
onstrained to be a weighted averageof the speaker ve
tors 
ontained in M. This 
an be expressed as:~m =M~w (21)Here ~w is a weighting ve
tor whi
h allows a new speaker ve
tor to be 
reated via aweighted summation of the referen
e speaker ve
tors in M. The portions of ~m andM whi
h represent phoneti
 unit p 
an be expressed as ~
p and Mp, thus allowing thefollowing expression: ~
p =Mp ~w (22)To �nd the optimal value of ~w a maximum likelihood approa
h 
an be utilized.The goal is to �nd the value of ~w whi
h maximizes the likelihood of a set of adaptationdata. Let X represent the adaptation data. In parti
ular, let X be represented as:X = fX1; X2; : : : ; XP g (23)Here ea
hXp is a set of example observations from the pth phoneti
 unit. Furthermore,the sets of observations for ea
h unit will be represented as:Xp = f ~xp;1; ~xp;2; : : : ; ~xp;Np g (24)Here ea
h ~xp;n is a spe
i�
 observation ve
tor of phoneti
 unit p and Np is the totalnumber of adaptation observations available for unit p. Note that it is possible for Npto be zero for any given unit, espe
ially when only a small amount of adaptation datais available. Using the above de�nitions the goal is to �nd the optimal value of ~wusing the following maximum likelihood expression (as expressed in the log domain):argmax~w log p(X j~w): (25)In solving for the optimal ~w the 
ommon assumption that all observations are inde-pendent is made. With this assumption the expression redu
es to:argmax~w PXp=1 NpXn=1 log p(~xp;nj~w): (26)



16Next, the density fun
tion must be de�ned. A single full 
ovarian
e Gaussiandensity fun
tion is used to approximate the mixture Gaussian density fun
tion usedby ea
h phoneti
 unit model. The density fun
tion for phone p 
an thus be expressedas: p(~xp;nj~w) � N (~
p;Sp) (27)Here Sp represents the speaker independent 
ovarian
e matrix for unit p, whi
h willremain 
onstant.It 
an be shown that the expression in (26) redu
es to the following expression:argmax~w 2~v T ~w � ~w TU~w: (28)Here U and ~v are de�ned as follows:U = PXp=1 NpXn=1MTp S�1p Mp = PXp=1NpMTp S�1p Mp (29)~v T = PXp=1 NpXn=1 ~xTp;nS�1p Mp (30)Before, solving for ~w the following two 
onstraints are also applied:8i wi � 0 and RXi=1wi = 1 (31)A simple hill 
limbing algorithm 
an be utilized to �nd the value of ~w whi
h maximizesthe likelihood of the data under the 
onstraints given.For the experiments that will be presented in this paper, the 
entroids for all of themodels are adapted using one global weighting ve
tor. However, the RSW framework
an be easily extended to handle multiple weighting ve
tors 
overing di�erent phoneti

lasses. This is akin to the approa
h taken by most MLLR systems where a varyingnumber of MLLR transforms 
an be utilized depending on the amount of availableadaptation data. This pro
ess is dis
ussed in more detail in [Hazen 1998℄. Thoughnot done in our experiments, the size of the weighting ve
tor that must be estimated
an also be redu
ed by applying eigen analysis te
hniques to the referen
e speakermatrixM and utilizing only the most signi�
ant eigen ve
tors. This approa
h, 
alledeigenvoi
es, was introdu
ed in [Kuhn 1998℄.



175 Consisten
y Modeling5.1 Probabilisti
 FrameworkAs dis
ussed in the introdu
tion, one potential method for in
orporating speaker 
on-straint into a spee
h re
ognition system is to expli
itly model the 
onsisten
y ratio.We will refer to this type of modeling as 
onsisten
y modeling. To introdu
e thetheoreti
al aspe
ts of 
onsisten
y modeling, 
onsider the probabilisti
 framework in-trodu
ed in Se
tion 2. In the probabilisti
 framework the likelihood of a sequen
e, X,of N a
ousti
 measurements being produ
ed by the underlying sequen
e of phoneti
units, U , 
an be expressed as follows:p(XjU) = NYn=1 p(~xnj~xn�1; : : : ; ~x1; U) = NYn=1p(~xnjU)p(~xn�1; : : : ; ~x1j~xn; U)p(~xn�1; : : : ; ~x1jU) (32)In examining this expression, the likelihood of any parti
ular a
ousti
 observation~xn 
an be realized as the produ
t of two separate terms. The �rst term is the stan-dard a
ousti
 model, i.e., the model that is used when the a
ousti
 observations are
onsidered independent. The se
ond term is a ratio whi
h will be referred to as the
onsisten
y ratio. As dis
ussed earlier, this ratio 
ompares the likelihood of the pre-viously observed phones when 
onsidering and not 
onsidering the latest observation.With the 
onsisten
y ratio de�ned, the diÆ
ulty lies in devising a means of mod-eling this ratio. Modeling a large joint expression su
h as p(~xn�1; : : : ; ~x1jU) wouldbe extremely diÆ
ult with anything but the simplest probabilisti
 models. Even theuse of a single full 
ovarian
e Gaussian model, though easy to 
onstru
t, would be
omputationally expensive to use. For the purpose of pra
ti
ality, one simplifyingassumption will be made. It will be assumed that only the 
orrelations between the
urrent observation and ea
h of the individual past observations are ne
essary to es-timate the value of the 
onsisten
y ratio. With this assumption the 
onsisten
y ratio
an be approximated as follows:p(~xn�1; : : : ; ~x1j~xn; U)p(~xn�1; : : : ; ~x1jU) � n�1Yk=1 p(~xkj~xn; U)p(~xkjU) (33)This assumes that ignoring the 
orrelations between the observations ~xn�1; : : : ; ~x1,whi
h exist in both the numerator and the denominator, will not a�e
t the �nalresult. This expression 
an be equivalently expressed as:n�1Yk=1 p(~xkj~xn; U)p(~xkjU) = n�1Yk=1 p(~xn; ~xkjU)p(~xnjU)p(~xkjU) (34)



18The full s
ore for a hypothesized path 
an thus be written as:p(XjU) = NYn=1 p(~xnjU) n�1Yk=1 p(~xn; ~xkjU)p(~xnjU)p(~xkjU) (35)Typi
ally the s
ore of a hypothesized path is expressed in the log domain. In this
ase, it is straightforward to rewrite the expression as:log p(XjU) =  NXn=1 log p(~xnjU)! +  NXn=1 n�1Xk=1 log p(~xn; ~xkjU)p(~xnjU)p(~xkjU)! (36)In examining the �nal s
ore of a hypothesized path using 
onsisten
y modelingit 
an be seen that the 
onsisten
y model 
ontributes a sum of log ratios model-ing individual pairs of a
ousti
 observations. In information theory, this log ratio,
omputed for ea
h pair of observations, is known as the pair's mutual information.Ideally, the log ratio for a pair of observations will 
ontribute a positive s
ore if theobservations, given the hypothesized phoneti
 labels, are 
onsistent with ea
h otherunder the assumption that they were spoken by the same speaker. Likewise, negatives
ores would indi
ate that the observations, given the hypothesized phoneti
 labels,are not 
onsistent with ea
h other under the assumption they were spoken by thesame speaker.5.2 Engineering IssuesIn order to utilize the 
onsisten
y model framework in an a
tual spee
h re
ognitionsystem, several engineering issues must be addressed. These issues are summarizedby the following 5 questions:1. How are the 
onsisten
y model's joint probability density fun
tions 
reated?2. What a
ousti
 measurements should the 
onsisten
y model utilize?3. What phone pairs should be s
ored by the 
onsisten
y model?4. How should the 
onsisten
y model be s
aled relative to the standard a
ousti
model?5. How 
an a re
ognizer's sear
h me
hanism in
orporate 
onsisten
y modeling?



195.2.1 Constru
ting Joint Density Fun
tionsWhen utilized in a 
ontext independent mode, the 
onsisten
y ratio is modeled uti-lizing the following expression: p(~xj; ~xkjuj; uk)p(~xjjuj)p(~xkjuk) (37)This expression requires the 
reation of a joint density fun
tion p(~xj; ~xkjuj; uk). Theindependent density fun
tions p(~xjjuj) and p(~xkjuk) are simply the marginal densitiesfor ~xj and ~xk and 
an be extra
ted dire
tly from p(~xj; ~xkjuj; uk).In order to train p(~xj; ~xkjuj; uk) using standard methods, a set of joint observationve
tors representing the observations of ~xj and ~xk, as spoken by the same speaker,must be 
onstru
ted. One potential method for 
reating joint ve
tors for a parti
ularphone pair is by 
on
atenating individual observation ve
tors from ea
h of the twophones 
olle
ted from one speaker. For example, suppose a training speaker hasspoken 2 examples of the phone [s℄ and 3 examples of the phone [t℄. The observationve
tors for the [s℄ examples 
an be represented as ~xs;1 and ~xs;2. Likewise observationve
tors for the [t℄ examples 
an be represented as ~xt;1, ~xt;2, and ~xt;3. From theexamples of these two phones a set of joint observation ve
tors, Xs;t, for this onespeaker 
an be 
reated. If all 
ombinations of the two phones are 
onsidered thensix total joint observation ve
tors would be 
reated. The joint ve
tors in the Xs;t setwould be represented as:Xs;t = (" ~xs;1~xt;1 # ; " ~xs;1~xt;2 # ; " ~xs;1~xt;3 # ; " ~xs;2~xt;1 # ; " ~xs;2~xt;2 # ; " ~xs;2~xt;3 #) (38)This pro
ess of 
onstru
ting joint ve
tors must then be repeated for the remainingtraining speakers in the training set. Figure 2 illustrates how the joint ve
tors fromthree di�erent speakers 
an be 
reated. In this �gure ea
h phone observation isrepresented by a single measurement, giving the joint phone ve
tors two dimensions.For this example, speaker 1 has two examples of [s℄ and three examples of [t℄. Similarly,speaker 2 has four examples of [s℄ and two examples of [t℄, while speaker 3 has threeexamples ea
h of [s℄ and [t℄.It is worthwhile to note that the pro
ess of 
onstru
ting the joint observationve
tors need not be performed on a speaker by speaker basis. If one wishes to 
aptureadditional 
orrelation information about fa
tors whi
h 
ould vary from day to day (thespeaker's health or environment) or even from utteran
e to utteran
e (the speaker'sspeaking style or speaking rate) then the joint ve
tors 
ould be 
reated on a session
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Measurement for [s]Figure 2: Illustration of joint ve
tors 
reated for the pair of phones [s℄ and [t℄ as
olle
ted from three di�erent training speakers.by session or even an utteran
e by utteran
e basis. In our experiments, all utteran
esfrom a single training speaker were re
orded in a single session using the same speakingstyle, thus justifying the speaker by speaker approa
h.It is also important to note that the pro
ess des
ribed above for 
reating jointobservation ve
tors for a single speaker results in a 
olle
tion of joint observationve
tors whose individual observation spa
es (e.g., the separate observation spa
esfor [s℄ and [t℄ in the example above) are un
orrelated with ea
h other. This 
an beobserved visually in Figure 2 by noting from the geometri
 symmetry of the 
olle
tionof joint observations 
reated ea
h for the three example speakers that the observationspa
es of [s℄ and [t℄ are un
orrelated with ea
h other for ea
h individual speaker. Thisis 
onsistent with the assumption dis
ussed in Se
tion 2 that di�erent observations
an be treated as independent when utilizing speaker dependent modeling. However,when the joint observations from all training speakers are 
ombined, then the within-speaker 
orrelations between [s℄ and [t℄ in the �gure be
ome evident.There are various ways in whi
h these joint ve
tors 
an be used to train a set of
onsisten
y models. The training method that proved most e�e
tive in our work is ate
hnique we refer to as speaker mixture training. In this approa
h, a joint model is�rst 
reated for ea
h individual training speaker. Next, the �nal model is 
reated by
ombining all of the individual joint models from ea
h speaker into one large mixturemodel. In our experiments, the models from ea
h individual speaker re
eive an equalweighting in the �nal mixture model. An equal weighting was used be
ause ea
hspeaker had roughly the same amount of training data. However, in the general 
asedi�erent speaker models 
ould re
eive di�erent weighting fa
tors in the �nal mixture
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Figure 3: Illustration of joint models 
reated for the pair of phones [s℄ and [t℄ as
olle
ted from three di�erent training speakers. In (a) diagonal Gaussian models are
reated for ea
h speaker. In (b) the individual diagonal Gaussians for ea
h speakerare 
ombined to make one large mixture of Gaussians.model. In these experiments ea
h individual speaker is modeled using only a singlediagonal Gaussian density fun
tion. The use of a diagonal Gaussian is justi�ed by theobservations detailed in the previous paragraph. In experiments this method workedbetter than the more obvious method of training a model dire
tly from the 
olle
tionof joint observation ve
tors pooled over all speakers.Formally, the training pro
edure used when 
reating the joint model for any par-ti
ular phone pair is as follows:1. Train a single diagonal Gaussian model from the 
olle
tion of joint ve
tors forea
h individual training speaker.2. Giving all training speakers equal weight, 
ombine the diagonal Gaussians forthe joint ve
tors from ea
h training speaker into one large mixture Gaussianmodel.This approa
h is illustrated by the example in Figure 3.5.2.2 Measurement Sele
tionBe
ause the 
onsisten
y model s
ore 
an be 
omputed independently of the standarda
ousti
 model s
ore, the measurement sets used by the two di�erent models need not



22be the same. Be
ause the 
onsisten
y model is more diÆ
ult to train, a small set ofmeasurements whi
h exhibit a large amount of the 
orrelation between phones maybe more appropriate than the full set of measurements used by the standard a
ousti
model.The re
ognizer used is these experiments utilizes 36 a
ousti
 measurements in thestandard a
ousti
 model. These measurements are rotated using prin
ipal 
ompo-nents analysis. In this work, the dimensionality of the a
ousti
 measurement ve
torsused by the 
onsisten
y model is redu
ed by using the top n prin
ipal 
omponents.Thus, the joint ve
tor used by the 
onsisten
y model would be of length 2n. In ourexperiments, a value of n = 10 was found to work best. In [Hazen 1998℄ the primaryprin
iple 
omponents are shown to exhibit more 
orrelation between phoneti
 unitsthan the lesser prin
iple 
omponents, thus justifying this approa
h.5.2.3 Phone Pair Sele
tionThe 
onsisten
y model need not s
ore all of the phone pairs that it en
ounters. Be-
ause 
reating robust 
onsisten
y models is a diÆ
ult estimation problem, it is wiseto s
ore only the phoneti
 pairs whi
h exhibit a high amount of within-speaker 
orre-lation in the training data. If two phones do not exhibit a high amount of 
orrelation,the estimation noise inherent in the phone pair's model 
ould be more signi�
ant thanthe a
tual information to be gained from the 
orrelation between the two phones. Inthese 
ases it is wise to assume that these phone pairs are un
orrelated and not s
orethem. Phone pairs that are not used 
ontribute a s
ore of zero to the �nal log s
ore,the same s
ore that truly un
orrelated pairs should 
ontribute.To de
ide whi
h pairs the 
onsisten
y model will s
ore, two 
riteria are utilized.First, only pairs with high within-speaker 
orrelation values will be s
ored. A methodfor estimating the within-speaker 
orrelation of two phones is presented in detailin [Hazen 1998℄. Se
ond, only pairs with enough training data to suÆ
iently train ajoint model will be used. For these experiments, phone pairs were eliminated from
onsideration by the 
onsisten
y model if the training 
orpus 
ontained less than 3000joint ve
tor exemplars of the pair in the training data.The phone-pairs that have a suitable amount of training data are ranked by theirwithin-speaker 
orrelation values. In examining the ranked list, several patterns areobvious. The top of the list is dominated self pairs, vowel-vowel pairs and nasal-nasalpairs. Of the top 60 phone pairs, 36 are self pairs, 31 are vowel-vowel pairs, ten arefri
ative-fri
ative pairs, eight are nasal-nasal pairs, and only one is a stop-stop pair.Table 5.2.3 shows the top ten phone pairs as ranked by their estimated within-speaker



23Rank Phone Pair1 [4℄,[4℄2 [S℄,[S℄3 [FÊ℄,[FÊ℄4 [a¤�℄,[a¤�℄5 [n℄,[n℄6 [o℄,[o℄7 [m℄,[m℄8 [F℄,[F℄9 [n℄,[FÊ℄10 [e℄,[e℄Table 1: Top ten phone pairs as ranked by the amount of their within-speaker 
orre-lation in the training data.
orrelation. The list 
ontains nine self pairs, with the �nal pair being the nasal [n℄and it's 
apped 
ounterpart [FÊ℄. Five of the pairs are nasal-nasal pairs indi
ating thatnasals exhibit a large amount of within-speaker 
orrelation. This is expe
ted be
ausethe a
ousti
 realization of nasals is dominated by the speaker's nasal 
avity. Thenasal 
avity's physi
al 
hara
teristi
s typi
ally undergo little to no variation duringthe 
ourse of a 
onversation, thus allowing di�erent observations of the same nasalto be highly 
orrelated. In our experiments, using only the top 60 phone-pairs in the
onsisten
y model was empiri
ally found to work best.5.2.4 Consisten
y Model S
alingExperiments using the 
onsisten
y model demonstrated the need for the 
onsisten
ymodel s
ore to be s
aled relative to the s
ore of the standard a
ousti
 model. Thes
aling fa
tor will be represented as �. In our experiments a � of around 0.2 wasempiri
ally found to work best. With the s
aling fa
tor the full a
ousti
 model s
oreis expressed as:log p(XjU) =  NXn=1 log p(~xnjU)!+ � NXn=1 n�1Xk=1 log p(~xn; ~xkjU)p(~xnjU)p(~xkjU)! (39)



245.2.5 Sear
h IssuesAs dis
ussed earlier, when the utteran
e is pro
essed in a time syn
hronous fashion,the a
ousti
 model s
ore for a parti
ular segment is represented as:p(~xnj~xn�1; : : : ; ~x1; U) = p(~xnjU)p(~xn�1; : : : ; ~x1j~xn; U)p(~xn�1; : : : ; ~x1jU) (40)From this equation it is 
lear that the s
ore for a parti
ular segment is dependent on allsegment observations pre
eding it (as well as the segment labels U and the parti
ularsegmentation being 
onsidered). Be
ause of this dependen
e on the full past 
ontextof the a
ousti
 observations, the 
onsisten
y model 
an not be in
orporated intoa standard Viterbi sear
h. Furthermore, be
ause the number of phones pairs that
ould be s
ored by the 
onsisten
y model 
ould be O(n2), it may be very ineÆ
ientto in
orporate the 
onsisten
y model into a best-�rst sear
h su
h as the A� sear
h.An alternative to in
orporating the 
onsisten
y model dire
tly into an A� sear
his to use an A� sear
h to generate an N -best list and then res
ore the N -best hy-potheses using the 
onsisten
y model. This approa
h greatly redu
es the amount of
omputation that would potentially be performed by an A� sear
h dire
tly in
orpo-rating the 
onsisten
y model. If the N -best list has a high probability of 
ontainingthe 
orre
t answer then this approa
h is not likely to su�er any severe degradationin performan
e as 
ompared to implementing an A� sear
h whi
h utilizes the 
onsis-ten
y model. In the 
ase of the Resour
e Management task on whi
h we 
ondu
tedour experiments , the 
orre
t answer is one of the top two hypotheses 75% of the timeand is one of the top ten hypotheses 90% per
ent of the time when the standard SIre
ognizer is used. For the experiments presented later in the paper, the 
onsisten
ymodel is used to res
ore the 10-best hypotheses proposed by the re
ognizer.



256 ResultsThe te
hniques dis
ussed in this paper (hierar
hi
al speaker 
lustering, speaker 
lus-ter weighting, referen
e speaker weighting, and 
onsisten
y modeling) were evaluatedusing a word re
ognition task. The te
hniques were in
orporated into the systemfor the purpose of performing rapid unsupervised speaker adaptation. In our exper-iments, the system attempts to adapt to the 
hara
teristi
s of the 
urrent speakerusing the same utteran
e it is trying re
ognize. The 
orpus used for these experi-ments was the DARPA Resour
e Management 
orpus [Pri
e 1988℄. The experimentsutilized the 109 speakers in the training and development sets for training purposes.The entire 40 speaker, 1200 utteran
e test set was used for testing. The SUMMITsystem was used for re
ognition [Glass 1996℄. The re
ognizer utilized segment-based,
ontext-independent models for 68 di�erent phoneti
 units. The standard word-pairgrammar distributed with the 
orpus was used for the language model.All of the te
hniques presented in this paper require a trans
ription of the adapta-tion data when performing adaptation. Unfortunately, the underlying trans
riptionof an utteran
e is not known during unsupervised adaptation. The simplest solutionto this problem is to run the standard SI re
ognizer on the adaptation data and thenuse the best path proposed by the re
ognizer as a substitute for the true trans
riptionwhen performing adaptation. This approa
h 
an 
ause problems if the adaptationroutine is sensitive to errors in the trans
ription. This is espe
ially problemati
 forte
hniques whi
h try to adapt a large number of spe
i�
 parameters (su
h as the stan-dard MAP adaptation algorithm) instead of a small number of general parameters(su
h as the RSW te
hnique or MAP algorithms that in
orporate shared param-eter te
hniques [Kannan 1997, Shashahani 1997, Shinoda 1997, Zavaliagkos 1995
℄).When adapting a small number of general parameters it is possible for the 
orre
tsegments in the best path to overwhelm the errors during the adaptation routine'sestimation phase. This is the 
ase with the RSW and speaker 
luster weightingte
hniques.Figure 4 diagrams the system ar
hite
ture used for the adaptation experimentspresented in this 
hapter. The system uses a two-pass re
ognition approa
h. First,the SI re
ognizer is run to generate a best path. This best path is then utilized by thespeaker 
luster sele
tion module. If hierar
hi
al speaker 
lustering is being used thenthis module determines the gender and speaking rate of the utteran
e and outputsthe appropriate gender and speaking rate dependent set of models. If speaker 
lusterweighting is being used then this module determines the optimal weighting of thedi�erent 
luster models and outputs the �nal speaker 
luster weighted set of models.The best path from the SI re
ognizer is also used by the RSW adaptation module.
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Figure 4: Ar
hite
ture of re
ognizer using the rapid adaptation te
hniques des
ribedin the paper.This module takes the set of models provided from the speaker 
lustering moduleand adapts them using RSW adaptation based on the best path provided by the SIre
ognizer. The RSW module outputs a speaker adapted (SA) set of models whi
h
an then be utilized for the se
ond re
ognition pass. The SA re
ognizer is then usedto generate an N -best list whi
h 
an be res
ored by the 
onsisten
y model module.Table 6 shows the re
ognition results using various 
ombinations of the di�erentadaptation algorithms. The table is broken down into three subse
tions 
orrespond-ing to the three di�erent speaker 
lustering gradations used: speaker independent(SI), gender dependent (GD), and gender and speaking rate dependent (GRD). Thespeaker 
lustering 
an also be augmented with the speaker 
luster weighting (SCW)adaptation te
hnique. For ea
h type of speaker 
lustering, RSW adaptation and/or
onsisten
y modeling (CM) 
an be applied in addition to the speaker 
lustering. Thetype of hierar
hi
al speaker 
lustering being used is listed in the �rst 
olumn. The se
-ond 
olumn 
ontains the types of adaptation being utilized in addition to the speaker
lustering. The next three 
olumns show the total number of errors, the word errorrate, and the redu
tion in word error rate relative to the performan
e of the speaker
luster models being used by the re
ognizer.The most signi�
ant improvements in the system are gained by utilizing speaker



27Exp. Initial Adaptation Word Error Total Error# Models Method Rate Errors Redu
tion1 SI | 8.6% 882 |2 SI MAP 8.5% 875 0.8%3 SI RSW 8.0% 825 6.5%4 SI CM 7.9% 810 8.2%5 SI RSW + CM 7.9% 808 8.4%6 GD | 7.7% 789 |7 GD RSW 7.6% 783 0.8%8 GD CM 7.2% 738 6.5%9 GRD | 7.2% 737 |10 GRD CM 6.9% 715 3.0%11 GRD SCW 6.9% 715 3.0%12 GRD SCW + CM 6.8% 701 4.9%Table 2: Table of re
ognition results using various forms of rapid, unsupervised adap-tation, where the adaptation is performed on the same utteran
e the system is tryingto re
ognize.
luster models instead of standard SI models. This 
an be seen in the table as theerror rates are redu
ed as the spe
i�
ity of the 
lusters models in
reases from the SImodels (exp. 1), to the GD models (exp. 6), to the GRD models (exp. 9). The errorrate redu
tion from the SI models to the GD models was 10.5% while the the errorrate redu
tion from the SI models to GRD models was 16.4%. These results indi
atethat large improvements in re
ognition a

ura
y 
an be gained simply by adaptingto generi
 speaker properties su
h as gender and speaking rate. Note that the SCWadaptation te
hnique further improves the results obtained with hierar
hi
al speaker
luster modeling (exp. 11). This indi
ates that it is better to let the system make asoft de
ision about the 
hara
teristi
s of speaker (as is done in SCW) than to for
ethe system to make a hard de
ision about what speaker 
luster model to use (as indone in standard hierar
hi
al speaker 
lustering).When examining the di�erent adaptation te
hniques applied to the SI model set,the �rst adaptation result is from the appli
ation of standard MAP model translationto the SI re
ognizer (exp 2.). Past results have indi
ated that standard MAP adap-tation te
hniques, though based on solid mathemati
al prin
iples, are slow to adaptto a new speaker and are better suited for long term adaptation [Zavaliagkos 1995a℄.As expe
ted, when MAP adaptation is in
orporated into our adaptation system, itdid not signi�
antly improve the re
ognizer performan
e. It should be noted that we



28did not attempt to in
orporate MLLR adaptation into our system be
ause past re-sear
h e�orts have shown that MLLR also performs poorly when only small amountsof adaptation data (three utteran
es or less) is available [Leggetter 1995℄. We alsodid not attempt to dupli
ate any form of EMAP adaptation be
ause past e�orts haverequired fairly 
omplex modeling te
hniques while yielding results only marginallybetter then MAP adaptation [Huo 1997, Zavaliagkos 1995b℄. Sin
e the 
ompletionof the experiments in this paper, several promising te
hniques, in whi
h parametersharing te
hniques have been in
orporated in a MAP adaptation algorithm, have alsobeen published [Kannan 1997, Shashahani 1997, Shinoda 1997℄. Comparison againstthese te
hniques were not possible when the experiments in this paper were originally
ondu
ted.Next, the table shows that RSW model translation does improve the performan
eof the SI system signi�
antly despite the fa
t that its adaptation is guided by theerror prone best path from the SI re
ognizer (exp. 3). This indi
ates that RSW modeltranslation adaptation is far more robust to errors in the re
ognizer's best path andadapts more rapidly than MAP model translation. However, when RSW adaptationis performed on the GD 
luster models, no signi�
ant improvement is observed (exp.7). There are two possible explanations for this. First, the GD models have a smallervarian
e than the SI models and, as su
h, their likelihood estimates are a�e
ted morewhen their 
enters of mass are altered than models with larger varian
e. Thus, asthe 
luster models be
ome more spe
i�
, model translation adaptation te
hniquesbe
ome more sensitive to the noise in the 
enter of mass estimation. Se
ond, mu
hof the gain of RSW adaptation might be due to the te
hniques adaptation to thegender, and not the spe
i�
 a
ousti
 
hara
teristi
s, of the 
urrent speaker. Be
auseof this result we did not attempt to use RSW to adapt the GRD models.When 
onsisten
y modeling is used, the system's performan
e is almost universallyimproved regardless of the models that they are used in 
onjun
tion with. It shouldbe noted that the relative improvements from 
onsisten
y modeling de
rease as the
luster models be
ome more spe
i�
. The improvements are signi�
ant when CMis used in 
onjun
tion with the SI and GD models (exp. 4 and exp. 8). However,the improvement is only marginally signi�
ant when CM is applied with the GRDmodels (exp. 10). The redu
ed e�e
tiveness of the 
onsisten
y modeling approa
h asthe speaker 
luster models get more spe
i�
 are expe
ted be
ause the 
ontributionof the 
onsisten
y model should de
rease as the resemblan
e of the standard a
ousti
models to the true underlying speaker dependent models in
reases.When examining the results obtained using 
onsisten
y model, one might wonderhow the 
onsisten
y modeling approa
h 
ompares with approa
hes whi
h attempt tomodel the 
orrelations of su

essive observations [Paliwal 1993, Szarvas 1998℄. It is



29easily reasoned that su

essive frames of sampled spee
h are highly 
orrelated be
ausethe physi
al limitations and inertia of a speaker's arti
ulatory me
hanisms typi
ally
onstrain the a
ousti
 
hara
teristi
s of su

essive frames of spee
h to be highly simi-lar. Though the rational for employing this approa
h is di�erent than the rational for
onsisten
y modeling, these te
hniques do share to 
ommon idea of jointly modelingtwo observations in order to 
ondition the likelihood of one observation on a previousobservation. Thus, one might wonder how many of the 
onsisten
y model phone pairsutilized in a typi
al utteran
e are su

essive observations and what per
entage of anyimproved re
ognition results is the result of s
oring these su

essive pairs. In ourexperiments the s
oring of su

essive pairs of observation with the 
onsisten
y modelwas a
tually very un
ommon. This is be
ause a majority of the 
onsisten
y pairs areself-pairs and our system's phonologi
al 
omponent rarely allows the same phoneti
event to o

ur twi
e in a row (be
ause it typi
ally treats sequen
es of the same fri
a-tive or nasal as a single geminate unit, and other dupli
ate phoneti
 sequen
es areeither ex
eptionally rare or 
annot happen by rule). As a result, preventing su

essivepairs from being s
ored in the 
onsisten
y model approa
h used here has no signi�
ante�e
t on the performan
e of the system. Hen
e, it is 
on
eivable that in
orporating
ommon su

essive observation pairs into the modeling to a

ompany the 
onsisten
ypairs determined to have high within-speaker 
orrelation 
ould further improve uponthe results obtained here.



307 Dis
ussionThe experiments presented in this paper have shown the importan
e of in
orporat-ing within-speaker 
orrelation information into a system performing rapid speakeradaptation. By a

ounting for these 
orrelations using the speaker 
lustering adapta-tion methods, models whi
h more 
losely resemble the 
urrent speaker 
an be qui
kly
onstru
ted using only one adaptation utteran
e. Furthermore, it was found that mis-takes in hypotheses, whi
h were likely 
aused be
ause the system did not enfor
e anyspeaker 
onstraint within its framework, 
ould be 
orre
ted by enfor
ing the speaker
onstraint with the 
onsisten
y model. Overall, 
ombinations of the various adapta-tion te
hniques des
ribed in this paper redu
ed the error rate of our system by 4.9%to 8.4% depending on the initial speaker 
luster models being used. When 
ombiningspeaker 
lustering te
hniques with the rapid adaptation te
hniques presented in thispaper, an overall relative error rate redu
tion of 20% from the baseline SI systemwas a
hieved. Most of the 20% error rate redu
tion 
an be attributed to utilizinggender and speaking rate dependent models. However, it was observed that the useof the 
onsisten
y model improved all versions of our system in
luding the gender andspeaking rate dependent version. This indi
ates that additional information beyondgender and speaking rate is being provided by the 
onsisten
y model.It is our belief that the formulation of the 
onsisten
y model te
hnique is animportant step forward in the development of our speaker independent re
ognitionsystem. With this model we are atta
king the segment independen
e assumption,whi
h has long been 
onsidered a weak link in the mathemati
al formulation of typi
alspee
h re
ognition systems. Though the modeling te
hniques employed in the 
reationof the 
onsisten
y models used in this paper are simplisti
, the system obtainedsigni�
ant redu
tions in error rate when these models were used. We believe thatfurther study of the 
onsisten
y model approa
h will yield a better understanding ofthe within-speaker 
orrelation information whi
h the model is attempting the 
apture,hopefully resulting in further improvements in our system's performan
e.It must be stated that we a
knowledge that the true value of the adaptationte
hniques presented in this paper will not be known until the te
hniques 
an be testedon a state-of-the-art re
ognizer. The �rst step in a
hieving this is to in
orporatethe te
hniques presented in this paper into a 
ontext-dependent system whi
h is
loser to the state-of-the-art in re
ognition performan
e than the 
ontext independentre
ognizer utilized in this paper. We hope to attempt this in the future. At this timewe do not have any pre
on
eptions about how well these te
hniques will s
ale to a
ontext-dependent large vo
abulary system. However it is our hope that, like MAPand MLLR, these te
hniques 
an be engineered to produ
e signi�
ant improvements



31in performan
e in a state-of-the-art system.We also hope to in
orporate some of the ideas presented in this paper into our realworld spoken language understanding systems su
h as the JUPITER system [Zue 1997℄.These systems must handle short 
onversations (typi
ally 5 turns or less) whi
h 
on-tain spontaneous, telephone spee
h from a wide variety of speakers, telephone types(speaker phones, 
ell phones, et
.) and 
hannel qualities. Under these 
ir
umstan
esthe ability for a re
ognizer to produ
e hypotheses whi
h are 
onsistent a
ross thelength of the utteran
e will be strained and methods for rapid adaptation 
ouldprove extremely helpful.
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