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Abstract

This paper introduces two novel techniques for rapid speaker adaptation, reference
speaker weighting and consistency modeling. Also presented is an adaptation tech-
nique called speaker cluster weighting which provides a means for improving upon
generic hierarchical speaker clustering techniques. Each of these adaptation meth-
ods attempts to utilize the underlying within-speaker correlations that are present
between the acoustic realizations of different phones. By accounting for these corre-
lations, a limited amount of adaptation data can be used to adapt the models of every
phonetic acoustic model, including those for phones which have not been observed in
the adaptation data. Results were obtained using the DARPA Resource Management
corpus for a set of rapid adaptation experiments where single test utterances were
used for adaptation and recognition simultaneously. Using the new adaptation tech-
niques relative word error rate reductions ranging from 4.9% to 8.4% were obtained
under various conditions. Using a combination of hierarchical speaker clustering tech-
niques and the novel adaptation techniques, a word error rate reduction of 20% has
been achieved from the baseline speaker independent recognition system.



1 Introduction

When developing a speaker independent (SI) automatic speech recognition system,
it is important to account for the wide variability that can be present in any speech
waveform. This variability can result from changes in the individual speaker, the
speaker’s environment, the microphone and channel of the recording device, and/or
the mechanism which converts the signal into its digital representation. However, it
is important not to overlook the fact that the sources of variability often remain fixed
throughout any single spoken utterance. In other words, typical speech utterances
come from one speaker who stays in the same environment and is recorded using
a fixed set of equipment. This knowledge can be used to provide constraints to
the recognizer. Thus, by obtaining a little information about the current speaker,
environment, microphone, and channel, a speech recognizer should be able improve
its performance by adapting to the characteristics particular to the current utterance.
In this paper, we will concentrate our efforts on the specific issues surrounding the
utilization of speaker constraint within a speaker independent system and will leave
the issues regarding environmental, channel and microphone constraint for another
time. The goal of the research is to be able to rapidly adapt a speech recognition
system to a speaker using only a small amount of adaptation data.

Over the last ten to twenty years, dramatic improvements in the quality of speaker
independent speech recognition technology have been made. With the develop-
ment and refinement of the Hidden Markov Model (HMM) approach [Baker 1975,
Bahl 1983, Lee 1988], today’s speech recognition systems have been shown to work
effectively on various large vocabulary, continuous speech, speaker independent tasks.
However, despite the high quality of today’s speaker independent systems [Bahl 1995,
Gauvain 1995, Kubala 1997|, there can still be a significant gap in performance be-
tween these systems and their speaker adaptive (SA) or speaker dependent (SD)
counterparts. The reduction in a system’s error rate between its speaker independent
mode and its speaker dependent mode can be more then 50%[Hazen 1998].

The reason for the gap in performance between SI and SD systems can be at-
tributed to flawed assumptions used in the probabilistic framework and training
methods employed by typical speech recognizers. One primary problem lies in the
fact that almost all speech recognition approaches, including the prevalent HMM ap-
proach, assume that all observations extracted from the same speech waveform are
statistically independent after being conditioned on the underlying phone string. It
has been observed that different acoustic observations extracted from speech from the
same speaker can be highly correlated [Hazen 1998]. Thus, assuming independence
between observations extracted from the same utterance ignores speaker correlation



information which may be useful for decoding the utterance. Speaker correlation in-
formation will be defined here as the statistical correlation between different speech
events produced by the same speaker.

In SI systems, the independence assumption is particularly troublesome because
the SI acoustic models are usually trained from a pool of data which includes all of
the available observations from all available training speakers. Using this training
technique, SI acoustic models have a much larger variance than a typical SD acoustic
model trained on speech from only one speaker. Because of this, SI models do not
match any one speaker well despite the fact that they may perform adequately across
all speakers. One the other hand, SD models work well because they tightly match
the acoustic characteristics of the one speaker on which they are trained and used.

In this paper we will discuss the problem of introducing speaker constraint into
a speaker independent speech recognition system. This discussion will begin with
a presentation of the probabilistic framework of the system we will utilize for our
experiments. Next, we will present three methods for introducing speaker constraint
into the probabilistic framework. The first method, called speaker cluster weighting
is a means of applying adaptation to a standard hierarchical speaker clustering ap-
proach. The second method is a novel adaptation technique called reference speaker
weighting which can rapidly adapt the parameters of a set of models to match the
current speaker, based on the current speaker’s similarity to a set of reference speak-
ers from the training data. The final method is a new and unique approach called
consistency modeling which utilizes speaker correlation information in the acoustic
modeling process without performing any explicit speaker adaptation. The paper
will conclude with a presentation and discussion of our experimental results when
using our techniques to perform rapid speaker adaptation.



2 Probabilistic Framework

In this paper we are concerned with the acoustic modeling problem, i.e., given a
sequence of acoustic observations, we must determine the likelihood that these ob-
servations were produced by a particular string of phonetic units. To describe the
problem mathematically, let U represent a sequence of phonetic units. If U contains
a sequence of N units then let it be expressed as:

U=A{u,ug,...,un} (1)

Here each u,, represents the identity of one phonetic unit in the sequence. Next, let
X be a sequence of feature vectors which represent the acoustic information of an
utterance. In standard HMM systems, each feature vector would represent one short
frame of speech where each phonetic segment may span multiple frames. However, in
the system used in this work, segment-based feature vectors are used. These vectors
contain acoustic information spanning multiple frames and are mapped one-to-one
with hypothesized phonetic segments. If X contains one feature vector for each unit
in U then X can be expressed as:

X:{fl,fg,...,f]v} (2)

Given the above definitions, the likelihood of observing the feature vectors in X given
the string of phonetic units U is represented as p(X|U). This expression is referred
to as the acoustic model.

In order to develop effective and efficient methods for estimating the acoustic
model likelihood, typical recognition systems use a variety of simplifying assumptions.
To begin, the general expression can be expanded as follows:

N
p(X|U) = p(&1,Zs, ..., Zn|U) = [] p(Zn|Tn-r,. ... 71, 0) (3)
n=1

At this point, speech recognition systems almost universally assume that the acoustic
feature vectors are independent. With this assumption the acoustic model is expressed
as follows:

=

p(X|U) = H (Z.|U) (4)

Because this is a standard assumption in most recognition systems, the term p(Z,|U)
will be referred to as the standard acoustic model.

Speech recognition systems often simplify the problem further by utilizing only
a portion of the context available in U when scoring any given feature vector .



The most extreme simplification is the assumption of context independence. In this
case the output feature vector is dependent only on the identity of its corresponding
phone. Thus, a context independent acoustic model is represented as:

p(X10) = T o) )

All of the experiments presented in this paper will be performed using a context
independent system. However, the probabilistic framework that will be developed
in this section does not make any assumptions about the amount of context that
will be used during modeling. Thus, the full phonetic string U is used in all of
the probabilistic expressions that will be presented in the remainder of this section
even though only a small amount of phonetic context is likely to be used by typical
recognition systems.

In Equation (3), the likelihood of a particular feature vector is deemed dependent
on the observation of all of the feature vectors which have preceded it. In Equation (4),
each feature vector 7, is treated as an independently drawn observation which is not
dependent on any other observations, thus implying that no statistical correlation
exists between the observations. What these two equations do not show is the net
effect of making the independence assumption. Consider applying Bayes rule to the
likelihood expression #, as expressed in Equation (3). In this case the likelihood
expression for 7, can be rewritten as:

p(fnfla ce fl|fna U)

TplTpo1,..., 71, U) = p(Z,|U — — 6
p( | ' ! ) p( | ) p(xnfla"'aml‘U) ()

After applying Bayes rule, the conditional probability expression contained in (3) is
rewritten as a product of the standard acoustic model p(Z,|U) and a probability ratio
which we refer to as the consistency ratio. The consistency ratio is a multiplicative
factor which is ignored when the feature vectors are considered independent. It
represents the contribution of the correlations which exist between the feature vectors.

To understand what information is conveyed by the consistency ratio, it is impor-
tant to understand the difference between the numerator and denominator. Both the
numerator and denominator provide a likelihood score for all of the feature vectors
preceding the current feature vector Z,. In the numerator, this likelihood score is
conditioned on Z, while in the denominator it is not. In essence, this ratio is de-
termining if all of the previous observed feature vectors are more likely or less likely
given the currently observed feature vector #,, and the given phonetic sequence U.

Consider what this ratio represents during recognition when the phonetic string
U is merely a hypothesis which may contain errors. When scoring a hypothesis, the



standard acoustic model would be responsible for scoring each &, as an independent
element. The consistency ratio would then be responsible for determining if the
current feature vector and its phone hypothesis is consistent with the previous feature
vectors and their phone hypotheses under the assumption that the entire utterance
was spoken by the same speaker. If the hypotheses for all of the previous feature
vectors are consistent with the hypothesis for the current feature vector then it is
expected that the value of the numerator will be greater than that of the denominator.
However, if the current feature vector’s hypothesis is inconsistent with the hypotheses
of the previous feature vectors then it is expected that the numerator would be less
than the denominator.

Given the above description, it is easy to see that the consistency ratio can be used
to account for the within-speaker correlations which exist between phonetic events.
As such the consistency ratio provides a measure of speaker constraint which is lack-
ing in the standard SI acoustic model. Hypotheses whose aggregate consistency ratio
is greater than one are deemed consistent with the assumption that all of the phones
were spoken by the same person. These hypotheses thus have their standard acous-
tic model likelihoods boosted by the application of the consistency ratio. Likewise,
hypotheses deemed to be inconsistent by the consistency ratio have their standard
acoustic model likelihoods reduced.

If an accurate estimate of the consistency ratio can be obtained then all of the
speaker correlation information which is ignored in the standard acoustic model will
be accounted for in the estimate for p(X|U). However, this ratio requires an estimate
for the likelihood of a large joint feature vector (Z, 1,...,#7) under two different
conditions. This is a very difficult modeling problem which will be discussed in
Section 5.

The independence assumption is a major weakness of typical SI systems. By
ignoring the correlations which exist between different observations, these systems are
unable to provide any speaker constraint. On the other hand, SD systems provide full
speaker constraint. Because SD systems have been trained with a large amount of
speech from the one speaker of interest, there is relatively nothing new to be learned
about the speaker’s models from newly observed speech from that speaker. Because
of this, if we assume that the only significant source of correlation between acoustic
observations is the individual speaker, the consistency ratio for a speaker dependent
system can be approximated as follows:

psd(fnfla Ceey fl‘fn, U)

-y - ~1 7
Psd(Tn 1., 21|U) (7)

Taking this into account, the acoustic model can utilize the following approximation



when the recognition is performed in speaker dependent mode:
psd(fn|fnfla SRR fla U) ~ psd(fn‘U) (8)

In short, this states that the independence assumption is relatively sound for SD
systems.

In this research, because we focus on modeling acoustic correlation due to the
speaker only, we are are implicitly assuming that correlations from other effects do
not exist. Strictly speaking, the independence assumption is not completely validated
when the system is a well trained SD system. Other factors could contribute to the
existence of correlations between different observations. Some additional sources of
constraint which may also affect the speech signal are the speaker’s physiological state
(healthy or sick), the speaker’s emotional state (happy or sad), and the speaking style
(read speech or spontaneous speech).

If it is assumed that the independence assumption is valid for SD systems, then it
is reasonable to believe that the invalidity of the independence assumption in SI mode
is a major factor in the severe drop in performance when a system is moved from SD
mode to SI mode. This being said there are two ways of addressing the problem. The
first way is to try to adjust the set of standard acoustic models used during recognition
to match, as closely as possible, the characteristics of the current speaker (even if the
current speaker is a stranger in the system’s eyes). This is the approach taken by sys-
tems which utilize speaker adaptation. The most common approaches to speaker adap-
tation include mazimum a posteriori probability (MAP) adaptation [Gauvain 1994],
extended maximum a posteriori probability (EMAP) adaptation [Lasry 1984], and
mazimum likelihood linear regression (MLLR) adaptation [Leggetter 1995]. The sec-
ond possible way to attack the problem is to utilize speaker correlation information
directly within the probabilistic framework of the SI system. One way to accomplish
this is to create models which can be used to estimate the contribution of the consis-
tency ratio. This approach will be called consistency modeling. Both approaches are
examined in this paper.



3 Speaker Clustering Techniques

3.1 Hierarchical Speaker Clustering

One method of providing speaker constraint to speech recognition systems that has
proven successful is hierarchical speaker clustering [Furui 1989, Kosaka 1994a, Kosaka 1994b,
Mathan 1990]. Hierarchical speaker clustering allows similar training speakers to be
clustered to create models which represent specific speaker types. In this approach,
similar reference speakers are grouped together into a speaker cluster for which one
model is trained.

There are a variety of ways in which a hierarchical speaker cluster tree can be
constructed. The construction can be performed using unsupervised bottom-up clus-
tering based on an acoustic similarity measure [Kosaka 1994a, Kosaka 1994b], unsu-
pervised top-down clustering based on an acoustic similarity measure [Furui 1989,
Mathan 1990], or some supervised method. In our case, a very simple cluster tree is
created in a supervised fashion. This tree first clusters speakers by gender and then
into three classes of speaking rate, fast, medium and slow. This yields a total of six
different models at the leaves of the tree. Figure 1 illustrates the hierarchical speaker
clustering that we utilized.

When using speaker clustering, there is a trade-off between robustness and speci-
ficity. Large clusters are more general but can be trained more robustly. Smaller
clusters can represent more specific speaker types but may lack a sufficient amount
of training data required for accurate density function estimation (i.e., the sparse
data problem). To increase the robustness of the models in the tree, model interpo-
lation is utilized. For example, the final interpolated acoustic models used for each
gender dependent phone model, p;q(Z|u), are an interpolation of the maximum like-
lihood trained gender dependent model, pyq(Z|u) and the speaker independent model,
psi(Z|u). The form of this interpolation is:

Pigd(Z|t) = Apga(Z|u) + (1 — A)psi(Z|u) (9)

Similarly, an interpolated gender and speaking rate dependent model, pjy.q(Z|u), can
be created using the expression:

Pigra(Z|t) = AiPgra(Z[u) + Aspga(@[u) + (1 = A = Ag)psi(Z]u) (10)

The A values are determined from the training data using deleted interpola-
tion [Bahl 1991, Huang 1996|. Deleted interpolation optimizes the A values by maxi-
mizing the likelihood of data jack-knifed from the training set using the Expectation
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Figure 1: Hierarchical cluster tree utilized by our system.

Maximization (EM) algorithm. Using the deleted interpolation algorithm, each phone
model receives a different set of interpolation weights. If a particular speaker cluster
has plenty of data to reliably estimate the density function for a particular phone,
then the interpolation weights typically favor the more specific cluster model. On the
other hand, if a cluster contains only a small amount of data for a particular phone,
then the interpolation weights typically place emphasis on the more general model.

There are a variety of ways in which the cluster models can be used during recogni-
tion. One potential system could run all of the cluster models in parallel and choose
the model which produces the best scoring path. In our experiments a serial ap-
proach is utilized, i.e., recognition is performed with a two-pass strategy. First, the
test utterance is passed through the speaker independent (SI) recognizer. The best
path using the SI models is then rescored by gender specific models to determine
the gender of the speaker. The best path is also utilized to estimate the speaking
rate. The appropriate gender and speaking rate specific model is then used for a
second recognition pass. In our experiments different recognition experiments were
conducted using either gender dependent (GD) clusters or six gender and speaking
rate dependent (GRD) clusters.

3.2 Speaker Cluster Weighting

When using hierarchical speaker clustering, recognition is performed using a model set
selected from a finite set of predetermined model sets. The individual models in each
predetermined model set are themselves interpolations of various general and specific
models. The weightings used to perform the interpolation are precomputed using the
deleted interpolation algorithm. An alternative approach is an interpolation scheme
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which determines the weighting factors on the fly to match the current speaker. This
is the basic idea behind speaker cluster weighting (SCW) adaptation.

In speaker cluster weighting, a predetermined set of L different model sets exists.
The final SCW model set used for recognition uses weighted combinations of the
models from the predetermined set of L different models sets. Let p;(Z|u) represent
the acoustic model from model set [ for phonetic unit u. The final SCW model
for phonetic unit u is a weighted combination of the L different models and can be
represented as:

Pscw(T|u) = szpz(:fIU) (11)

The difficult part of the problem is to determine the values for each w; weight. These
weights can be different for each phonetic unit or they can be shared amongst phonetic
units belonging to a common class. Sharing the weighting factors across all phonetic
units within a predetermined phonetic class helps provide weighting factor estimates
which are more robust in the face of limited or sparse adaptation data. For each
class of phones the goal is to find the set of weights which maximizes the likelihood of
the adaptation data for that phonetic class for the current speaker. To illustrate the
SCW process, consider the problem of finding the single optimal set of global weights.
The problem is cast in a maximum likelihood framework as follows:

W' = argmax pesy (X |U, W) (12)
Here, the weights are represented in the weighting vector w as follows:
w1
W= : (13)
wr,

By assuming each observation is independent of other observations and its surround-
ing context, this maximization process becomes:

N
W' = arg max H Psew(Zn |y, W) (14)
w n=1

This maximization process is easily performed by the EM algorithm.

To perform the maximization process for finding the optimal weights, the pho-
netic transcription U must be provided. The phonetic transcription from the best
path provided by the SI recognizer can be used to approximate the true phonetic
transcription.



12

There are two finals steps in constructing an SCW system. The first step is
determining the set of cluster models used by the SCW algorithm. The set of models
used in these experiments contain the same nine ML trained model sets appearing at
the nine nodes of the hierarchical tree shown in Figure 1. In other words, the set of
models contains one SI model set, two GD model sets, and six GRD model sets.

The second step is determining the different phonetic classes, each of which will
receive a different weighting vector. Experiments have shown that a very simple set
of three phonetic classes works best [Hazen 1998]. The experiments in this paper
use three different weight vectors: one for standard phonetic models, one for silence
models, and one for the anti-phone model (see [Glass 1996] for a description of the
anti-phone model and how it is used to normalize segment model scores).
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4 Reference Speaker Weighting

In this section we will discuss an adaptation technique which we refer to as reference
speaking weighting (RSW). This technique is designed to combine the strengths of
the parameter sharing techniques utilized by many standard adaptation techniques,
such as mazimum likelihood linear regression (MLLR) adaptation, with the strengths
of speaker constraint present in typical speaker clustering techniques. The primary
strength of the MLLR adaptation algorithm lies in its ability to jointly adapt the pa-
rameters of multiple acoustic models using a shared linear transformation. However,
the MLLR assumption that different acoustic models can be jointly adapted using the
same linear transformation ignores a priori knowledge about the actual underlying
relationship between different phonetic events produces by the same speaker. Ideally,
the adaptation of a set of models should utilize a priori knowledge obtained from
training data about how the models of different phonetic units are likely to be jointly
constrained. Speaker clustering techniques are one means of defining this constraint.

The basic premise behind reference speaker weighting is that the model parameters
of a speaker adapted model can be constructed from a weighted combination of model
parameters from a set of individual reference speakers. As with hierarchical speaker
clustering, the robust training of model parameters is an important issue. Because
the amount of data available from each reference speaker may be limited, it might not
be possible to robustly train a full acoustic model for every phone for every reference
speaker. Thus, our reference speaker weighting technique limits its focus to a small
set of model parameters which can be robustly trained for each speaker. Our system
only utilizes the centroid or center of mass of a model (we use these terms instead
of the term mean to distinguish between the centroid of a mixture Gaussian model
and the means of the individual mixture components). The centroid of a mixture
Gaussian model with M components can be expressed as:

M
i=1

In this expression ji; is a mixture component’s mean vector and w; is the component’s
weight. Using ¢, we can re-express each mixture component mean vector as follows:

1%

In this expression 7j; is simply an offset which, when added to ¢, yields the mixture
component mean, fi;. Using these definitions it can be seen that the location of a
model can be altered without changing the model’s shape simply by adjusting the
vector ¢. This type of adjustment will be referred to as model translation.
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In deriving the RSW approach, we begin by assuming a set of R different reference
speakers exists within the training data. We also assume that for each reference
speaker a reasonably accurate estimate of the centroid of the acoustic model for each
of P different phonetic units has been obtained. In our experiments, a small number
of speakers had little or no training for some of the less common phonetic units.
Because this prevents robust estimation of the centroids for these phones using ML
estimation, MAP estimation of the centroids was used. Let the centroid for phone p
of reference speaker r be represented as ¢, ,. Furthermore, the collection of centroid
vectors for an individual speaker can be concatenated into a single speaker vector.
Let the speaker vector for reference speaker r be defined as m,. The mathematical
representation of the speaker vector m, is thus given as:

M= | (17)
EP,T‘

Furthermore, the entire set of reference speaker vectors can be represented by the
matrix M which will be defined as:

Ciq1 G2 - CR
. . . 52,1 52,2 T 52,}2

M =[my; Mg; ... ;mg| = i D i (18)
¢cp1 Cp2 - CPR

The portion of M which contains only the center of mass vectors for the pt" model
can be represented as M, and is expressed as:

M, =[Cp15 Cp2i = 5 Cpr (19)
This allows M to be expressed as:
M,

M=| : (20)
Mp

During adaptation, the goal is to determine the most likely speaker vector, m,
for a test speaker given the available adaptation data. It is also desirable to utilize
the a priori knowledge provided by the reference speaker vectors about the corre-
lations between the centroids of different models. However, past approaches which
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have attempted to build statistical models to govern the adaptation of m, such as
the extended maximum a posteriori (EMAP) adaptation approach, have run into
difficulty because of the sparse data problem associated with training the large set
of correlation parameters required by their models. To avoid this problem we seek a
solution where these correlations can be accounted for without having to explicitly
train a large a prior:i statistical model containing many parameters. One possible
solution is to use the speaker vectors in M to constrain the speaker space in which
m may fall. Specifically, the value of m can be constrained to be a weighted average
of the speaker vectors contained in M. This can be expressed as:

i = M (21)

Here w is a weighting vector which allows a new speaker vector to be created via a
weighted summation of the reference speaker vectors in M. The portions of m and
M which represent phonetic unit p can be expressed as ¢, and M,,, thus allowing the
following expression:

¢p = My (22)

To find the optimal value of @ a maximum likelihood approach can be utilized.
The goal is to find the value of @ which maximizes the likelihood of a set of adaptation
data. Let X represent the adaptation data. In particular, let X be represented as:

X:{XlaX2a"'aXP} (23)

Here each X, is a set of example observations from the p™ phonetic unit. Furthermore,
the sets of observations for each unit will be represented as:

Xp — {fp,la fp,% Ceey fp,Np} (24)

Here each &), is a specific observation vector of phonetic unit p and N, is the total
number of adaptation observations available for unit p. Note that it is possible for IV,
to be zero for any given unit, especially when only a small amount of adaptation data
is available. Using the above definitions the goal is to find the optimal value of
using the following maximum likelihood expression (as expressed in the log domain):

arg max log p(X|w). (25)
w
In solving for the optimal @ the common assumption that all observations are inde-
pendent is made. With this assumption the expression reduces to:
P Np

arg max >N log p(&y . |W). (26)

p=1n=1
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Next, the density function must be defined. A single full covariance Gaussian
density function is used to approximate the mixture Gaussian density function used
by each phonetic unit model. The density function for phone p can thus be expressed
as:

p(Zpn|W) = N (G, Sp) (27)

Here S, represents the speaker independent covariance matrix for unit p, which will
remain constant.

It can be shown that the expression in (26) reduces to the following expression:
argmax 207 @ — " Ut (28)
w

Here U and ¢ are defined as follows:

P Np P
U=> > M/S 'M,=> NM)S, 'M, (29)
p=1n=1 p=1
P Np
it =%zl s, '™M, (30)
p=1n=1

Before, solving for w the following two constraints are also applied:

R
Vi w; > 0 and Zwizl (31)

i=1

A simple hill climbing algorithm can be utilized to find the value of @ which maximizes
the likelihood of the data under the constraints given.

For the experiments that will be presented in this paper, the centroids for all of the
models are adapted using one global weighting vector. However, the RSW framework
can be easily extended to handle multiple weighting vectors covering different phonetic
classes. This is akin to the approach taken by most MLLR systems where a varying
number of MLLR transforms can be utilized depending on the amount of available
adaptation data. This process is discussed in more detail in [Hazen 1998|. Though
not done in our experiments, the size of the weighting vector that must be estimated
can also be reduced by applying eigen analysis techniques to the reference speaker
matrix M and utilizing only the most significant eigen vectors. This approach, called
eigenvoices, was introduced in [Kuhn 1998].
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5 Consistency Modeling

5.1 Probabilistic Framework

As discussed in the introduction, one potential method for incorporating speaker con-
straint into a speech recognition system is to explicitly model the consistency ratio.
We will refer to this type of modeling as consistency modeling. To introduce the
theoretical aspects of consistency modeling, consider the probabilistic framework in-
troduced in Section 2. In the probabilistic framework the likelihood of a sequence, X,
of N acoustic measurements being produced by the underlying sequence of phonetic
units, U, can be expressed as follows:

- Tp_1,.--,
p(X|U) = prn\xn N ,U):Hp(azn|U)p( 1 ! (32)

In examining this expression, the likelihood of any particular acoustic observation
T, can be realized as the product of two separate terms. The first term is the stan-
dard acoustic model, i.e., the model that is used when the acoustic observations are
considered independent. The second term is a ratio which will be referred to as the
consistency ratio. As discussed earlier, this ratio compares the likelihood of the pre-
viously observed phones when considering and not considering the latest observation.

With the consistency ratio defined, the difficulty lies in devising a means of mod-
eling this ratio. Modeling a large joint expression such as p(#,_1,...,%1|U) would
be extremely difficult with anything but the simplest probabilistic models. Even the
use of a single full covariance Gaussian model, though easy to construct, would be
computationally expensive to use. For the purpose of practicality, one simplifying
assumption will be made. It will be assumed that only the correlations between the
current observation and each of the individual past observations are necessary to es-
timate the value of the consistency ratio. With this assumption the consistency ratio
can be approximated as follows:

p(f’VL*l?' ‘ 'afl|fna ]j k‘man) (33)
p(_’nfl,...,fl‘U k=1 CEk|U)
This assumes that ignoring the correlations between the observations &, 1,..., %1,

which exist in both the numerator and the denominator, will not affect the final
result. This expression can be equivalently expressed as:

n—1

p(fk‘fna — xnafk|U)
) 34
p(ka -1 EAEAT (34)

k=1 k=1
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The full score for a hypothesized path can thus be written as:

p(Zn, k|U)

pi) = ot 1B (%)

Typically the score of a hypothesized path is expressed in the log domain. In this
case, it is straightforward to rewrite the expression as:

log p(X|U) = (Zlogp xnU> (i"zllog xnfg’)fﬁx[ﬁw) (36)

n=1 n=1k=1

In examining the final score of a hypothesized path using consistency modeling
it can be seen that the consistency model contributes a sum of log ratios model-
ing individual pairs of acoustic observations. In information theory, this log ratio,
computed for each pair of observations, is known as the pair’s mutual information.
Ideally, the log ratio for a pair of observations will contribute a positive score if the
observations, given the hypothesized phonetic labels, are consistent with each other
under the assumption that they were spoken by the same speaker. Likewise, negative
scores would indicate that the observations, given the hypothesized phonetic labels,
are not consistent with each other under the assumption they were spoken by the
same speaker.

5.2 Engineering Issues

In order to utilize the consistency model framework in an actual speech recognition
system, several engineering issues must be addressed. These issues are summarized
by the following 5 questions:

1. How are the consistency model’s joint probability density functions created?
2. What acoustic measurements should the consistency model utilize?
3. What phone pairs should be scored by the consistency model?

4. How should the consistency model be scaled relative to the standard acoustic
model?

5. How can a recognizer’s search mechanism incorporate consistency modeling?
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5.2.1 Constructing Joint Density Functions

When utilized in a context independent mode, the consistency ratio is modeled uti-
lizing the following expression:

P(f‘, k\uj,uk)
P(fj|uy P(fk|uk)

—

(37)

This expression requires the creation of a joint density function p(Z;, Zx|u;, ux). The
independent density functions p(Z;|u;) and p(Zy |u) are simply the marginal densities
for #; and @), and can be extracted directly from p(Z;, Zx|u;, ug).

In order to train p(Z;, Zx|u;, ux) using standard methods, a set of joint observation
vectors representing the observations of #; and Zj, as spoken by the same speaker,
must be constructed. One potential method for creating joint vectors for a particular
phone pair is by concatenating individual observation vectors from each of the two
phones collected from one speaker. For example, suppose a training speaker has
spoken 2 examples of the phone [s] and 3 examples of the phone [t]. The observation
vectors for the [s] examples can be represented as @51 and & 5. Likewise observation
vectors for the [t] examples can be represented as &y, #;2, and Z;3. From the
examples of these two phones a set of joint observation vectors, X,, for this one
speaker can be created. If all combinations of the two phones are considered then
six total joint observation vectors would be created. The joint vectors in the X ; set
would be represented as:

ol g E) ) -
Tt Tt 2 T3 Tt T't2 T3

This process of constructing joint vectors must then be repeated for the remaining
training speakers in the training set. Figure 2 illustrates how the joint vectors from
three different speakers can be created. In this figure each phone observation is
represented by a single measurement, giving the joint phone vectors two dimensions.
For this example, speaker 1 has two examples of [s| and three examples of [t]. Similarly,

speaker 2 has four examples of [s| and two examples of [t]|, while speaker 3 has three
examples each of [s] and [t].

It is worthwhile to note that the process of constructing the joint observation
vectors need not be performed on a speaker by speaker basis. If one wishes to capture
additional correlation information about factors which could vary from day to day (the
speaker’s health or environment) or even from utterance to utterance (the speaker’s
speaking style or speaking rate) then the joint vectors could be created on a session
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Figure 2: Illustration of joint vectors created for the pair of phones [s] and [t] as
collected from three different training speakers.

by session or even an utterance by utterance basis. In our experiments, all utterances
from a single training speaker were recorded in a single session using the same speaking
style, thus justifying the speaker by speaker approach.

It is also important to note that the process described above for creating joint
observation vectors for a single speaker results in a collection of joint observation
vectors whose individual observation spaces (e.g., the separate observation spaces
for [s] and [t] in the example above) are uncorrelated with each other. This can be
observed visually in Figure 2 by noting from the geometric symmetry of the collection
of joint observations created each for the three example speakers that the observation
spaces of [s] and [t] are uncorrelated with each other for each individual speaker. This
is consistent with the assumption discussed in Section 2 that different observations
can be treated as independent when utilizing speaker dependent modeling. However,
when the joint observations from all training speakers are combined, then the within-
speaker correlations between [s] and [t] in the figure become evident.

There are various ways in which these joint vectors can be used to train a set of
consistency models. The training method that proved most effective in our work is a
technique we refer to as speaker mixture training. In this approach, a joint model is
first created for each individual training speaker. Next, the final model is created by
combining all of the individual joint models from each speaker into one large mixture
model. In our experiments, the models from each individual speaker receive an equal
weighting in the final mixture model. An equal weighting was used because each
speaker had roughly the same amount of training data. However, in the general case
different speaker models could receive different weighting factors in the final mixture
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Measurement for [t]
Measurement for [t]

Measurement for [s] Measurement for [s]

Figure 3: Illustration of joint models created for the pair of phones [s|] and [t] as
collected from three different training speakers. In (a) diagonal Gaussian models are
created for each speaker. In (b) the individual diagonal Gaussians for each speaker
are combined to make one large mixture of Gaussians.

model. In these experiments each individual speaker is modeled using only a single
diagonal Gaussian density function. The use of a diagonal Gaussian is justified by the
observations detailed in the previous paragraph. In experiments this method worked
better than the more obvious method of training a model directly from the collection
of joint observation vectors pooled over all speakers.

Formally, the training procedure used when creating the joint model for any par-
ticular phone pair is as follows:

1. Train a single diagonal Gaussian model from the collection of joint vectors for
each individual training speaker.

2. Giving all training speakers equal weight, combine the diagonal Gaussians for
the joint vectors from each training speaker into one large mixture Gaussian
model.

This approach is illustrated by the example in Figure 3.

5.2.2 Measurement Selection

Because the consistency model score can be computed independently of the standard
acoustic model score, the measurement sets used by the two different models need not
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be the same. Because the consistency model is more difficult to train, a small set of
measurements which exhibit a large amount of the correlation between phones may
be more appropriate than the full set of measurements used by the standard acoustic
model.

The recognizer used is these experiments utilizes 36 acoustic measurements in the
standard acoustic model. These measurements are rotated using principal compo-
nents analysis. In this work, the dimensionality of the acoustic measurement vectors
used by the consistency model is reduced by using the top n principal components.
Thus, the joint vector used by the consistency model would be of length 2n. In our
experiments, a value of n = 10 was found to work best. In [Hazen 1998| the primary
principle components are shown to exhibit more correlation between phonetic units
than the lesser principle components, thus justifying this approach.

5.2.3 Phone Pair Selection

The consistency model need not score all of the phone pairs that it encounters. Be-
cause creating robust consistency models is a difficult estimation problem, it is wise
to score only the phonetic pairs which exhibit a high amount of within-speaker corre-
lation in the training data. If two phones do not exhibit a high amount of correlation,
the estimation noise inherent in the phone pair’s model could be more significant than
the actual information to be gained from the correlation between the two phones. In
these cases it is wise to assume that these phone pairs are uncorrelated and not score
them. Phone pairs that are not used contribute a score of zero to the final log score,
the same score that truly uncorrelated pairs should contribute.

To decide which pairs the consistency model will score, two criteria are utilized.
First, only pairs with high within-speaker correlation values will be scored. A method
for estimating the within-speaker correlation of two phones is presented in detail
in [Hazen 1998]. Second, only pairs with enough training data to sufficiently train a
joint model will be used. For these experiments, phone pairs were eliminated from
consideration by the consistency model if the training corpus contained less than 3000
joint vector exemplars of the pair in the training data.

The phone-pairs that have a suitable amount of training data are ranked by their
within-speaker correlation values. In examining the ranked list, several patterns are
obvious. The top of the list is dominated self pairs, vowel-vowel pairs and nasal-nasal
pairs. Of the top 60 phone pairs, 36 are self pairs, 31 are vowel-vowel pairs, ten are
fricative-fricative pairs, eight are nasal-nasal pairs, and only one is a stop-stop pair.
Table 5.2.3 shows the top ten phone pairs as ranked by their estimated within-speaker
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Table 1: Top ten phone pairs as ranked by the amount of their within-speaker corre-
lation in the training data.

correlation. The list contains nine self pairs, with the final pair being the nasal [n]
and it’s flapped counterpart [f]. Five of the pairs are nasal-nasal pairs indicating that
nasals exhibit a large amount of within-speaker correlation. This is expected because
the acoustic realization of nasals is dominated by the speaker’s nasal cavity. The
nasal cavity’s physical characteristics typically undergo little to no variation during
the course of a conversation, thus allowing different observations of the same nasal
to be highly correlated. In our experiments, using only the top 60 phone-pairs in the
consistency model was empirically found to work best.

5.2.4 Consistency Model Scaling

Experiments using the consistency model demonstrated the need for the consistency
model score to be scaled relative to the score of the standard acoustic model. The
scaling factor will be represented as . In our experiments a x of around 0.2 was
empirically found to work best. With the scaling factor the full acoustic model score
is expressed as:

log p(X|U) = (Z log p(Z,|U) ) (% "i xn:r(r},)fzle;)w) (39)

n=1
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5.2.5 Search Issues

As discussed earlier, when the utterance is processed in a time synchronous fashion,
the acoustic model score for a particular segment is represented as:

p(fnfla sy fl|fna U)

BT, B U) = p(@,|U) PR I
p(xn|xn 1 T ) p($n| ) p(xnfl,...,xl‘U)

(40)

From this equation it is clear that the score for a particular segment is dependent on all
segment observations preceding it (as well as the segment labels U and the particular
segmentation being considered). Because of this dependence on the full past context
of the acoustic observations, the consistency model can not be incorporated into
a standard Viterbi search. Furthermore, because the number of phones pairs that
could be scored by the consistency model could be O(n?), it may be very inefficient
to incorporate the consistency model into a best-first search such as the A* search.

An alternative to incorporating the consistency model directly into an A* search
is to use an A* search to generate an N-best list and then rescore the N-best hy-
potheses using the consistency model. This approach greatly reduces the amount of
computation that would potentially be performed by an A* search directly incorpo-
rating the consistency model. If the N-best list has a high probability of containing
the correct answer then this approach is not likely to suffer any severe degradation
in performance as compared to implementing an A* search which utilizes the consis-
tency model. In the case of the Resource Management task on which we conducted
our experiments , the correct answer is one of the top two hypotheses 75% of the time
and is one of the top ten hypotheses 90% percent of the time when the standard SI
recognizer is used. For the experiments presented later in the paper, the consistency
model is used to rescore the 10-best hypotheses proposed by the recognizer.
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6 Results

The techniques discussed in this paper (hierarchical speaker clustering, speaker clus-
ter weighting, reference speaker weighting, and consistency modeling) were evaluated
using a word recognition task. The techniques were incorporated into the system
for the purpose of performing rapid unsupervised speaker adaptation. In our exper-
iments, the system attempts to adapt to the characteristics of the current speaker
using the same utterance it is trying recognize. The corpus used for these experi-
ments was the DARPA Resource Management corpus [Price 1988]. The experiments
utilized the 109 speakers in the training and development sets for training purposes.
The entire 40 speaker, 1200 utterance test set was used for testing. The SUMMIT
system was used for recognition [Glass 1996]. The recognizer utilized segment-based,
context-independent models for 68 different phonetic units. The standard word-pair
grammar distributed with the corpus was used for the language model.

All of the techniques presented in this paper require a transcription of the adapta-
tion data when performing adaptation. Unfortunately, the underlying transcription
of an utterance is not known during unsupervised adaptation. The simplest solution
to this problem is to run the standard SI recognizer on the adaptation data and then
use the best path proposed by the recognizer as a substitute for the true transcription
when performing adaptation. This approach can cause problems if the adaptation
routine is sensitive to errors in the transcription. This is especially problematic for
techniques which try to adapt a large number of specific parameters (such as the stan-
dard MAP adaptation algorithm) instead of a small number of general parameters
(such as the RSW technique or MAP algorithms that incorporate shared param-
eter techniques [Kannan 1997, Shashahani 1997, Shinoda 1997, Zavaliagkos 1995¢]).
When adapting a small number of general parameters it is possible for the correct
segments in the best path to overwhelm the errors during the adaptation routine’s
estimation phase. This is the case with the RSW and speaker cluster weighting
techniques.

Figure 4 diagrams the system architecture used for the adaptation experiments
presented in this chapter. The system uses a two-pass recognition approach. First,
the SI recognizer is run to generate a best path. This best path is then utilized by the
speaker cluster selection module. If hierarchical speaker clustering is being used then
this module determines the gender and speaking rate of the utterance and outputs
the appropriate gender and speaking rate dependent set of models. If speaker cluster
weighting is being used then this module determines the optimal weighting of the
different cluster models and outputs the final speaker cluster weighted set of models.
The best path from the SI recognizer is also used by the RSW adaptation module.
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Figure 4: Architecture of recognizer using the rapid adaptation techniques described
in the paper.

This module takes the set of models provided from the speaker clustering module
and adapts them using RSW adaptation based on the best path provided by the SI
recognizer. The RSW module outputs a speaker adapted (SA) set of models which
can then be utilized for the second recognition pass. The SA recognizer is then used
to generate an N-best list which can be rescored by the consistency model module.

Table 6 shows the recognition results using various combinations of the different
adaptation algorithms. The table is broken down into three subsections correspond-
ing to the three different speaker clustering gradations used: speaker independent
(SI), gender dependent (GD), and gender and speaking rate dependent (GRD). The
speaker clustering can also be augmented with the speaker cluster weighting (SCW)
adaptation technique. For each type of speaker clustering, RSW adaptation and/or
consistency modeling (CM) can be applied in addition to the speaker clustering. The
type of hierarchical speaker clustering being used is listed in the first column. The sec-
ond column contains the types of adaptation being utilized in addition to the speaker
clustering. The next three columns show the total number of errors, the word error
rate, and the reduction in word error rate relative to the performance of the speaker
cluster models being used by the recognizer.

The most significant improvements in the system are gained by utilizing speaker
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Exp. | Initial | Adaptation | Word Error | Total Error
# Models Method Rate Errors | Reduction
1 SI — 8.6% 882 —
2 SI MAP 8.5% 875 0.8%
3 SI RSW 8.0% 825 6.5%
4 SI CM 7.9% 810 8.2%
5 SI RSW + CM 7.9% 808 8.4%
6 GD — 7.7% 789 —
7 GD RSW 7.6% 783 0.8%
8 GD CM 7.2% 738 6.5%
9 GRD — 7.2% 737 —
10 GRD CM 6.9% 715 3.0%
11 GRD SCW 6.9% 715 3.0%
12 GRD | SCW + CM 6.8% 701 4.9%

Table 2: Table of recognition results using various forms of rapid, unsupervised adap-
tation, where the adaptation is performed on the same utterance the system is trying
to recognize.

cluster models instead of standard SI models. This can be seen in the table as the
error rates are reduced as the specificity of the clusters models increases from the SI
models (exp. 1), to the GD models (exp. 6), to the GRD models (exp. 9). The error
rate reduction from the SI models to the GD models was 10.5% while the the error
rate reduction from the SI models to GRD models was 16.4%. These results indicate
that large improvements in recognition accuracy can be gained simply by adapting
to generic speaker properties such as gender and speaking rate. Note that the SCW
adaptation technique further improves the results obtained with hierarchical speaker
cluster modeling (exp. 11). This indicates that it is better to let the system make a
soft decision about the characteristics of speaker (as is done in SCW) than to force
the system to make a hard decision about what speaker cluster model to use (as in
done in standard hierarchical speaker clustering).

When examining the different adaptation techniques applied to the SI model set,
the first adaptation result is from the application of standard MAP model translation
to the SI recognizer (exp 2.). Past results have indicated that standard MAP adap-
tation techniques, though based on solid mathematical principles, are slow to adapt
to a new speaker and are better suited for long term adaptation [Zavaliagkos 1995a].
As expected, when MAP adaptation is incorporated into our adaptation system, it
did not significantly improve the recognizer performance. It should be noted that we
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did not attempt to incorporate MLLR adaptation into our system because past re-
search efforts have shown that MLLR also performs poorly when only small amounts
of adaptation data (three utterances or less) is available [Leggetter 1995]. We also
did not attempt to duplicate any form of EMAP adaptation because past efforts have
required fairly complex modeling techniques while yielding results only marginally
better then MAP adaptation [Huo 1997, Zavaliagkos 1995b]. Since the completion
of the experiments in this paper, several promising techniques, in which parameter
sharing techniques have been incorporated in a MAP adaptation algorithm, have also
been published [Kannan 1997, Shashahani 1997, Shinoda 1997]. Comparison against
these techniques were not possible when the experiments in this paper were originally
conducted.

Next, the table shows that RSW model translation does improve the performance
of the SI system significantly despite the fact that its adaptation is guided by the
error prone best path from the SI recognizer (exp. 3). This indicates that RSW model
translation adaptation is far more robust to errors in the recognizer’s best path and
adapts more rapidly than MAP model translation. However, when RSW adaptation
is performed on the GD cluster models, no significant improvement is observed (exp.
7). There are two possible explanations for this. First, the GD models have a smaller
variance than the SI models and, as such, their likelihood estimates are affected more
when their centers of mass are altered than models with larger variance. Thus, as
the cluster models become more specific, model translation adaptation techniques
become more sensitive to the noise in the center of mass estimation. Second, much
of the gain of RSW adaptation might be due to the techniques adaptation to the
gender, and not the specific acoustic characteristics, of the current speaker. Because
of this result we did not attempt to use RSW to adapt the GRD models.

When consistency modeling is used, the system’s performance is almost universally
improved regardless of the models that they are used in conjunction with. It should
be noted that the relative improvements from consistency modeling decrease as the
cluster models become more specific. The improvements are significant when CM
is used in conjunction with the ST and GD models (exp. 4 and exp. 8). However,
the improvement is only marginally significant when CM is applied with the GRD
models (exp. 10). The reduced effectiveness of the consistency modeling approach as
the speaker cluster models get more specific are expected because the contribution
of the consistency model should decrease as the resemblance of the standard acoustic
models to the true underlying speaker dependent models increases.

When examining the results obtained using consistency model, one might wonder
how the consistency modeling approach compares with approaches which attempt to
model the correlations of successive observations [Paliwal 1993, Szarvas 1998]. It is
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easily reasoned that successive frames of sampled speech are highly correlated because
the physical limitations and inertia of a speaker’s articulatory mechanisms typically
constrain the acoustic characteristics of successive frames of speech to be highly simi-
lar. Though the rational for employing this approach is different than the rational for
consistency modeling, these techniques do share to common idea of jointly modeling
two observations in order to condition the likelihood of one observation on a previous
observation. Thus, one might wonder how many of the consistency model phone pairs
utilized in a typical utterance are successive observations and what percentage of any
improved recognition results is the result of scoring these successive pairs. In our
experiments the scoring of successive pairs of observation with the consistency model
was actually very uncommon. This is because a majority of the consistency pairs are
self-pairs and our system’s phonological component rarely allows the same phonetic
event to occur twice in a row (because it typically treats sequences of the same frica-
tive or nasal as a single geminate unit, and other duplicate phonetic sequences are
either exceptionally rare or cannot happen by rule). As a result, preventing successive
pairs from being scored in the consistency model approach used here has no significant
effect on the performance of the system. Hence, it is conceivable that incorporating
common successive observation pairs into the modeling to accompany the consistency
pairs determined to have high within-speaker correlation could further improve upon
the results obtained here.
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7 Discussion

The experiments presented in this paper have shown the importance of incorporat-
ing within-speaker correlation information into a system performing rapid speaker
adaptation. By accounting for these correlations using the speaker clustering adapta-
tion methods, models which more closely resemble the current speaker can be quickly
constructed using only one adaptation utterance. Furthermore, it was found that mis-
takes in hypotheses, which were likely caused because the system did not enforce any
speaker constraint within its framework, could be corrected by enforcing the speaker
constraint with the consistency model. Overall, combinations of the various adapta-
tion techniques described in this paper reduced the error rate of our system by 4.9%
to 8.4% depending on the initial speaker cluster models being used. When combining
speaker clustering techniques with the rapid adaptation techniques presented in this
paper, an overall relative error rate reduction of 20% from the baseline SI system
was achieved. Most of the 20% error rate reduction can be attributed to utilizing
gender and speaking rate dependent models. However, it was observed that the use
of the consistency model improved all versions of our system including the gender and
speaking rate dependent version. This indicates that additional information beyond
gender and speaking rate is being provided by the consistency model.

It is our belief that the formulation of the consistency model technique is an
important step forward in the development of our speaker independent recognition
system. With this model we are attacking the segment independence assumption,
which has long been considered a weak link in the mathematical formulation of typical
speech recognition systems. Though the modeling techniques employed in the creation
of the consistency models used in this paper are simplistic, the system obtained
significant reductions in error rate when these models were used. We believe that
further study of the consistency model approach will yield a better understanding of
the within-speaker correlation information which the model is attempting the capture,
hopefully resulting in further improvements in our system’s performance.

It must be stated that we acknowledge that the true value of the adaptation
techniques presented in this paper will not be known until the techniques can be tested
on a state-of-the-art recognizer. The first step in achieving this is to incorporate
the techniques presented in this paper into a context-dependent system which is
closer to the state-of-the-art in recognition performance than the context independent
recognizer utilized in this paper. We hope to attempt this in the future. At this time
we do not have any preconceptions about how well these techniques will scale to a
context-dependent large vocabulary system. However it is our hope that, like MAP
and MLLR, these techniques can be engineered to produce significant improvements
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in performance in a state-of-the-art system.

We also hope to incorporate some of the ideas presented in this paper into our real
world spoken language understanding systems such as the JUPITER system [Zue 1997].
These systems must handle short conversations (typically 5 turns or less) which con-
tain spontaneous, telephone speech from a wide variety of speakers, telephone types
(speaker phones, cell phones, etc.) and channel qualities. Under these circumstances
the ability for a recognizer to produce hypotheses which are consistent across the
length of the utterance will be strained and methods for rapid adaptation could
prove extremely helpful.
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