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2AbstratThis paper introdues two novel tehniques for rapid speaker adaptation, referenespeaker weighting and onsisteny modeling. Also presented is an adaptation teh-nique alled speaker luster weighting whih provides a means for improving upongeneri hierarhial speaker lustering tehniques. Eah of these adaptation meth-ods attempts to utilize the underlying within-speaker orrelations that are presentbetween the aousti realizations of di�erent phones. By aounting for these orre-lations, a limited amount of adaptation data an be used to adapt the models of everyphoneti aousti model, inluding those for phones whih have not been observed inthe adaptation data. Results were obtained using the DARPA Resoure Managementorpus for a set of rapid adaptation experiments where single test utteranes wereused for adaptation and reognition simultaneously. Using the new adaptation teh-niques relative word error rate redutions ranging from 4.9% to 8.4% were obtainedunder various onditions. Using a ombination of hierarhial speaker lustering teh-niques and the novel adaptation tehniques, a word error rate redution of 20% hasbeen ahieved from the baseline speaker independent reognition system.



31 IntrodutionWhen developing a speaker independent (SI) automati speeh reognition system,it is important to aount for the wide variability that an be present in any speehwaveform. This variability an result from hanges in the individual speaker, thespeaker's environment, the mirophone and hannel of the reording devie, and/orthe mehanism whih onverts the signal into its digital representation. However, itis important not to overlook the fat that the soures of variability often remain �xedthroughout any single spoken utterane. In other words, typial speeh utteranesome from one speaker who stays in the same environment and is reorded usinga �xed set of equipment. This knowledge an be used to provide onstraints tothe reognizer. Thus, by obtaining a little information about the urrent speaker,environment, mirophone, and hannel, a speeh reognizer should be able improveits performane by adapting to the harateristis partiular to the urrent utterane.In this paper, we will onentrate our e�orts on the spei� issues surrounding theutilization of speaker onstraint within a speaker independent system and will leavethe issues regarding environmental, hannel and mirophone onstraint for anothertime. The goal of the researh is to be able to rapidly adapt a speeh reognitionsystem to a speaker using only a small amount of adaptation data.Over the last ten to twenty years, dramati improvements in the quality of speakerindependent speeh reognition tehnology have been made. With the develop-ment and re�nement of the Hidden Markov Model (HMM) approah [Baker 1975,Bahl 1983, Lee 1988℄, today's speeh reognition systems have been shown to worke�etively on various large voabulary, ontinuous speeh, speaker independent tasks.However, despite the high quality of today's speaker independent systems [Bahl 1995,Gauvain 1995, Kubala 1997℄, there an still be a signi�ant gap in performane be-tween these systems and their speaker adaptive (SA) or speaker dependent (SD)ounterparts. The redution in a system's error rate between its speaker independentmode and its speaker dependent mode an be more then 50%[Hazen 1998℄.The reason for the gap in performane between SI and SD systems an be at-tributed to awed assumptions used in the probabilisti framework and trainingmethods employed by typial speeh reognizers. One primary problem lies in thefat that almost all speeh reognition approahes, inluding the prevalent HMM ap-proah, assume that all observations extrated from the same speeh waveform arestatistially independent after being onditioned on the underlying phone string. Ithas been observed that di�erent aousti observations extrated from speeh from thesame speaker an be highly orrelated [Hazen 1998℄. Thus, assuming independenebetween observations extrated from the same utterane ignores speaker orrelation



4information whih may be useful for deoding the utterane. Speaker orrelation in-formation will be de�ned here as the statistial orrelation between di�erent speehevents produed by the same speaker.In SI systems, the independene assumption is partiularly troublesome beausethe SI aousti models are usually trained from a pool of data whih inludes all ofthe available observations from all available training speakers. Using this trainingtehnique, SI aousti models have a muh larger variane than a typial SD aoustimodel trained on speeh from only one speaker. Beause of this, SI models do notmath any one speaker well despite the fat that they may perform adequately arossall speakers. One the other hand, SD models work well beause they tightly maththe aousti harateristis of the one speaker on whih they are trained and used.In this paper we will disuss the problem of introduing speaker onstraint intoa speaker independent speeh reognition system. This disussion will begin witha presentation of the probabilisti framework of the system we will utilize for ourexperiments. Next, we will present three methods for introduing speaker onstraintinto the probabilisti framework. The �rst method, alled speaker luster weightingis a means of applying adaptation to a standard hierarhial speaker lustering ap-proah. The seond method is a novel adaptation tehnique alled referene speakerweighting whih an rapidly adapt the parameters of a set of models to math theurrent speaker, based on the urrent speaker's similarity to a set of referene speak-ers from the training data. The �nal method is a new and unique approah alledonsisteny modeling whih utilizes speaker orrelation information in the aoustimodeling proess without performing any expliit speaker adaptation. The paperwill onlude with a presentation and disussion of our experimental results whenusing our tehniques to perform rapid speaker adaptation.



52 Probabilisti FrameworkIn this paper we are onerned with the aousti modeling problem, i.e., given asequene of aousti observations, we must determine the likelihood that these ob-servations were produed by a partiular string of phoneti units. To desribe theproblem mathematially, let U represent a sequene of phoneti units. If U ontainsa sequene of N units then let it be expressed as:U = fu1; u2; : : : ; uNg (1)Here eah un represents the identity of one phoneti unit in the sequene. Next, letX be a sequene of feature vetors whih represent the aousti information of anutterane. In standard HMM systems, eah feature vetor would represent one shortframe of speeh where eah phoneti segment may span multiple frames. However, inthe system used in this work, segment-based feature vetors are used. These vetorsontain aousti information spanning multiple frames and are mapped one-to-onewith hypothesized phoneti segments. If X ontains one feature vetor for eah unitin U then X an be expressed as:X = f~x1; ~x2; : : : ; ~xNg (2)Given the above de�nitions, the likelihood of observing the feature vetors in X giventhe string of phoneti units U is represented as p(XjU). This expression is referredto as the aousti model.In order to develop e�etive and eÆient methods for estimating the aoustimodel likelihood, typial reognition systems use a variety of simplifying assumptions.To begin, the general expression an be expanded as follows:p(XjU) = p(~x1; ~x2; : : : ; ~xN jU) = NYn=1 p(~xnj~xn�1; : : : ; ~x1; U) (3)At this point, speeh reognition systems almost universally assume that the aoustifeature vetors are independent. With this assumption the aousti model is expressedas follows: p(XjU) = NYn=1 p(~xnjU) (4)Beause this is a standard assumption in most reognition systems, the term p(~xnjU)will be referred to as the standard aousti model.Speeh reognition systems often simplify the problem further by utilizing onlya portion of the ontext available in U when soring any given feature vetor ~xn.



6The most extreme simpli�ation is the assumption of ontext independene. In thisase the output feature vetor is dependent only on the identity of its orrespondingphone. Thus, a ontext independent aousti model is represented as:p(XjU) = NYn=1 p(~xnjun) (5)All of the experiments presented in this paper will be performed using a ontextindependent system. However, the probabilisti framework that will be developedin this setion does not make any assumptions about the amount of ontext thatwill be used during modeling. Thus, the full phoneti string U is used in all ofthe probabilisti expressions that will be presented in the remainder of this setioneven though only a small amount of phoneti ontext is likely to be used by typialreognition systems.In Equation (3), the likelihood of a partiular feature vetor is deemed dependenton the observation of all of the feature vetors whih have preeded it. In Equation (4),eah feature vetor ~xn is treated as an independently drawn observation whih is notdependent on any other observations, thus implying that no statistial orrelationexists between the observations. What these two equations do not show is the nete�et of making the independene assumption. Consider applying Bayes rule to thelikelihood expression ~xn as expressed in Equation (3). In this ase the likelihoodexpression for ~xn an be rewritten as:p(~xnj~xn�1; : : : ; ~x1; U) = p(~xnjU)p(~xn�1; : : : ; ~x1j~xn; U)p(~xn�1; : : : ; ~x1jU) (6)After applying Bayes rule, the onditional probability expression ontained in (3) isrewritten as a produt of the standard aousti model p(~xnjU) and a probability ratiowhih we refer to as the onsisteny ratio. The onsisteny ratio is a multipliativefator whih is ignored when the feature vetors are onsidered independent. Itrepresents the ontribution of the orrelations whih exist between the feature vetors.To understand what information is onveyed by the onsisteny ratio, it is impor-tant to understand the di�erene between the numerator and denominator. Both thenumerator and denominator provide a likelihood sore for all of the feature vetorspreeding the urrent feature vetor ~xn. In the numerator, this likelihood sore isonditioned on ~xn while in the denominator it is not. In essene, this ratio is de-termining if all of the previous observed feature vetors are more likely or less likelygiven the urrently observed feature vetor ~xn and the given phoneti sequene U .Consider what this ratio represents during reognition when the phoneti stringU is merely a hypothesis whih may ontain errors. When soring a hypothesis, the



7standard aousti model would be responsible for soring eah ~xn as an independentelement. The onsisteny ratio would then be responsible for determining if theurrent feature vetor and its phone hypothesis is onsistent with the previous featurevetors and their phone hypotheses under the assumption that the entire utteranewas spoken by the same speaker. If the hypotheses for all of the previous featurevetors are onsistent with the hypothesis for the urrent feature vetor then it isexpeted that the value of the numerator will be greater than that of the denominator.However, if the urrent feature vetor's hypothesis is inonsistent with the hypothesesof the previous feature vetors then it is expeted that the numerator would be lessthan the denominator.Given the above desription, it is easy to see that the onsisteny ratio an be usedto aount for the within-speaker orrelations whih exist between phoneti events.As suh the onsisteny ratio provides a measure of speaker onstraint whih is lak-ing in the standard SI aousti model. Hypotheses whose aggregate onsisteny ratiois greater than one are deemed onsistent with the assumption that all of the phoneswere spoken by the same person. These hypotheses thus have their standard aous-ti model likelihoods boosted by the appliation of the onsisteny ratio. Likewise,hypotheses deemed to be inonsistent by the onsisteny ratio have their standardaousti model likelihoods redued.If an aurate estimate of the onsisteny ratio an be obtained then all of thespeaker orrelation information whih is ignored in the standard aousti model willbe aounted for in the estimate for p(XjU). However, this ratio requires an estimatefor the likelihood of a large joint feature vetor (~xn�1; : : : ; ~x1) under two di�erentonditions. This is a very diÆult modeling problem whih will be disussed inSetion 5.The independene assumption is a major weakness of typial SI systems. Byignoring the orrelations whih exist between di�erent observations, these systems areunable to provide any speaker onstraint. On the other hand, SD systems provide fullspeaker onstraint. Beause SD systems have been trained with a large amount ofspeeh from the one speaker of interest, there is relatively nothing new to be learnedabout the speaker's models from newly observed speeh from that speaker. Beauseof this, if we assume that the only signi�ant soure of orrelation between aoustiobservations is the individual speaker, the onsisteny ratio for a speaker dependentsystem an be approximated as follows:psd(~xn�1; : : : ; ~x1j~xn; U)psd(~xn�1; : : : ; ~x1jU) � 1 (7)Taking this into aount, the aousti model an utilize the following approximation



8when the reognition is performed in speaker dependent mode:psd(~xnj~xn�1; : : : ; ~x1; U) � psd(~xnjU) (8)In short, this states that the independene assumption is relatively sound for SDsystems.In this researh, beause we fous on modeling aousti orrelation due to thespeaker only, we are are impliitly assuming that orrelations from other e�ets donot exist. Stritly speaking, the independene assumption is not ompletely validatedwhen the system is a well trained SD system. Other fators ould ontribute to theexistene of orrelations between di�erent observations. Some additional soures ofonstraint whih may also a�et the speeh signal are the speaker's physiologial state(healthy or sik), the speaker's emotional state (happy or sad), and the speaking style(read speeh or spontaneous speeh).If it is assumed that the independene assumption is valid for SD systems, then itis reasonable to believe that the invalidity of the independene assumption in SI modeis a major fator in the severe drop in performane when a system is moved from SDmode to SI mode. This being said there are two ways of addressing the problem. The�rst way is to try to adjust the set of standard aousti models used during reognitionto math, as losely as possible, the harateristis of the urrent speaker (even if theurrent speaker is a stranger in the system's eyes). This is the approah taken by sys-tems whih utilize speaker adaptation. The most ommon approahes to speaker adap-tation inlude maximum a posteriori probability (MAP) adaptation [Gauvain 1994℄,extended maximum a posteriori probability (EMAP) adaptation [Lasry 1984℄, andmaximum likelihood linear regression (MLLR) adaptation [Leggetter 1995℄. The se-ond possible way to attak the problem is to utilize speaker orrelation informationdiretly within the probabilisti framework of the SI system. One way to aomplishthis is to reate models whih an be used to estimate the ontribution of the onsis-teny ratio. This approah will be alled onsisteny modeling. Both approahes areexamined in this paper.



93 Speaker Clustering Tehniques3.1 Hierarhial Speaker ClusteringOne method of providing speaker onstraint to speeh reognition systems that hasproven suessful is hierarhial speaker lustering [Furui 1989, Kosaka 1994a, Kosaka 1994b,Mathan 1990℄. Hierarhial speaker lustering allows similar training speakers to belustered to reate models whih represent spei� speaker types. In this approah,similar referene speakers are grouped together into a speaker luster for whih onemodel is trained.There are a variety of ways in whih a hierarhial speaker luster tree an beonstruted. The onstrution an be performed using unsupervised bottom-up lus-tering based on an aousti similarity measure [Kosaka 1994a, Kosaka 1994b℄, unsu-pervised top-down lustering based on an aousti similarity measure [Furui 1989,Mathan 1990℄, or some supervised method. In our ase, a very simple luster tree isreated in a supervised fashion. This tree �rst lusters speakers by gender and theninto three lasses of speaking rate, fast, medium and slow. This yields a total of sixdi�erent models at the leaves of the tree. Figure 1 illustrates the hierarhial speakerlustering that we utilized.When using speaker lustering, there is a trade-o� between robustness and spei-�ity. Large lusters are more general but an be trained more robustly. Smallerlusters an represent more spei� speaker types but may lak a suÆient amountof training data required for aurate density funtion estimation (i.e., the sparsedata problem). To inrease the robustness of the models in the tree, model interpo-lation is utilized. For example, the �nal interpolated aousti models used for eahgender dependent phone model, pigd(~xju), are an interpolation of the maximum like-lihood trained gender dependent model, pgd(~xju) and the speaker independent model,psi(~xju). The form of this interpolation is:pigd(~xju) = �pgd(~xju) + (1� �)psi(~xju) (9)Similarly, an interpolated gender and speaking rate dependent model, pigrd(~xju), anbe reated using the expression:pigrd(~xju) = �1pgrd(~xju) + �2pgd(~xju) + (1� �1 � �2)psi(~xju) (10)The � values are determined from the training data using deleted interpola-tion [Bahl 1991, Huang 1996℄. Deleted interpolation optimizes the � values by maxi-mizing the likelihood of data jak-knifed from the training set using the Expetation



10
�������� ������ QQQQQQ ��������Fast Medium Slow

All SpeakersMales Fast Medium SlowFemalesGender
Speaking RateFigure 1: Hierarhial luster tree utilized by our system.Maximization (EM) algorithm. Using the deleted interpolation algorithm, eah phonemodel reeives a di�erent set of interpolation weights. If a partiular speaker lusterhas plenty of data to reliably estimate the density funtion for a partiular phone,then the interpolation weights typially favor the more spei� luster model. On theother hand, if a luster ontains only a small amount of data for a partiular phone,then the interpolation weights typially plae emphasis on the more general model.There are a variety of ways in whih the luster models an be used during reogni-tion. One potential system ould run all of the luster models in parallel and hoosethe model whih produes the best soring path. In our experiments a serial ap-proah is utilized, i.e., reognition is performed with a two-pass strategy. First, thetest utterane is passed through the speaker independent (SI) reognizer. The bestpath using the SI models is then resored by gender spei� models to determinethe gender of the speaker. The best path is also utilized to estimate the speakingrate. The appropriate gender and speaking rate spei� model is then used for aseond reognition pass. In our experiments di�erent reognition experiments wereonduted using either gender dependent (GD) lusters or six gender and speakingrate dependent (GRD) lusters.3.2 Speaker Cluster WeightingWhen using hierarhial speaker lustering, reognition is performed using a model setseleted from a �nite set of predetermined model sets. The individual models in eahpredetermined model set are themselves interpolations of various general and spei�models. The weightings used to perform the interpolation are preomputed using thedeleted interpolation algorithm. An alternative approah is an interpolation sheme



11whih determines the weighting fators on the y to math the urrent speaker. Thisis the basi idea behind speaker luster weighting (SCW) adaptation.In speaker luster weighting, a predetermined set of L di�erent model sets exists.The �nal SCW model set used for reognition uses weighted ombinations of themodels from the predetermined set of L di�erent models sets. Let pl(~xju) representthe aousti model from model set l for phoneti unit u. The �nal SCW modelfor phoneti unit u is a weighted ombination of the L di�erent models and an berepresented as: psw(~xju) = LXl=1 wlpl(~xju) (11)The diÆult part of the problem is to determine the values for eah wl weight. Theseweights an be di�erent for eah phoneti unit or they an be shared amongst phonetiunits belonging to a ommon lass. Sharing the weighting fators aross all phonetiunits within a predetermined phoneti lass helps provide weighting fator estimateswhih are more robust in the fae of limited or sparse adaptation data. For eahlass of phones the goal is to �nd the set of weights whih maximizes the likelihood ofthe adaptation data for that phoneti lass for the urrent speaker. To illustrate theSCW proess, onsider the problem of �nding the single optimal set of global weights.The problem is ast in a maximum likelihood framework as follows:~w0 = argmax~w psw(XjU; ~w) (12)Here, the weights are represented in the weighting vetor ~w as follows:~w = 2664 w1...wL 3775 (13)By assuming eah observation is independent of other observations and its surround-ing ontext, this maximization proess beomes:~w0 = argmax~w NYn=1 psw(~xnjun; ~w) (14)This maximization proess is easily performed by the EM algorithm.To perform the maximization proess for �nding the optimal weights, the pho-neti transription U must be provided. The phoneti transription from the bestpath provided by the SI reognizer an be used to approximate the true phonetitransription.



12There are two �nals steps in onstruting an SCW system. The �rst step isdetermining the set of luster models used by the SCW algorithm. The set of modelsused in these experiments ontain the same nine ML trained model sets appearing atthe nine nodes of the hierarhial tree shown in Figure 1. In other words, the set ofmodels ontains one SI model set, two GD model sets, and six GRD model sets.The seond step is determining the di�erent phoneti lasses, eah of whih willreeive a di�erent weighting vetor. Experiments have shown that a very simple setof three phoneti lasses works best [Hazen 1998℄. The experiments in this paperuse three di�erent weight vetors: one for standard phoneti models, one for silenemodels, and one for the anti-phone model (see [Glass 1996℄ for a desription of theanti-phone model and how it is used to normalize segment model sores).



134 Referene Speaker WeightingIn this setion we will disuss an adaptation tehnique whih we refer to as referenespeaking weighting (RSW). This tehnique is designed to ombine the strengths ofthe parameter sharing tehniques utilized by many standard adaptation tehniques,suh as maximum likelihood linear regression (MLLR) adaptation, with the strengthsof speaker onstraint present in typial speaker lustering tehniques. The primarystrength of the MLLR adaptation algorithm lies in its ability to jointly adapt the pa-rameters of multiple aousti models using a shared linear transformation. However,the MLLR assumption that di�erent aousti models an be jointly adapted using thesame linear transformation ignores a priori knowledge about the atual underlyingrelationship between di�erent phoneti events produes by the same speaker. Ideally,the adaptation of a set of models should utilize a priori knowledge obtained fromtraining data about how the models of di�erent phoneti units are likely to be jointlyonstrained. Speaker lustering tehniques are one means of de�ning this onstraint.The basi premise behind referene speaker weighting is that the model parametersof a speaker adapted model an be onstruted from a weighted ombination of modelparameters from a set of individual referene speakers. As with hierarhial speakerlustering, the robust training of model parameters is an important issue. Beausethe amount of data available from eah referene speaker may be limited, it might notbe possible to robustly train a full aousti model for every phone for every referenespeaker. Thus, our referene speaker weighting tehnique limits its fous to a smallset of model parameters whih an be robustly trained for eah speaker. Our systemonly utilizes the entroid or enter of mass of a model (we use these terms insteadof the term mean to distinguish between the entroid of a mixture Gaussian modeland the means of the individual mixture omponents). The entroid of a mixtureGaussian model with M omponents an be expressed as:~ = MXi=1 !i~�i (15)In this expression ~�i is a mixture omponent's mean vetor and !i is the omponent'sweight. Using ~, we an re-express eah mixture omponent mean vetor as follows:~�i = ~+ ~�i (16)In this expression ~�i is simply an o�set whih, when added to ~, yields the mixtureomponent mean, ~�i. Using these de�nitions it an be seen that the loation of amodel an be altered without hanging the model's shape simply by adjusting thevetor ~. This type of adjustment will be referred to as model translation.



14In deriving the RSW approah, we begin by assuming a set of R di�erent referenespeakers exists within the training data. We also assume that for eah referenespeaker a reasonably aurate estimate of the entroid of the aousti model for eahof P di�erent phoneti units has been obtained. In our experiments, a small numberof speakers had little or no training for some of the less ommon phoneti units.Beause this prevents robust estimation of the entroids for these phones using MLestimation, MAP estimation of the entroids was used. Let the entroid for phone pof referene speaker r be represented as ~p;r. Furthermore, the olletion of entroidvetors for an individual speaker an be onatenated into a single speaker vetor.Let the speaker vetor for referene speaker r be de�ned as ~mr. The mathematialrepresentation of the speaker vetor ~mr is thus given as:~mr = 266664 ~1;r~2;r...~P;r 377775 (17)Furthermore, the entire set of referene speaker vetors an be represented by thematrix M whih will be de�ned as:M = [ ~m1 ; ~m2 ; : : : ; ~mR ℄ = 266664 ~1;1 ~1;2 � � � ~1;R~2;1 ~2;2 � � � ~2;R... ... . . . ...~P;1 ~P;2 � � � ~P;R 377775 (18)The portion ofM whih ontains only the enter of mass vetors for the pth modelan be represented as Mp and is expressed as:Mp = [~p;1 ; ~p;2 ; � � � ; ~p;R ℄ (19)This allows M to be expressed as: M = 2664 M1...MP 3775 (20)During adaptation, the goal is to determine the most likely speaker vetor, ~m,for a test speaker given the available adaptation data. It is also desirable to utilizethe a priori knowledge provided by the referene speaker vetors about the orre-lations between the entroids of di�erent models. However, past approahes whih



15have attempted to build statistial models to govern the adaptation of ~m, suh asthe extended maximum a posteriori (EMAP) adaptation approah, have run intodiÆulty beause of the sparse data problem assoiated with training the large setof orrelation parameters required by their models. To avoid this problem we seek asolution where these orrelations an be aounted for without having to expliitlytrain a large a priori statistial model ontaining many parameters. One possiblesolution is to use the speaker vetors in M to onstrain the speaker spae in whih~m may fall. Spei�ally, the value of ~m an be onstrained to be a weighted averageof the speaker vetors ontained in M. This an be expressed as:~m =M~w (21)Here ~w is a weighting vetor whih allows a new speaker vetor to be reated via aweighted summation of the referene speaker vetors in M. The portions of ~m andM whih represent phoneti unit p an be expressed as ~p and Mp, thus allowing thefollowing expression: ~p =Mp ~w (22)To �nd the optimal value of ~w a maximum likelihood approah an be utilized.The goal is to �nd the value of ~w whih maximizes the likelihood of a set of adaptationdata. Let X represent the adaptation data. In partiular, let X be represented as:X = fX1; X2; : : : ; XP g (23)Here eahXp is a set of example observations from the pth phoneti unit. Furthermore,the sets of observations for eah unit will be represented as:Xp = f ~xp;1; ~xp;2; : : : ; ~xp;Np g (24)Here eah ~xp;n is a spei� observation vetor of phoneti unit p and Np is the totalnumber of adaptation observations available for unit p. Note that it is possible for Npto be zero for any given unit, espeially when only a small amount of adaptation datais available. Using the above de�nitions the goal is to �nd the optimal value of ~wusing the following maximum likelihood expression (as expressed in the log domain):argmax~w log p(X j~w): (25)In solving for the optimal ~w the ommon assumption that all observations are inde-pendent is made. With this assumption the expression redues to:argmax~w PXp=1 NpXn=1 log p(~xp;nj~w): (26)



16Next, the density funtion must be de�ned. A single full ovariane Gaussiandensity funtion is used to approximate the mixture Gaussian density funtion usedby eah phoneti unit model. The density funtion for phone p an thus be expressedas: p(~xp;nj~w) � N (~p;Sp) (27)Here Sp represents the speaker independent ovariane matrix for unit p, whih willremain onstant.It an be shown that the expression in (26) redues to the following expression:argmax~w 2~v T ~w � ~w TU~w: (28)Here U and ~v are de�ned as follows:U = PXp=1 NpXn=1MTp S�1p Mp = PXp=1NpMTp S�1p Mp (29)~v T = PXp=1 NpXn=1 ~xTp;nS�1p Mp (30)Before, solving for ~w the following two onstraints are also applied:8i wi � 0 and RXi=1wi = 1 (31)A simple hill limbing algorithm an be utilized to �nd the value of ~w whih maximizesthe likelihood of the data under the onstraints given.For the experiments that will be presented in this paper, the entroids for all of themodels are adapted using one global weighting vetor. However, the RSW frameworkan be easily extended to handle multiple weighting vetors overing di�erent phonetilasses. This is akin to the approah taken by most MLLR systems where a varyingnumber of MLLR transforms an be utilized depending on the amount of availableadaptation data. This proess is disussed in more detail in [Hazen 1998℄. Thoughnot done in our experiments, the size of the weighting vetor that must be estimatedan also be redued by applying eigen analysis tehniques to the referene speakermatrixM and utilizing only the most signi�ant eigen vetors. This approah, alledeigenvoies, was introdued in [Kuhn 1998℄.



175 Consisteny Modeling5.1 Probabilisti FrameworkAs disussed in the introdution, one potential method for inorporating speaker on-straint into a speeh reognition system is to expliitly model the onsisteny ratio.We will refer to this type of modeling as onsisteny modeling. To introdue thetheoretial aspets of onsisteny modeling, onsider the probabilisti framework in-trodued in Setion 2. In the probabilisti framework the likelihood of a sequene, X,of N aousti measurements being produed by the underlying sequene of phonetiunits, U , an be expressed as follows:p(XjU) = NYn=1 p(~xnj~xn�1; : : : ; ~x1; U) = NYn=1p(~xnjU)p(~xn�1; : : : ; ~x1j~xn; U)p(~xn�1; : : : ; ~x1jU) (32)In examining this expression, the likelihood of any partiular aousti observation~xn an be realized as the produt of two separate terms. The �rst term is the stan-dard aousti model, i.e., the model that is used when the aousti observations areonsidered independent. The seond term is a ratio whih will be referred to as theonsisteny ratio. As disussed earlier, this ratio ompares the likelihood of the pre-viously observed phones when onsidering and not onsidering the latest observation.With the onsisteny ratio de�ned, the diÆulty lies in devising a means of mod-eling this ratio. Modeling a large joint expression suh as p(~xn�1; : : : ; ~x1jU) wouldbe extremely diÆult with anything but the simplest probabilisti models. Even theuse of a single full ovariane Gaussian model, though easy to onstrut, would beomputationally expensive to use. For the purpose of pratiality, one simplifyingassumption will be made. It will be assumed that only the orrelations between theurrent observation and eah of the individual past observations are neessary to es-timate the value of the onsisteny ratio. With this assumption the onsisteny ratioan be approximated as follows:p(~xn�1; : : : ; ~x1j~xn; U)p(~xn�1; : : : ; ~x1jU) � n�1Yk=1 p(~xkj~xn; U)p(~xkjU) (33)This assumes that ignoring the orrelations between the observations ~xn�1; : : : ; ~x1,whih exist in both the numerator and the denominator, will not a�et the �nalresult. This expression an be equivalently expressed as:n�1Yk=1 p(~xkj~xn; U)p(~xkjU) = n�1Yk=1 p(~xn; ~xkjU)p(~xnjU)p(~xkjU) (34)



18The full sore for a hypothesized path an thus be written as:p(XjU) = NYn=1 p(~xnjU) n�1Yk=1 p(~xn; ~xkjU)p(~xnjU)p(~xkjU) (35)Typially the sore of a hypothesized path is expressed in the log domain. In thisase, it is straightforward to rewrite the expression as:log p(XjU) =  NXn=1 log p(~xnjU)! +  NXn=1 n�1Xk=1 log p(~xn; ~xkjU)p(~xnjU)p(~xkjU)! (36)In examining the �nal sore of a hypothesized path using onsisteny modelingit an be seen that the onsisteny model ontributes a sum of log ratios model-ing individual pairs of aousti observations. In information theory, this log ratio,omputed for eah pair of observations, is known as the pair's mutual information.Ideally, the log ratio for a pair of observations will ontribute a positive sore if theobservations, given the hypothesized phoneti labels, are onsistent with eah otherunder the assumption that they were spoken by the same speaker. Likewise, negativesores would indiate that the observations, given the hypothesized phoneti labels,are not onsistent with eah other under the assumption they were spoken by thesame speaker.5.2 Engineering IssuesIn order to utilize the onsisteny model framework in an atual speeh reognitionsystem, several engineering issues must be addressed. These issues are summarizedby the following 5 questions:1. How are the onsisteny model's joint probability density funtions reated?2. What aousti measurements should the onsisteny model utilize?3. What phone pairs should be sored by the onsisteny model?4. How should the onsisteny model be saled relative to the standard aoustimodel?5. How an a reognizer's searh mehanism inorporate onsisteny modeling?



195.2.1 Construting Joint Density FuntionsWhen utilized in a ontext independent mode, the onsisteny ratio is modeled uti-lizing the following expression: p(~xj; ~xkjuj; uk)p(~xjjuj)p(~xkjuk) (37)This expression requires the reation of a joint density funtion p(~xj; ~xkjuj; uk). Theindependent density funtions p(~xjjuj) and p(~xkjuk) are simply the marginal densitiesfor ~xj and ~xk and an be extrated diretly from p(~xj; ~xkjuj; uk).In order to train p(~xj; ~xkjuj; uk) using standard methods, a set of joint observationvetors representing the observations of ~xj and ~xk, as spoken by the same speaker,must be onstruted. One potential method for reating joint vetors for a partiularphone pair is by onatenating individual observation vetors from eah of the twophones olleted from one speaker. For example, suppose a training speaker hasspoken 2 examples of the phone [s℄ and 3 examples of the phone [t℄. The observationvetors for the [s℄ examples an be represented as ~xs;1 and ~xs;2. Likewise observationvetors for the [t℄ examples an be represented as ~xt;1, ~xt;2, and ~xt;3. From theexamples of these two phones a set of joint observation vetors, Xs;t, for this onespeaker an be reated. If all ombinations of the two phones are onsidered thensix total joint observation vetors would be reated. The joint vetors in the Xs;t setwould be represented as:Xs;t = (" ~xs;1~xt;1 # ; " ~xs;1~xt;2 # ; " ~xs;1~xt;3 # ; " ~xs;2~xt;1 # ; " ~xs;2~xt;2 # ; " ~xs;2~xt;3 #) (38)This proess of onstruting joint vetors must then be repeated for the remainingtraining speakers in the training set. Figure 2 illustrates how the joint vetors fromthree di�erent speakers an be reated. In this �gure eah phone observation isrepresented by a single measurement, giving the joint phone vetors two dimensions.For this example, speaker 1 has two examples of [s℄ and three examples of [t℄. Similarly,speaker 2 has four examples of [s℄ and two examples of [t℄, while speaker 3 has threeexamples eah of [s℄ and [t℄.It is worthwhile to note that the proess of onstruting the joint observationvetors need not be performed on a speaker by speaker basis. If one wishes to aptureadditional orrelation information about fators whih ould vary from day to day (thespeaker's health or environment) or even from utterane to utterane (the speaker'sspeaking style or speaking rate) then the joint vetors ould be reated on a session
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Measurement for [s]Figure 2: Illustration of joint vetors reated for the pair of phones [s℄ and [t℄ asolleted from three di�erent training speakers.by session or even an utterane by utterane basis. In our experiments, all utteranesfrom a single training speaker were reorded in a single session using the same speakingstyle, thus justifying the speaker by speaker approah.It is also important to note that the proess desribed above for reating jointobservation vetors for a single speaker results in a olletion of joint observationvetors whose individual observation spaes (e.g., the separate observation spaesfor [s℄ and [t℄ in the example above) are unorrelated with eah other. This an beobserved visually in Figure 2 by noting from the geometri symmetry of the olletionof joint observations reated eah for the three example speakers that the observationspaes of [s℄ and [t℄ are unorrelated with eah other for eah individual speaker. Thisis onsistent with the assumption disussed in Setion 2 that di�erent observationsan be treated as independent when utilizing speaker dependent modeling. However,when the joint observations from all training speakers are ombined, then the within-speaker orrelations between [s℄ and [t℄ in the �gure beome evident.There are various ways in whih these joint vetors an be used to train a set ofonsisteny models. The training method that proved most e�etive in our work is atehnique we refer to as speaker mixture training. In this approah, a joint model is�rst reated for eah individual training speaker. Next, the �nal model is reated byombining all of the individual joint models from eah speaker into one large mixturemodel. In our experiments, the models from eah individual speaker reeive an equalweighting in the �nal mixture model. An equal weighting was used beause eahspeaker had roughly the same amount of training data. However, in the general asedi�erent speaker models ould reeive di�erent weighting fators in the �nal mixture
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Figure 3: Illustration of joint models reated for the pair of phones [s℄ and [t℄ asolleted from three di�erent training speakers. In (a) diagonal Gaussian models arereated for eah speaker. In (b) the individual diagonal Gaussians for eah speakerare ombined to make one large mixture of Gaussians.model. In these experiments eah individual speaker is modeled using only a singlediagonal Gaussian density funtion. The use of a diagonal Gaussian is justi�ed by theobservations detailed in the previous paragraph. In experiments this method workedbetter than the more obvious method of training a model diretly from the olletionof joint observation vetors pooled over all speakers.Formally, the training proedure used when reating the joint model for any par-tiular phone pair is as follows:1. Train a single diagonal Gaussian model from the olletion of joint vetors foreah individual training speaker.2. Giving all training speakers equal weight, ombine the diagonal Gaussians forthe joint vetors from eah training speaker into one large mixture Gaussianmodel.This approah is illustrated by the example in Figure 3.5.2.2 Measurement SeletionBeause the onsisteny model sore an be omputed independently of the standardaousti model sore, the measurement sets used by the two di�erent models need not



22be the same. Beause the onsisteny model is more diÆult to train, a small set ofmeasurements whih exhibit a large amount of the orrelation between phones maybe more appropriate than the full set of measurements used by the standard aoustimodel.The reognizer used is these experiments utilizes 36 aousti measurements in thestandard aousti model. These measurements are rotated using prinipal ompo-nents analysis. In this work, the dimensionality of the aousti measurement vetorsused by the onsisteny model is redued by using the top n prinipal omponents.Thus, the joint vetor used by the onsisteny model would be of length 2n. In ourexperiments, a value of n = 10 was found to work best. In [Hazen 1998℄ the primarypriniple omponents are shown to exhibit more orrelation between phoneti unitsthan the lesser priniple omponents, thus justifying this approah.5.2.3 Phone Pair SeletionThe onsisteny model need not sore all of the phone pairs that it enounters. Be-ause reating robust onsisteny models is a diÆult estimation problem, it is wiseto sore only the phoneti pairs whih exhibit a high amount of within-speaker orre-lation in the training data. If two phones do not exhibit a high amount of orrelation,the estimation noise inherent in the phone pair's model ould be more signi�ant thanthe atual information to be gained from the orrelation between the two phones. Inthese ases it is wise to assume that these phone pairs are unorrelated and not sorethem. Phone pairs that are not used ontribute a sore of zero to the �nal log sore,the same sore that truly unorrelated pairs should ontribute.To deide whih pairs the onsisteny model will sore, two riteria are utilized.First, only pairs with high within-speaker orrelation values will be sored. A methodfor estimating the within-speaker orrelation of two phones is presented in detailin [Hazen 1998℄. Seond, only pairs with enough training data to suÆiently train ajoint model will be used. For these experiments, phone pairs were eliminated fromonsideration by the onsisteny model if the training orpus ontained less than 3000joint vetor exemplars of the pair in the training data.The phone-pairs that have a suitable amount of training data are ranked by theirwithin-speaker orrelation values. In examining the ranked list, several patterns areobvious. The top of the list is dominated self pairs, vowel-vowel pairs and nasal-nasalpairs. Of the top 60 phone pairs, 36 are self pairs, 31 are vowel-vowel pairs, ten arefriative-friative pairs, eight are nasal-nasal pairs, and only one is a stop-stop pair.Table 5.2.3 shows the top ten phone pairs as ranked by their estimated within-speaker



23Rank Phone Pair1 [4℄,[4℄2 [S℄,[S℄3 [FÊ℄,[FÊ℄4 [a¤�℄,[a¤�℄5 [n℄,[n℄6 [o℄,[o℄7 [m℄,[m℄8 [F℄,[F℄9 [n℄,[FÊ℄10 [e℄,[e℄Table 1: Top ten phone pairs as ranked by the amount of their within-speaker orre-lation in the training data.orrelation. The list ontains nine self pairs, with the �nal pair being the nasal [n℄and it's apped ounterpart [FÊ℄. Five of the pairs are nasal-nasal pairs indiating thatnasals exhibit a large amount of within-speaker orrelation. This is expeted beausethe aousti realization of nasals is dominated by the speaker's nasal avity. Thenasal avity's physial harateristis typially undergo little to no variation duringthe ourse of a onversation, thus allowing di�erent observations of the same nasalto be highly orrelated. In our experiments, using only the top 60 phone-pairs in theonsisteny model was empirially found to work best.5.2.4 Consisteny Model SalingExperiments using the onsisteny model demonstrated the need for the onsistenymodel sore to be saled relative to the sore of the standard aousti model. Thesaling fator will be represented as �. In our experiments a � of around 0.2 wasempirially found to work best. With the saling fator the full aousti model soreis expressed as:log p(XjU) =  NXn=1 log p(~xnjU)!+ � NXn=1 n�1Xk=1 log p(~xn; ~xkjU)p(~xnjU)p(~xkjU)! (39)



245.2.5 Searh IssuesAs disussed earlier, when the utterane is proessed in a time synhronous fashion,the aousti model sore for a partiular segment is represented as:p(~xnj~xn�1; : : : ; ~x1; U) = p(~xnjU)p(~xn�1; : : : ; ~x1j~xn; U)p(~xn�1; : : : ; ~x1jU) (40)From this equation it is lear that the sore for a partiular segment is dependent on allsegment observations preeding it (as well as the segment labels U and the partiularsegmentation being onsidered). Beause of this dependene on the full past ontextof the aousti observations, the onsisteny model an not be inorporated intoa standard Viterbi searh. Furthermore, beause the number of phones pairs thatould be sored by the onsisteny model ould be O(n2), it may be very ineÆientto inorporate the onsisteny model into a best-�rst searh suh as the A� searh.An alternative to inorporating the onsisteny model diretly into an A� searhis to use an A� searh to generate an N -best list and then resore the N -best hy-potheses using the onsisteny model. This approah greatly redues the amount ofomputation that would potentially be performed by an A� searh diretly inorpo-rating the onsisteny model. If the N -best list has a high probability of ontainingthe orret answer then this approah is not likely to su�er any severe degradationin performane as ompared to implementing an A� searh whih utilizes the onsis-teny model. In the ase of the Resoure Management task on whih we ondutedour experiments , the orret answer is one of the top two hypotheses 75% of the timeand is one of the top ten hypotheses 90% perent of the time when the standard SIreognizer is used. For the experiments presented later in the paper, the onsistenymodel is used to resore the 10-best hypotheses proposed by the reognizer.



256 ResultsThe tehniques disussed in this paper (hierarhial speaker lustering, speaker lus-ter weighting, referene speaker weighting, and onsisteny modeling) were evaluatedusing a word reognition task. The tehniques were inorporated into the systemfor the purpose of performing rapid unsupervised speaker adaptation. In our exper-iments, the system attempts to adapt to the harateristis of the urrent speakerusing the same utterane it is trying reognize. The orpus used for these experi-ments was the DARPA Resoure Management orpus [Prie 1988℄. The experimentsutilized the 109 speakers in the training and development sets for training purposes.The entire 40 speaker, 1200 utterane test set was used for testing. The SUMMITsystem was used for reognition [Glass 1996℄. The reognizer utilized segment-based,ontext-independent models for 68 di�erent phoneti units. The standard word-pairgrammar distributed with the orpus was used for the language model.All of the tehniques presented in this paper require a transription of the adapta-tion data when performing adaptation. Unfortunately, the underlying transriptionof an utterane is not known during unsupervised adaptation. The simplest solutionto this problem is to run the standard SI reognizer on the adaptation data and thenuse the best path proposed by the reognizer as a substitute for the true transriptionwhen performing adaptation. This approah an ause problems if the adaptationroutine is sensitive to errors in the transription. This is espeially problemati fortehniques whih try to adapt a large number of spei� parameters (suh as the stan-dard MAP adaptation algorithm) instead of a small number of general parameters(suh as the RSW tehnique or MAP algorithms that inorporate shared param-eter tehniques [Kannan 1997, Shashahani 1997, Shinoda 1997, Zavaliagkos 1995℄).When adapting a small number of general parameters it is possible for the orretsegments in the best path to overwhelm the errors during the adaptation routine'sestimation phase. This is the ase with the RSW and speaker luster weightingtehniques.Figure 4 diagrams the system arhiteture used for the adaptation experimentspresented in this hapter. The system uses a two-pass reognition approah. First,the SI reognizer is run to generate a best path. This best path is then utilized by thespeaker luster seletion module. If hierarhial speaker lustering is being used thenthis module determines the gender and speaking rate of the utterane and outputsthe appropriate gender and speaking rate dependent set of models. If speaker lusterweighting is being used then this module determines the optimal weighting of thedi�erent luster models and outputs the �nal speaker luster weighted set of models.The best path from the SI reognizer is also used by the RSW adaptation module.
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Figure 4: Arhiteture of reognizer using the rapid adaptation tehniques desribedin the paper.This module takes the set of models provided from the speaker lustering moduleand adapts them using RSW adaptation based on the best path provided by the SIreognizer. The RSW module outputs a speaker adapted (SA) set of models whihan then be utilized for the seond reognition pass. The SA reognizer is then usedto generate an N -best list whih an be resored by the onsisteny model module.Table 6 shows the reognition results using various ombinations of the di�erentadaptation algorithms. The table is broken down into three subsetions orrespond-ing to the three di�erent speaker lustering gradations used: speaker independent(SI), gender dependent (GD), and gender and speaking rate dependent (GRD). Thespeaker lustering an also be augmented with the speaker luster weighting (SCW)adaptation tehnique. For eah type of speaker lustering, RSW adaptation and/oronsisteny modeling (CM) an be applied in addition to the speaker lustering. Thetype of hierarhial speaker lustering being used is listed in the �rst olumn. The se-ond olumn ontains the types of adaptation being utilized in addition to the speakerlustering. The next three olumns show the total number of errors, the word errorrate, and the redution in word error rate relative to the performane of the speakerluster models being used by the reognizer.The most signi�ant improvements in the system are gained by utilizing speaker



27Exp. Initial Adaptation Word Error Total Error# Models Method Rate Errors Redution1 SI | 8.6% 882 |2 SI MAP 8.5% 875 0.8%3 SI RSW 8.0% 825 6.5%4 SI CM 7.9% 810 8.2%5 SI RSW + CM 7.9% 808 8.4%6 GD | 7.7% 789 |7 GD RSW 7.6% 783 0.8%8 GD CM 7.2% 738 6.5%9 GRD | 7.2% 737 |10 GRD CM 6.9% 715 3.0%11 GRD SCW 6.9% 715 3.0%12 GRD SCW + CM 6.8% 701 4.9%Table 2: Table of reognition results using various forms of rapid, unsupervised adap-tation, where the adaptation is performed on the same utterane the system is tryingto reognize.luster models instead of standard SI models. This an be seen in the table as theerror rates are redued as the spei�ity of the lusters models inreases from the SImodels (exp. 1), to the GD models (exp. 6), to the GRD models (exp. 9). The errorrate redution from the SI models to the GD models was 10.5% while the the errorrate redution from the SI models to GRD models was 16.4%. These results indiatethat large improvements in reognition auray an be gained simply by adaptingto generi speaker properties suh as gender and speaking rate. Note that the SCWadaptation tehnique further improves the results obtained with hierarhial speakerluster modeling (exp. 11). This indiates that it is better to let the system make asoft deision about the harateristis of speaker (as is done in SCW) than to forethe system to make a hard deision about what speaker luster model to use (as indone in standard hierarhial speaker lustering).When examining the di�erent adaptation tehniques applied to the SI model set,the �rst adaptation result is from the appliation of standard MAP model translationto the SI reognizer (exp 2.). Past results have indiated that standard MAP adap-tation tehniques, though based on solid mathematial priniples, are slow to adaptto a new speaker and are better suited for long term adaptation [Zavaliagkos 1995a℄.As expeted, when MAP adaptation is inorporated into our adaptation system, itdid not signi�antly improve the reognizer performane. It should be noted that we



28did not attempt to inorporate MLLR adaptation into our system beause past re-searh e�orts have shown that MLLR also performs poorly when only small amountsof adaptation data (three utteranes or less) is available [Leggetter 1995℄. We alsodid not attempt to dupliate any form of EMAP adaptation beause past e�orts haverequired fairly omplex modeling tehniques while yielding results only marginallybetter then MAP adaptation [Huo 1997, Zavaliagkos 1995b℄. Sine the ompletionof the experiments in this paper, several promising tehniques, in whih parametersharing tehniques have been inorporated in a MAP adaptation algorithm, have alsobeen published [Kannan 1997, Shashahani 1997, Shinoda 1997℄. Comparison againstthese tehniques were not possible when the experiments in this paper were originallyonduted.Next, the table shows that RSW model translation does improve the performaneof the SI system signi�antly despite the fat that its adaptation is guided by theerror prone best path from the SI reognizer (exp. 3). This indiates that RSW modeltranslation adaptation is far more robust to errors in the reognizer's best path andadapts more rapidly than MAP model translation. However, when RSW adaptationis performed on the GD luster models, no signi�ant improvement is observed (exp.7). There are two possible explanations for this. First, the GD models have a smallervariane than the SI models and, as suh, their likelihood estimates are a�eted morewhen their enters of mass are altered than models with larger variane. Thus, asthe luster models beome more spei�, model translation adaptation tehniquesbeome more sensitive to the noise in the enter of mass estimation. Seond, muhof the gain of RSW adaptation might be due to the tehniques adaptation to thegender, and not the spei� aousti harateristis, of the urrent speaker. Beauseof this result we did not attempt to use RSW to adapt the GRD models.When onsisteny modeling is used, the system's performane is almost universallyimproved regardless of the models that they are used in onjuntion with. It shouldbe noted that the relative improvements from onsisteny modeling derease as theluster models beome more spei�. The improvements are signi�ant when CMis used in onjuntion with the SI and GD models (exp. 4 and exp. 8). However,the improvement is only marginally signi�ant when CM is applied with the GRDmodels (exp. 10). The redued e�etiveness of the onsisteny modeling approah asthe speaker luster models get more spei� are expeted beause the ontributionof the onsisteny model should derease as the resemblane of the standard aoustimodels to the true underlying speaker dependent models inreases.When examining the results obtained using onsisteny model, one might wonderhow the onsisteny modeling approah ompares with approahes whih attempt tomodel the orrelations of suessive observations [Paliwal 1993, Szarvas 1998℄. It is



29easily reasoned that suessive frames of sampled speeh are highly orrelated beausethe physial limitations and inertia of a speaker's artiulatory mehanisms typiallyonstrain the aousti harateristis of suessive frames of speeh to be highly simi-lar. Though the rational for employing this approah is di�erent than the rational foronsisteny modeling, these tehniques do share to ommon idea of jointly modelingtwo observations in order to ondition the likelihood of one observation on a previousobservation. Thus, one might wonder how many of the onsisteny model phone pairsutilized in a typial utterane are suessive observations and what perentage of anyimproved reognition results is the result of soring these suessive pairs. In ourexperiments the soring of suessive pairs of observation with the onsisteny modelwas atually very unommon. This is beause a majority of the onsisteny pairs areself-pairs and our system's phonologial omponent rarely allows the same phonetievent to our twie in a row (beause it typially treats sequenes of the same fria-tive or nasal as a single geminate unit, and other dupliate phoneti sequenes areeither exeptionally rare or annot happen by rule). As a result, preventing suessivepairs from being sored in the onsisteny model approah used here has no signi�ante�et on the performane of the system. Hene, it is oneivable that inorporatingommon suessive observation pairs into the modeling to aompany the onsistenypairs determined to have high within-speaker orrelation ould further improve uponthe results obtained here.



307 DisussionThe experiments presented in this paper have shown the importane of inorporat-ing within-speaker orrelation information into a system performing rapid speakeradaptation. By aounting for these orrelations using the speaker lustering adapta-tion methods, models whih more losely resemble the urrent speaker an be quiklyonstruted using only one adaptation utterane. Furthermore, it was found that mis-takes in hypotheses, whih were likely aused beause the system did not enfore anyspeaker onstraint within its framework, ould be orreted by enforing the speakeronstraint with the onsisteny model. Overall, ombinations of the various adapta-tion tehniques desribed in this paper redued the error rate of our system by 4.9%to 8.4% depending on the initial speaker luster models being used. When ombiningspeaker lustering tehniques with the rapid adaptation tehniques presented in thispaper, an overall relative error rate redution of 20% from the baseline SI systemwas ahieved. Most of the 20% error rate redution an be attributed to utilizinggender and speaking rate dependent models. However, it was observed that the useof the onsisteny model improved all versions of our system inluding the gender andspeaking rate dependent version. This indiates that additional information beyondgender and speaking rate is being provided by the onsisteny model.It is our belief that the formulation of the onsisteny model tehnique is animportant step forward in the development of our speaker independent reognitionsystem. With this model we are attaking the segment independene assumption,whih has long been onsidered a weak link in the mathematial formulation of typialspeeh reognition systems. Though the modeling tehniques employed in the reationof the onsisteny models used in this paper are simplisti, the system obtainedsigni�ant redutions in error rate when these models were used. We believe thatfurther study of the onsisteny model approah will yield a better understanding ofthe within-speaker orrelation information whih the model is attempting the apture,hopefully resulting in further improvements in our system's performane.It must be stated that we aknowledge that the true value of the adaptationtehniques presented in this paper will not be known until the tehniques an be testedon a state-of-the-art reognizer. The �rst step in ahieving this is to inorporatethe tehniques presented in this paper into a ontext-dependent system whih isloser to the state-of-the-art in reognition performane than the ontext independentreognizer utilized in this paper. We hope to attempt this in the future. At this timewe do not have any preoneptions about how well these tehniques will sale to aontext-dependent large voabulary system. However it is our hope that, like MAPand MLLR, these tehniques an be engineered to produe signi�ant improvements



31in performane in a state-of-the-art system.We also hope to inorporate some of the ideas presented in this paper into our realworld spoken language understanding systems suh as the JUPITER system [Zue 1997℄.These systems must handle short onversations (typially 5 turns or less) whih on-tain spontaneous, telephone speeh from a wide variety of speakers, telephone types(speaker phones, ell phones, et.) and hannel qualities. Under these irumstanesthe ability for a reognizer to produe hypotheses whih are onsistent aross thelength of the utterane will be strained and methods for rapid adaptation ouldprove extremely helpful.
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